AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production

Nian Xu1Bingbing Qiu1Zucun Rui1,2Tianxiang Ji1Zilong Liu1Huaqiang Chu1( )
School of Energy and Environment, Anhui University of Technology, Ma’anshan 243002, China
SOJO Electric Hefei Co., Ltd., Hefei 231121, China
Show Author Information

Graphical Abstract

This study explores key strategies for enhancing hydrogen production efficiency in alkaline water electrolysis, focusing on optimizing heat and bubble mass transfer. Measures to enhance heat transfer include the use of metal composites, catalysts to optimize electrodes, precise temperature and pressure control, and increased electrolyte concentration. In addition, techniques to reduce bubble coverage, such as hydrophilic electrodes and voltage smoothing, have been summarized, thereby promoting hydrogen energy technology toward greater efficiency, economy, and environmental friendliness.

Abstract

This review highlights the critical effects of heat transfer and bubble mass transfer in alkaline water electrolysis on hydrogen generation efficiency. To improve heat transfer performance, the study focuses on reducing electrical resistance and controlling the electrolysis system’s temperature. It proposes innovative strategies such as using metal matrix composites and catalysts to optimize electrode structure, precise temperature and pressure regulation and enhanced electrolyte concentration. Additionally, the study examines the dynamics of bubble mass transfer, proposing effective strategies to reduce bubble coverage, including hydrophilic electrodes, mechanically circulating the electrolyte and voltage smoothing with pressure swinging. This study contributes to the advancement of hydrogen energy technology with practical strategies. By adjusting the electrolysis system to optimize the combined effect of these factors, we can improve the efficiency, economy and environmental friendliness of hydrogen production. This will contribute to the transformation of the global energy mix and the implementation of sustainable development strategies.

References

[1]

Xu, Q. M.; Chen, G. H.; Xie, M. L.; Li, X. F.; Zhao, Y. M.; Su, S.; Li, S. M. Experimental and numerical studies on hydrogen leakage and dispersion evolution characteristics in space with large aspect ratios. J. Clean. Prod. 2024, 438, 140467.

[2]

Mori, M.; Žvar Baškovič, U.; Stropnik, R.; Lotrič, A.; Katrašnik, T.; Šipec, R.; Lipar, J.; Lesar, Ž.; Drobnič, B. Green energy hubs for the military that can also support the civilian mobility sector with green hydrogen. Int. J. Hydrog. Energy 2023, 48, 39138–39153.

[3]

Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrog. Energy 2015, 40, 4285–4294.

[4]

Wang, B. J.; Shen, Y. H.; Shi, Z. M.; He, P. F.; Lv, H. Safety evaluation on hydrogen leakage and combustion of high-pressure hydrogen dispenser. Int. J. Hydrog. Energy 2024, 72, 1010–1022.

[5]

Su, Y.; Lv, H.; Feng, C.; Zhang, C. M. Hydrogen permeability of polyamide 6 as the liner material of type IV hydrogen storage tanks: A molecular dynamics investigation. Int. J. Hydrog. Energy 2024, 50, 1598–1606.

[6]

Steinfeld, A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int. J. Hydrog. Energy 2002, 27, 611–619.

[7]

Gu, X. F.; Ying, Z.; Zheng, X. Y.; Du, Y. Y.; Sun, H.; Chen, X. Y.; Dou, B. L.; Cui, G. M. Electrochemical activation of biochar and energy-saving hydrogen production by regulation of biochar-assisted water electrolysis. Energy Convers. Manag. 2024, 300, 117885.

[8]

Ruiz Diaz, D. F.; Wang, Y. Component-level modeling of solid oxide water electrolysis cell for clean hydrogen production. J. Clean. Prod. 2024, 443, 140940.

[9]

Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

[10]

Chen, S. B.; Zhuo, Y. L.; Wang, X.; Li, S. P.; Lu, J. X.; Liu, D.; Pan, H.; Wang, Z. B. Advances of layered double hydroxide electrocatalysts for high-current-density alkaline water/seawater splitting. Coord. Chem. Rev. 2024, 510, 215832.

[11]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[12]

Laguna-Bercero, M. A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources. 2012, 203, 4–16.

[13]

Cai, J. Y.; Weng, C.; Zhang, R. N.; Li, Q. F.; Zhang, T.; Shi, Z. R. Comparative analysis on the dynamic operation performance of photovoltaic/thermal powered proton exchange membrane water electrolysis cogeneration system (PV/T-PEMWE) under different connection modes. Renew. Energy 2023, 219, 119566.

[14]

Ursua, A.; Gandia, L. M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426.

[15]

Li, Z. X.; Hu, M. L.; Wang, P.; Liu, J. H.; Yao, J. S.; Li, C. Y. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.

[16]

Barreto, L.; Makihira, A.; Riahi, K. The hydrogen economy in the 21st century: A sustainable development scenario. Int. J. Hydrog. Energy 2003, 28, 267–284.

[17]

Buslaev, G.; Lavrik, A.; Lavrik, A.; Tcvetkov, P. Hybrid system of hydrogen generation by water electrolysis and methane partial oxidation. Int. J. Hydrog. Energy 2023, 48, 24166–24179.

[18]

Zhang, Q.; Zhang, N. Q.; Zhu, S. B.; Heydarian, D. Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle. Energy 2023, 264, 126134.

[19]

Hu, K. W.; Fang, J. K.; Ai, X. M.; Huang, D. J.; Zhong, Z. Y.; Yang, X. B.; Wang, L. Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. Appl. Energy 2022, 312, 118788.

[20]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[21]

Zang, W. J.; Sun, T.; Yang, T.; Xi, S. B.; Waqar, M.; Kou, Z. K.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv. Mater. 2021, 33, 2003846.

[22]

Rashid, M. M.; Al Mesfer, M. K.; Naseem, H.; Danish, M. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 2249–8958.

[23]

Ayers, K. E.; Anderson, E. B.; Capuano, C.; Carter, B.; Dalton, L.; Hanlon, G.; Manco, J.; Niedzwiecki, M. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 2010, 33, 3.

[24]

Duan, X. D.; Chen, J. H.; Xiang, X. T.; Zhou, A. M.; Xiao, J.; Wen, J.; Wang, S. M. Investigation of flow and heat transfer performances of novel water electrolyzer with conductive particles. Int. J. Hydrog. Energy 2024, 61, 188–196.

[25]

Grigoriev, S. A.; Porembsky, V. I.; Fateev, V. N. Pure hydrogen production by PEM electrolysis for hydrogen energy Int. J. Hydrog. Energy 2006, 31, 171–175.

[26]

Arthur, T.; Millar, G. J.; Sauret, E.; Love, J. Renewable hydrogen production using non-potable water: Thermal integration of membrane distillation and water electrolysis stack. Appl. Energy 2023, 333, 120581.

[27]

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934.

[28]

Kou, T. Y.; Wang, S. W.; Shi, R. P.; Zhang, T.; Chiovoloni, S.; Lu, J. Q.; Chen, W.; Worsley, M. A.; Wood, B. C.; Baker, S. E. et al. Periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities. Adv. Energy Mater. 2020, 10, 2002955.

[29]

Zhang, D. K.; Zeng, K. Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis. Ind. Eng. Chem. Res. 2012, 51, 13825–13832.

[30]

Peng, C.; Zhao, L. H. B.; Tang, Z. Y. Enhanced production of hydrogen from alkaline electrolysis by microbubbles removal on bionic electrode. Phys. Fluids 2023, 35, 022001.

[31]

Torii, K.; Kodama, M.; Hirai, S. Three-dimensional coupling numerical simulation of two-phase flow and electrochemical phenomena in alkaline water electrolysis. Int. J. Hydrog. Energy 2021, 46, 35088–35101.

[32]

Rocha, F.; Delmelle, R.; Georgiadis, C.; Proost, J. Effect of pore size and electrolyte flow rate on the bubble removal efficiency of 3D pure Ni foam electrodes during alkaline water electrolysis. J. Environ. Chem. Eng. 2022, 10, 107648.

[33]

Li, L. J.; Laan, P. C. M.; Yan, X. Y.; Cao, X. J.; Mekkering, M. J.; Zhao, K.; Ke, L.; Jiang, X. Y.; Wu, X. Y.; Li, L. J. et al. High-rate alkaline water electrolysis at industrially relevant conditions enabled by superaerophobic electrode assembly. Adv. Sci. 2023, 10, 2206180.

[34]

Emam, A. S.; Hamdan, M. O.; Abu-Nabah, B. A.; Elnajjar, E. A review on recent trends, challenges, and innovations in alkaline water electrolysis. Int. J. Hydrog. Energy 2024, 64, 599–625.

[35]

Esfandiari, N.; Aliofkhazraei, M.; Colli, A. N.; Walsh, F. C.; Cherevko, S.; Kibler, L. A.; Elnagar, L. A.; Lund, P. D.; Zhang, D. K.; Omanovic, S. et al. Metal-based cathodes for hydrogen production by alkaline water electrolysis: Review of materials, degradation mechanism, and durability tests. Prog. Mater. Sci. 2024, 144, 101254.

[36]

Aziz, S. K. T.; Sultana, S.; Kumar, A.; Riyajuddin, S.; Pal, M.; Dutta, A. Transition metal phosphides as cardinal electrocatalytic materials for alkaline hydrogen production. Cell Rep. Phys. Sci. 2023, 4, 101747.

[37]

Lv, H.; Chen, J. X.; Zhou, W.; Shen, X. J.; Zhang, C. M. Mechanism analyses and optimization strategies for performance improvement in low-temperature water electrolysis systems via the perspective of mass transfer: A review. Renew. Sustain. Energy Rev. 2023, 183, 113394.

[38]

Lee, S. A.; Jun, S. E.; Park, S. H.; Kwon, K. C.; Kang, J. H.; Kwon, M. S.; Jang, H. W. Single atom catalysts for water electrolysis: From catalyst-coated substrate to catalyst-coated membrane. EES Catal. 2024, 2, 49–70.

[39]

Ham, K.; Bae, S.; Lee, J. Classification and technical target of water electrolysis for hydrogen production. J. Energy Chem. 2024, 95, 554–576.

[40]

Zhang, M. F.; Gao, L. Y.; Yang, L.; Shan, G. X.; Wang, Y. X.; Huo, X. Y.; Li, W.; Zhang, J. L. Temperature distribution evolution in zero-gap alkaline water electrolyzer: Experimental and modeling. Fuel 2024, 367, 131418.

[41]

Kuckshinrichs, W.; Koj, J. C. Levelized cost of energy from private and social perspectives: The case of improved alkaline water electrolysis. J. Clean. Prod. 2018, 203, 619–632.

[42]

Shangguan, Z. X.; Zhao, Z. K.; Li, H.; Li, W. B.; Wang, T. T.; Jin, L. M.; Zhang, C. M. Hierarchical consistency tracking (HCT) model: A rapid and efficient approach for dynamic thermal analysis of alkaline water electrolysis. Int. J. Hydrog. Energy 2024, 49, 1030–1039.

[43]

Sharshir, S. W.; Joseph, A.; Elsayad, M. M.; Tareemi, A. A.; Kandeal, A. W.; Elkadeem, M. R. A review of recent advances in alkaline electrolyzer for green hydrogen production: Performance improvement and applications. Int. J. Hydrog. Energy 2024, 49, 458–488.

[44]

Olesen, A. C.; Frensch, S. H.; Kær, S. K. Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochim. Acta 2019, 293, 476–495.

[45]

Capozzoli, L.; Caprì, A.; Baglio, V.; Berretti, E.; Evangelisti, C.; Filippi, J.; Gatto, I.; Lavacchi, A.; Pagliaro, M.; Vizza, F. Ruthenium-loaded titania nanotube arrays as catalysts for the hydrogen evolution reaction in alkaline membrane electrolysis. J. Power Sources. 2023, 562, 232747.

[46]

Liao, K. W.; Chen, H. Y.; Wei, W. H.; Chen, G. C.; Yamanaka, I.; Liu, B. T.; Hong, T. F.; Chiang, T. C.; Huang, H. C.; Wang, C. H. Novel ruthenium-based catalysts with atomic dispersion for oxygen evolution reaction in water electrolysis. Mater. Today Chem. 2024, 35, 101857.

[47]

Zhou, B. W.; Ding, H.; Jin, W.; Zhang, Y. H.; Wu, Z. X.; Wang, L. Oxygen-deficient tungsten oxide inducing electron and proton transfer: Activating ruthenium sites for hydrogen evolution in wide pH and alkaline seawater. J. Colloid Interface Sci. 2024, 660, 321–333.

[48]

Abahussain, A. A. M.; Alharbi, A. F.; Wazeer, W.; El-Deeb, H.; Nassr, A. B. A. A. Stainless steel as gas evolving electrodes in water electrolysis: Boosting the electrocatalytic hydrogen evolution reaction on electrodeposited Ni@CoP modified stainless steel electrodes. Fuel 2024, 368, 131605.

[49]

Yu, J.; Li, Z.; Wang, C.; Xu, X. M.; Liu, T.; Chen, D. F.; Shao, Z. P.; Ni, M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J. Colloid Interface Sci. 2024, 661, 629–661.

[50]

Singh, R. K.; Schechter, A. Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2. Electrochim. Acta 2018, 278, 405–411.

[51]

Ji, D. W.; Yang, H.; Zhang, Q.; Ding, H. Y.; Zhang, S. T.; Zhang, G. X.; Pang, H. Iron series metal-organic frameworks and their composite nanomaterials: Controllable synthesis and clean energy applications. Nano Energy 2024, 125, 109559.

[52]

Wang, S. W.; Geng, Z.; Bi, S. H.; Wang, Y. W.; Gao, Z. J.; Jin, L. M.; Zhang, C. M. Recent advances and future prospects on Ni3S2-based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ. 2024, 9, 659–683.

[53]

Yuvaraj, A. L.; Santhanaraj, D. A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Mater. Res. 2014, 17, 83–87.

[54]

Chauhan, D.; Ahn, Y. H. Alkaline electrolysis of wastewater and low-quality water. J. Clean. Prod. 2023, 397, 136613.

[55]

Li, M.; Saedy, S.; Fu, S. L.; Stellema, T.; Kortlever, R.; van Ommen, J. R. Enhancing the durability of Pt nanoparticles for water electrolysis using ultrathin SiO2 layers. Catal. Sci. Technol. 2024, 14, 1328–1335.

[56]

Amores, E.; Rodríguez, J.; Carreras, C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production. Int. J. Hydrog. Energy 2014, 39, 13063–13078.

[57]

Zouhri, K.; Lee, S. Y. Evaluation and optimization of the alkaline water electrolysis Ohmic polarization: Exergy study. Int. J. Hydrog. Energy 2016, 41, 7253–7263.

[58]

Emam, A. S.; Hamdan, M. O.; Abu-Nabah, B. A.; Elnajjar, E. Enhancing alkaline water electrolysis through innovative approaches and parametric study. Int. J. Hydrog. Energy 2024, 55, 1161–1173.

[59]

LeRoy, R. L. Industrial water electrolysis: Present and future. Int. J. Hydrog. Energy 1983, 8, 401–417.

[60]

Shen, X. J.; Zhang, X. Y.; Li, G. J.; Lie, T. T.; Hong, L. Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer. Int. J. Energy Res. 2018, 42, 3244–3257.

[61]

Lang, W.; Zander, R. Salting-out of oxygen from aqueous electrolyte solutions: Prediction and measurement. Ind. Eng. Chem. Fundamen. 1986, 25, 775–782.

[62]

See, D. M.; White, R. E. Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J. Chem. Eng. Data 1997, 42, 1266–1268.

[63]

Grover, P. K.; Ryall, R. L. Critical appraisal of salting-out and its implications for chemical and biological sciences. Chem. Rev. 2005, 105, 1–10.

[64]

Brauns, J.; Turek, T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020, 8, 248.

[65]

Le Bideau, D.; Mandin, P.; Benbouzid, M.; Kim, M.; Sellier, M. Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling. Int. J. Hydrog. Energy 2019, 44, 4553–4569.

[66]

Gilliam, R. J.; Graydon, J. W.; Kirk, D. W.; Thorpe, S. J. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrog. Energy 2007, 32, 359–364.

[67]

Bonino, C. A.; Concepcion, J. J.; Trainham, J. A.; Meyer, T. J.; Newman, J. Water electrolysis with a homogeneous catalyst in an electrochemical cell. J. Electrochem. Soc. 2013, 160, F1143–F1150.

[68]

Schalenbach, M.; Tjarks, G.; Carmo, M.; Lueke, W.; Mueller, M.; Stolten, D. Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. J. Electrochem. Soc. 2016, 163, F3197–F3208.

[69]

Brauns, J.; Schönebeck, J.; Kraglund, M. R.; Aili, D.; Hnát, J.; Žitka, J.; Mues, W.; Jensen, J. O.; Bouzek, K.; Turek, T. Evaluation of diaphragms and membranes as separators for alkaline water electrolysis. J. Electrochem. Soc. 2021, 168, 014510.

[70]

Henao, C.; Agbossou, K.; Hammoudi, M.; Dubé, Y.; Cardenas, A. Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser. J. Power Sources. 2014, 250, 58–67.

[71]

Vogt, H. The incremental Ohmic resistance caused by bubbles adhering to an electrode. J. Appl. Electrochem. 1983, 13, 87–88.

[72]

Weijs, M. P. M. G.; Janssen, L. J. J.; Visser, G. J. Ohmic resistance of solution in a vertical gas-evolving cell. J. Appl. Electrochem. 1997, 27, 371–378.

[73]

Fortin, P.; Khoza, T.; Cao, X. Z.; Martinsen, S. Y.; Oyarce Barnett, A.; Holdcroft, S. High-performance alkaline water electrolysis using Aemion™ anion exchange membranes. J. Power Sources. 2020, 451, 227814.

[74]

Hammoudi, M.; Henao, C.; Agbossou, K.; Dubé, Y.; Doumbia, M. L. New multi-physics approach for modelling and design of alkaline electrolyzers. Int. J. Hydrog. Energy 2012, 37, 13895–13913.

[75]

Modica, G.; Giuffre, L.; Montoneri, E.; Pozzi, V.; Tempesti, E. Electrolytic separators from asbestos cardboard: A flexible technique to obtain reinforced diaphragms or ion-selective membranes. Int. J. Hydrog. Energy 1983, 8, 419–435.

[76]

Aili, D.; Kraglund, M. R.; Tavacoli, J.; Chatzichristodoulou, C.; Jensen, J. O. Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis. J. Membr. Sci. 2020, 598, 117674.

[77]

Lee, H. I.; Mehdi, M.; Kim, S. K.; Cho, H. S.; Kim, M. J.; Cho, W. C.; Rhee, Y. W.; Kim, C. H. Advanced zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode. J. Membr. Sci. 2020, 616, 118541.

[78]

Otero, J.; Sese, J.; Michaus, I.; Santa Maria, M.; Guelbenzu, E.; Irusta, S.; Carrilero, I.; Arruebo, M. Sulphonated polyether ether ketone diaphragms used in commercial scale alkaline water electrolysis. J. Power Sources. 2014, 247, 967–974.

[79]

Yu, J. H.; Zhu, Q. Q.; Ma, W. L.; Dai, Y. J.; Zhang, S. H.; Wang, F. H.; Zhu, H. Hydrophilic chitosan-doped composite diaphragm reducing gas permeation for alkaline water electrolysis producing hydrogen. ACS Appl. Mater. Interfaces 2024, 16, 1394–1403.

[80]
Kuleshov, V. N.; Kuleshov, N. V.; Dovbysh, S. A.; Kurochkin, S. V.; Slavnov, Y. A. High-pressure alkaline water electrolyzer for renewable energy storage systems. In 2018 Renewable Energies, Power Systems & Green Inclusive Economy (REPS-GIE), Casablanca, Morocco, 2018, pp 1–5.
[81]

Lira Garcia Barros, R.; Kraakman, J. T.; Sebregts, C.; van der Schaaf, J.; de Groot, M. T. Impact of an electrode-diaphragm gap on diffusive hydrogen crossover in alkaline water electrolysis. Int. J. Hydrog. Energy 2024, 49, 886–896.

[82]

de Groot, M. T.; Vreman, A. W. Ohmic resistance in zero gap alkaline electrolysis with a zirfon diaphragm. Electrochim. Acta 2021, 369, 137684.

[83]

Karacan, C.; Lohmann-Richters, F. P.; Shviro, M.; Keeley, G. P.; Müller, M.; Carmo, M.; Stolten, D. Fabrication of high performing and durable nickel-based catalyst coated diaphragms for alkaline water electrolyzers. J. Electrochem. Soc. 2022, 169, 054502.

[84]

Abdel Haleem, A.; Akutagawa, H.; Nakayama, S.; Bao, Y.; Awaludin, Z.; Nagasawa, K.; Kuroda, Y.; Nishiki, Y.; Mitsushima, S. Innovative membrane with selective gas permeability for alkaline water electrolysis: Dependable cell performance under industrial conditions. J. Power Sources. 2023, 587, 233709.

[85]

Li, H. J.; Hu, X.; Geng, K.; Liu, M.; Hu, B.; Chen, Q. H.; Jiang, Z. J.; He, M. Z.; Huang, Y. D.; Li, N. W. et al. Highly hydrophilic polybenzimidazole/zirconia composite separator with reduced gas crossover for alkaline water electrolysis. J. Membr. Sci. 2023, 683, 121844.

[86]

Li, H. J.; Liu, M.; Hu, B.; Hu, X.; He, M. Z.; Xin, J. H.; Niu, C. Y.; Huang, Y. D.; Li, N. W.; Xu, Z. S. et al. High chemical stability poly(oxindole biphenylene)/ZrO2 porous separator for alkaline water electrolysis. J. Membr. Sci. 2024, 700, 122658.

[87]

Hu, B.; Liu, M.; Chen, Q. H.; Zhou, X. W.; Li, H. J.; He, M. Z.; Li, Z. Y.; Zhang, R.; Huang, Y. D.; Sherazi, T. A. et al. Porous polybenzimidazole membranes doped with KOH for alkaline water electrolysis. J. Membr. Sci. 2024, 694, 122388.

[88]

Ulleberg, Ø. Modeling of advanced alkaline electrolyzers: A system simulation approach. Int. J. Hydrog. Energy 2003, 28, 21–33.

[89]

Li, Y. Y.; Zhang, T.; Ma, J. G.; Deng, X. T.; Gu, J. J.; Yang, F. Y.; Ouyang, M. G. Study the effect of lye flow rate, temperature, system pressure and different current density on energy consumption in catalyst test and 500 W commercial alkaline water electrolysis. Mater. Today Phys. 2022, 22, 100606.

[90]

Ding, S. L.; Guo, B.; Hu, S.; Tian, Z. K.; Gu, J. J.; Zhang, T.; Yang, F. Y.; Ouyang, M. G. Experimental and modeling study on energy flow of 250 kW alkaline water electrolysis system under steady state conditions and cold start process. Fuel 2023, 350, 128799.

[91]

Diéguez, P. M.; Ursúa, A.; Sanchis, P.; Sopena, C.; Guelbenzu, E.; Gandía, L. M. Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling. Int. J. Hydrog. Energy 2008, 33, 7338–7354.

[92]

Aboukalam da Cruz, M. H. A.; Etancelin, M.; Marias, F.; Reneaume, J. M.; Sochard-Reneaume, S.; Serra, S. Dynamic modelling of an alkaline water electrolysis system and optimization of its operating parameters for hydrogen production. Int. J. Hydrog. Energy 2023, 48, 12982–12999.

[93]

Wei, S. H.; Balakin, B. V.; Kosinski, P. Investigation of nanofluids in alkaline electrolytes: Stability, electrical properties, and hydrogen production. J. Clean. Prod. 2023, 414, 137723.

[94]

Demnitz, M.; Lamas, Y. M.; Garcia Barros, R. L.; de Leeuw den Bouter, A.; van der Schaaf, J.; Theodorus de Groot, M. Effect of iron addition to the electrolyte on alkaline water electrolysis performance. iScience 2024, 27, 108695.

[95]

Haug, P.; Koj, M.; Turek, T. Influence of process conditions on gas purity in alkaline water electrolysis. Int. J. Hydrog. Energy 2017, 42, 9406–9418.

[96]

de Groot, M. T.; Kraakman, J.; Garcia Barros, R. L. Optimal operating parameters for advanced alkaline water electrolysis. Int. J. Hydrog. Energy 2022, 47, 34773–34783.

[97]

Hnedkovsky, L.; Bochmann, S.; May, P. M.; Hefter, G. Molar volumes and heat capacities of aqueous solutions of potassium hydroxide and for water ionization up to 573 K at 10 MPa. J. Chem. Eng. Data 2017, 62, 2959–2972.

[98]

Roy, A.; Watson, S.; Infield, D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers. Int. J. Hydrog. Energy 2006, 31, 1964–1979.

[99]

Vogt, H. The quantities affecting the bubble coverage of gas-evolving electrodes. Electrochim. Acta 2017, 235, 495–499.

[100]

Ding, S. L.; Guo, B.; Hu, S.; Gu, J. J.; Yang, F. Y.; Li, Y. Y.; Dang, J.; Liu, B.; Ma, J. G. Analysis of the effect of characteristic parameters and operating conditions on exergy efficiency of alkaline water electrolyzer. J. Power Sources. 2022, 537, 231532.

[101]

Ganley, J. C. High temperature and pressure alkaline electrolysis. Int. J. Hydrog. Energy 2009, 34, 3604–3611.

[102]

Kuleshov, N. V.; Kuleshov, V. N.; Dovbysh, S. A.; Grigoriev, S. A.; Kurochkin, S. V.; Millet, P. Development and performances of a 0.5 kW high-pressure alkaline water electrolyser. Int. J. Hydrog. Energy 2019, 44, 29441–29449.

[103]

Allebrod, F.; Chatzichristodoulou, C.; Mogensen, M. B. Alkaline electrolysis cell at high temperature and pressure of 250 °C and 42 bar. J. Power Sources. 2013, 229, 22–31.

[104]

Bakker, M. M.; Vermaas, D. A. Gas bubble removal in alkaline water electrolysis with utilization of pressure swings. Electrochim. Acta 2019, 319, 148–157.

[105]

Appleby, A. J.; Crepy, G.; Jacquelin, J. High efficiency water electrolysis in alkaline solution. Int. J. Hydrog. Energy 1978, 3, 21–37.

[106]

Barco-Burgos, J.; Eicker, U.; Saldaña-Robles, N.; Saldaña-Robles, A. L.; Alcántar-Camarena, V. Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure. Fuel 2020, 276, 117910.

[107]

Wang, Y. C.; Hu, X. W.; Cao, Z. S.; Guo, L. J. Investigations on bubble growth mechanism during photoelectrochemical and electrochemical conversions. Colloids Surf. A: Physicochem. Eng. Asp. 2016, 505, 86–92.

[108]

Cho, H. J.; Wang, E. N. Bubble nucleation, growth, and departure: A new, dynamic understanding. Int. J. Heat Mass Transf. 2019, 145, 118803.

[109]

Chen, D. Q.; Pan, L. M.; Ren, S. Prediction of bubble detachment diameter in flow boiling based on force analysis. Nucl. Eng. Des. 2012, 243, 263–271.

[110]

Vogt, H. On the gas-evolution efficiency of electrodes I—Theoretical. Electrochim. Acta 2011, 56, 1409–1416.

[111]

Al-Naggar, A. H.; Shinde, N. M.; Kim, J. S.; Mane, R. S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord. Chem. Rev. 2023, 474, 214864.

[112]

Bhavanari, M.; Lee, K. R.; Tseng, C. J.; Tang, I. H.; Chen, H. H. CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis. Int. J. Hydrog. Energy 2021, 46, 35886–35895.

[113]

Liu, H.; Vecitis, C. D. Reactive transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer, physical adsorption, and electron-transfer. J. Phys. Chem. C 2012, 116, 374–383.

[114]

Gómez, M. J.; Loiácono, A.; Pérez, L. A.; Franceschini, E. A.; Lacconi, G. I. Highly efficient hybrid Ni/nitrogenated graphene electrocatalysts for hydrogen evolution reaction. ACS Omega 2019, 4, 2206–2216.

[115]

Dursun, Y. A.; Solmaz, R. Fabrication of Bingöl pollen self-assembled monolayer films on copper as a novel cathode for electrochemical hydrogen production. Int. J. Hydrog. Energy 2024, 52, 1280–1290.

[116]

Jović, V. D.; Jović, B. M.; Lačnjevac, U. Č.; Krstajić, N. V.; Zabinski, P.; Elezović, N. R. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. J. Electroanal. Chem. 2018, 819, 16–25.

[117]

An, Y. M.; Long, X.; Ma, M.; Hu, J.; Lin, H.; Zhou, D.; Xing, Z.; Huang, B. L.; Yang, S. H. One-step controllable synthesis of catalytic Ni4Mo/MoO x /Cu nanointerfaces for highly efficient water reduction. Adv. Energy Mater. 2019, 9, 1901454.

[118]

Mech, K.; Żabiński, P.; Kowalik, R.; Tokarski, T.; Fitzner, K. Electrodeposition of Co-Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction. J. Appl. Electrochem. 2014, 44, 97–103.

[119]

Manazoğlu, M.; Hapçı, G.; Orhan, G. Electrochemical deposition and characterization of Ni-Mo alloys as cathode for alkaline water electrolysis. J. Mater. Eng. Perform. 2016, 25, 130–137.

[120]

Shetty, S.; Mohamed Jaffer Sadiq, M.; Bhat, D. K.; Hegde, A. C. Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis. J. Electroanal. Chem. 2017, 796, 57–65.

[121]

Chen, W. H.; Zeng, J. R.; Zhang, G. W.; Yu, J.; Qiu, Y. J. Electrodeposition of Mo-doped NiFe x nanospheres on 3D graphene fibers for efficient overall alkaline water splitting. Int. J. Hydrog. Energy 2022, 47, 13850–13861.

[122]

Marceta Kaninski, M. P.; Miulovic, S. M.; Tasic, G. S.; Maksic, A. D.; Nikolic, V. M. A study on the Co-W activated Ni electrodes for the hydrogen production from alkaline water electrolysis—Energy saving. Int. J. Hydrog. Energy 2011, 36, 5227–5235.

[123]

Guo, D. S.; Wen, L. L.; Wang, T. T.; Li, X. Electrodeposition synthesis of cobalt-molybdenum bimetallic phosphide on nickel foam for efficient water splitting. J. Colloid Interface Sci. 2024, 659, 707–717.

[124]

Allam, M.; Benaicha, M.; Dakhouche, A. Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrog. Energy 2018, 43, 3394–3405.

[125]

Müller, C. I.; Rauscher, T.; Schmidt, A.; Schubert, T.; Weißgärber, T.; Kieback, B.; Röntzsch, L. Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis. Int. J. Hydrog. Energy 2014, 39, 8926–8937.

[126]

Li, R. P.; Li, Y.; Yang, P. X.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J. Q.; An, M. Z. Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 2021, 57, 547–566.

[127]

Schiller, G.; Henne, R.; Borck, V. Vacuum plasma spraying of high-performance electrodes for alkaline water electrolysis. J. Therm. Spray Technol. 1995, 4, 185–194.

[128]

Kim, J. E.; Bae, K. K.; Park, C. S.; Jeong, S. U.; Baik, K. H.; Kim, J. W.; Kang, K. S.; Lee, K. B.; Kim, Y. H. Electrochemical characterization of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysis. J. Ind. Eng. Chem. 2019, 70, 160–168.

[129]

Sivakumar, S.; Yugeswaran, S.; Vijaya Sankar, K.; Kumaresan, L.; Shanmugavelayutham, G.; Tsur, Y.; Zhu, J. G. Fabrication of nickel-yttria stabilized zirconia 3D micro-pattern by atmospheric plasma spray as a dual-functional electrocatalyst for overall water splitting applications in alkaline medium. J. Power Sources. 2020, 473, 228526.

[130]

Tourneur, J.; Joanny, L.; Perrin, L.; Paul, S.; Fabre, B. Efficient and highly stable 3D-printed NiFe and NiCo bifunctional electrodes for practical HER and OER. ACS Appl. Eng. Mater. 2023, 1, 2676–2684.

[131]

Bui, J. C.; Davis, J. T.; Esposito, D. V. 3D-printed electrodes for membraneless water electrolysis. Sustain. Energy Fuels 2020, 4, 213–225.

[132]

Rocha, F.; Delmelle, R.; Georgiadis, C.; Proost, J. Electrochemical performance enhancement of 3D printed electrodes tailored for enhanced gas evacuation during alkaline water electrolysis. Adv. Energy Mater. 2023, 13, 2203087.

[133]

Tourneur, J.; Perrin, L.; Paul, S.; Fabre, B. Optimization of three-dimensional-printed catalytic electrodes for alkaline water electrolysis guided by the experimental design methodology. Energy Fuels 2024, 38, 6346–6354.

[134]

Kjartansdóttir, C. K.; Nielsen, L. P.; Møller, P. Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int. J. Hydrog. Energy 2013, 38, 8221–8231.

[135]

Kjartansdóttir, C.; Caspersen, M.; Egelund, S.; Møller, P. Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis. Electrochim. Acta 2014, 142, 324–335.

[136]

Singh, N. K.; Yadav, M. K.; Parihar, R.; Gangwar, C. Egg-white mediated sol–gel synthesis of cobalt ferrites and their electrocatalytic activity towards alkaline water electrolysis. J. New Mater. Electrochem. Syst. 2020, 23, 87–93.

[137]

Lv, H.; Sun, Y. W.; Wang, S.; Chen, J. X.; Gao, Y. F.; Hu, D.; Yao, H.; Zhang, C. M. Synergistic gradient distribution of IrO2/TiN X ratio and ionomer content reduces the internal voltage loss of the anode catalytic layer in PEM water electrolysis. Appl. Energy 2024, 363, 123012.

[138]

Zhang, J. Y.; Dang, J.; Zhu, X. H.; Ma, J. G.; Ouyang, M. G.; Yang, F. Y. Ultra-low Pt-loaded catalyst based on nickel mesh for boosting alkaline water electrolysis. Appl. Catal. B: Environ. 2023, 325, 122296.

[139]

Wang, J.; Hu, J.; Niu, S. Q.; Li, S. W.; Du, Y. C.; Xu, P. Crystalline-amorphous Ni2P4O12/NiMoO x nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction. Small 2022, 18, 2105972.

[140]

Wan, L.; Pang, M. B.; Le, J. F.; Xu, Z. A.; Zhou, H. Y.; Xu, Q.; Wang, B. G. Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis. Nat. Commun. 2022, 13, 7956.

[141]

Vineesh, T. V.; Sekar, A.; Rajappa, S.; Pal, S.; Alwarappan, S.; Narayanan, T. N. Non-precious metal/metal oxides and nitrogen-doped reduced graphene oxide based alkaline water-electrolysis cell. ChemCatChem 2017, 9, 4295–4300.

[142]

Luo, Y. T.; Zhang, Z. Y.; Yang, F. N.; Li, J.; Liu, Z. B.; Ren, W. C.; Zhang, S.; Liu, B. L. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 2021, 14, 4610–4619.

[143]

Han, Z. J.; Wang, G.; Zhang, J.; Tang, Z. Y. Direct photo-curing 3D printing of nickel-based electrocatalysts for highly-efficient hydrogen evolution. Nano Energy 2022, 102, 107615.

[144]

Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219–17224.

[145]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3− x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

[146]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[147]

Lu, X. Y.; Cai, M. M.; Zou, Z. H.; Huang, J. F.; Xu, C. L. A novel MoNi@Ni(OH)2 heterostructure with Pt-like and stable electrocatalytic activity for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 1729–1732.

[148]

Zhang, W. H.; Tang, Y. H.; Yu, L. M.; Yu, X. Y. Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni(OH)2 by plasma-induced heterostructure. Appl. Catal. B: Environ. 2020, 260, 118154.

[149]

Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.

[150]

Razmjooei, F.; Liu, T. K.; Azevedo, D. A.; Hadjixenophontos, E.; Reissner, R.; Schiller, G.; Ansar, S. A.; Friedrich, K. A. Improving plasma sprayed Raney-type nickel-molybdenum electrodes towards high-performance hydrogen evolution in alkaline medium. Sci. Rep. 2020, 10, 10948.

[151]

Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

[152]

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

[153]

Zhou, W. J.; Jia, J.; Lu, J.; Yang, L. J.; Hou, D. M.; Li, G. Q.; Chen, S. W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43.

[154]

Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

[155]

Wu, R.; Hu, Z. H.; Zhang, H. J.; Wang, J. Q.; Qin, C. Z.; Zhou, Y. Bubbles in porous electrodes for alkaline water electrolysis. Langmuir 2024, 40, 721–733.

[156]

Kempler, P. A.; Coridan, R. H.; Lewis, N. S. Effects of bubbles on the electrochemical behavior of hydrogen-evolving Si microwire arrays oriented against gravity. Energy Environ. Sci. 2020, 13, 1808–1817.

[157]

Zhao, X.; Ren, H.; Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 2019, 35, 5392–5408.

[158]

Xu, N.; Liu, Z. L.; Yu, X. Y.; Gao, J.; Chu, H. Q. Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures. Renew. Sustain. Energy Rev. 2024, 192, 114244.

[159]

Chu, H. Q.; Xu, N.; Yu, X. Y.; Jiang, H. T.; Ma, W. G.; Qiao, F. Review of surface modification in pool boiling application: Coating manufacturing process and heat transfer enhancement mechanism. Appl. Therm. Eng. 2022, 215, 119041.

[160]

Ford, I. J. Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory. Phys. Rev. E 1997, 56, 5615–5629.

[161]

Lutsko, J. F. Systematically extending classical nucleation theory. New J. Phys. 2018, 20, 103015.

[162]

Ma, Y. Q.; Guo, Z. J.; Chen, Q. J.; Zhang, X. R. Dynamic equilibrium model for surface nanobubbles in electrochemistry. Langmuir 2021, 37, 2771–2779.

[163]

Dastafkan, K.; Wang, S. H.; Song, S.; Meyer, Q.; Zhang, Q.; Shen, Y. S.; Zhao, C. Operando monitoring of gas bubble evolution in water electrolysis by single high-frequency impedance. EES Catal. 2023, 1, 998–1008.

[164]

German, S. R.; Edwards, M. A.; Chen, Q. J.; Liu, Y. W.; Luo, L.; White, H. S. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions. Faraday Discuss. 2016, 193, 223–240.

[165]

Brandon, N. P.; Kelsall, G. H. Growth kinetics of bubbles electrogenerated at microelectrodes. J. Appl. Electrochem. 1985, 15, 475–484.

[166]

Taqieddin, A.; Allshouse, M. R.; Alshawabkeh, A. N. Editors’ choice—Critical review—Mathematical formulations of electrochemically gas-evolving systems. J. Electrochem. Soc. 2018, 165, E694–E711.

[167]

Feng, H.; Zhang, Y.; Liu, D.; Li, Q. Advances in multiscale interaction of interfacial gas bubble evolution in photoelectrochemical reactions. Chin. Sci. Bull. 2023, 68, 3275–3292.

[168]

Mita, M.; Matsushima, H.; Ueda, M.; Ito, H. In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis. J. Colloid Interface Sci. 2022, 614, 389–395.

[169]

Feng, H.; Liu, D.; Zhang, Y.; Shi, X. Y.; Esan, O. C.; Li, Q.; Chen, R.; An, L. Advances and challenges in photoelectrochemical redox batteries for solar energy conversion and storage. Adv. Energy Mater. 2022, 12, 2200469.

[170]

Liu, Y. W.; Zhang, X. R. Nanobubble stability induced by contact line pinning. J. Chem. Phys. 2013, 138, 014706.

[171]

German, S. R.; Edwards, M. A.; Ren, H.; White, H. S. Critical nuclei size, rate, and activation energy of H2 gas nucleation. J. Am. Chem. Soc. 2018, 140, 4047–4053.

[172]

Bashkatov, A.; Park, S.; Demirkır, Ç.; Wood, J. A.; Koper, M. T. M.; Lohse, D.; Krug, D. Performance enhancement of electrocatalytic hydrogen evolution through coalescence-induced bubble dynamics. J. Am. Chem. Soc. 2024, 146, 10177–10186.

[173]

Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B. Highly energetic phenomena in water electrolysis. Sci. Rep. 2016, 6, 39381.

[174]

Wong, X. Y.; Zhuo, Y. T.; Shen, Y. S. Numerical analysis of hydrogen bubble behavior in a zero-gap alkaline water electrolyzer flow channel. Ind. Eng. Chem. Res. 2021, 60, 12429–12446.

[175]

Bashkatov, A.; Hossain, S. S.; Mutschke, G.; Yang, X. G.; Rox, H.; Weidinger, I. M.; Eckert, K. On the growth regimes of hydrogen bubbles at microelectrodes. Phys. Chem. Chem. Phys. 2022, 24, 26738–26752.

[176]

Barati Darband, G.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability. Arab. J. Chem. 2020, 13, 1763–1802.

[177]

de Maleprade, H.; Clanet, C.; Quéré, D. Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water. Phys. Rev. Lett. 2016, 117, 094501.

[178]

Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492–2498.

[179]

Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim. Acta 2007, 52, 3686–3696.

[180]

Wang, L.; Huang, X. L.; Jiang, S. S.; Li, M.; Zhang, K.; Yan, Y.; Zhang, H. P.; Xue, J. M. Increasing gas bubble escape rate for water splitting with nonwoven stainless steel fabrics. ACS Appl. Mater. Interfaces 2017, 9, 40281–40289.

[181]

Haverkort, J. W.; Rajaei, H. Voltage losses in zero-gap alkaline water electrolysis. J. Power Sources. 2021, 497, 229864.

[182]

Ling, W. Y. L.; Lu, G.; Ng, T. W. Increased stability and size of a bubble on a superhydrophobic surface. Langmuir 2011, 27, 3233–3237.

[183]

Chu, H. Q.; Liu, Z. L.; Ji, T. X.; Yang, C. H.; Xu, N. Recent advances in the preparation of superhydrophobic coatings based on low-surface-energy modifiers: Diversified properties and potential applications. Appl. Therm. Eng. 2024, 251, 123591.

[184]

Darband, G. B.; Aliofkhazraei, M.; Shanmugam, S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renew. Sustain. Energy Rev. 2019, 114, 109300.

[185]

Dastafkan, K.; Meyer, Q.; Chen, X. J.; Zhao, C. Efficient oxygen evolution and gas bubble release achieved by a low gas bubble adhesive iron-nickel vanadate electrocatalyst. Small 2020, 16, 2002412.

[186]

Kim, Y. J.; Lim, A.; Kim, J. M.; Lim, D.; Chae, K. H.; Cho, E. N.; Han, H. J.; Jeon, K. U.; Kim, M.; Lee, G. H. et al. Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. Nat. Commun. 2020, 11, 4921.

[187]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

[188]

Kim, D.; Qin, X. Y.; Yan, B. Y.; Hong, H.; Piao, Y. Nano/microscale integrated mushroom-shaped hydrophilic CoP@Ni-CoP with optimized gas bubble release for high-performance water splitting catalysis. ACS Appl. Energy Mater. 2020, 3, 9769–9784.

[189]

Liu, Z. L.; Xu, N.; Yu, X. Y.; Yang, C. H.; Chu, H. Q. Preparation of superhydrophobic coatings with excellent mechanical and chemical stability by one-step spraying method with selected fluorine-free modifiers. Appl. Surf. Sci. 2024, 642, 158635.

[190]

Vogt, H.; Stephan, K. Local microprocesses at gas-evolving electrodes and their influence on mass transfer. Electrochim. Acta 2015, 155, 348–356.

[191]

Vogt, H. On the various types of uncontrolled potential increase in electrochemical reactors—The anode effect. Electrochim. Acta 2013, 87, 611–618.

[192]

Zhan, S. Q.; Yuan, R.; Wang, X. H.; Zhang, W.; Yu, K.; Li, B.; Wang, Z. T.; Wang, J. F. Dynamics of growth and detachment of single hydrogen bubble on horizontal and vertical microelectrode surfaces considering liquid microlayer structure in water electrolysis. Phys. Fluids 2023, 35, 032111.

[193]

Zhan, S. Q.; Yuan, R.; Huang, Y. J.; Zhang, W.; Li, B.; Wang, Z. T.; Wang, J. F. Numerical simulation of hydrogen bubble growth and mass transfer on horizontal microelectrode surface under electrode-normal magnetic field. Phys. Fluids 2022, 34, 112120.

[194]

Khalighi, F.; Deen, N. G.; Tang, Y. L.; Vreman, A. W. Hydrogen bubble growth in alkaline water electrolysis: An immersed boundary simulation study. Chem. Eng. Sci. 2023, 267, 118280.

[195]

Qin, J. S.; Xie, T. H.; Zhou, D. J.; Luo, L.; Zhang, Z. Y.; Shang, Z. C.; Li, J. W.; Mohapatra, L.; Yu, J. W.; Xu, H. J. et al. Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries. Nano Res. 2021, 14, 2154–2159.

[196]

Long, Z. Y.; Zhao, Y. Y.; Zhang, C. H.; Zhang, Y. H.; Yu, C. M.; Wu, Y. C.; Ma, J.; Cao, M. Y.; Jiang, L. A multi-bioinspired dual-gradient electrode for microbubble manipulation toward controllable water splitting. Adv. Mater. 2020, 32, 1908099.

[197]

Santos, D. M. F.; Sequeira, C. A. C.; Figueiredo, J. L. Hydrogen production by alkaline water electrolysis. Quim. Nova 2013, 36, 1176–1193.

[198]

Matsushima, H.; Iida, T.; Fukunaka, Y. Gas bubble evolution on transparent electrode during water electrolysis in a magnetic field. Electrochim. Acta 2013, 100, 261–264.

[199]

Dobó, Z.; Palotás, Á. B. Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis. Int. J. Hydrog. Energy 2016, 41, 11849–11856.

Nano Research
Pages 9345-9370
Cite this article:
Xu N, Qiu B, Rui Z, et al. Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production. Nano Research, 2024, 17(11): 9345-9370. https://doi.org/10.1007/s12274-024-6922-9
Topics:

806

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 June 2024
Revised: 18 July 2024
Accepted: 30 July 2024
Published: 27 August 2024
© Tsinghua University Press 2024
Return