AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions

Mingyuan Pang1,§Min Yang1,§Haohao Zhang1Yuqing Shen1Zhen Kong1( )Jiajia Ye1Chaoyue Shan1Ying Wang1Juan An1( )Wensi Li1Xing Gao1Jibin Song2( )
School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

§ Mingyuan Pang and Min Yang contributed equally to this work.

Show Author Information

Graphical Abstract

This paper firstly summarizes eight preparation methods of highly loaded single-atom catalysts and analyzes the corresponding methods, in addition to summarizing the performance of highly loaded noble metal, non-precious metal, and bimetallic single-atom catalysts in oxygen reduction reaction (ORR), and finally makes suggestions for the development of highly loaded single-atom catalysts.

Abstract

The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research.

References

[1]

An, J.; Zhang, H. Y.; Qi, L.; Li, G. X.; Li, Y. L. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202113313.

[2]

Kong, Z.; Huang, M. L.; Zhang, K.; Liang, Z. Y.; Tu, H. Y.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Twin boundary Cd x Zn1– x S: A new anode for high reversibility and stability lithium/sodium-ion batteries. J. Mater. Chem. A 2022, 10, 23799–23810.

[3]

Kordesch, K. V.; Simader, G. R. Environmental impact of fuel cell technology. Chem. Rev. 1995, 95, 191–207.

[4]

Bacon, F. T. Fuel Cells: Will they soon become a major source of electrical energy. Nature 1960, 186, 589–592.

[5]

Xu, W. J.; Tang, H.; Gu, H. F.; Xi, H. Y.; Wu, P. F.; Liang, B. L.; Liu, Q. Q.; Chen, W. X. Research progress of asymmetrically coordinated single-atom catalysts for electrocatalytic reactions. J. Mater. Chem. A 2022, 10, 14732–14746.

[6]

An, J.; Wang, F.; Yang, J. Y.; Li, G. X.; Li, Y. L. An ion-pumping interphase on graphdiyne/graphite heterojunction for fast-charging lithium-ion batteries. CCS Chem. 2024, 6, 110–124.

[7]

Kong, Z.; Huang, M. L.; Liang, Z. Y.; Tu, H. Y.; Zhang, K.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Phosphorus doping induced the Co-construction of sulfur vacancies and heterojunctions in tin disulfide as a durable anode for lithium/sodium-ion batteries. Inorg. Chem. Front. 2022, 9, 902–913.

[8]

Kong, Z.; Liang, Z. Y.; Huang, M. L.; Tu, H. Y.; Zhang, K.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Yolk–shell tin phosphides composites as superior reversibility and stability anodes for lithium/sodium ion batteries. J. Alloys Compd. 2023, 930, 167328.

[9]

Kong, Z.; Yao, X. G.; Shao, Y. L.; Huang, M. L.; Tu, H. Y.; Zhang, K.; Liang, Z. Y.; Wu, Y. Z.; Hao, X. P. Sn x P y nanoplate/reduced graphene oxide composites as anode materials for lithium-/sodium-ion batteries. ACS Appl. Nano Mater. 2021, 4, 12335–12345.

[10]

Lei, X.; Tang, Q. Y.; Zheng, Y. P.; Kidkhunthod, P.; Zhou, X. L.; Ji, B. F.; Tang, Y. B. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 2023, 6, 816–826.

[11]

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

[12]

Zhang, D.; Wang, Z. Y.; Liu, F. Z.; Yi, P. Y.; Peng, L. F.; Chen, Y.; Wei, L.; Li, H. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: From single- to dual-sabatier optima. J. Am. Chem. Soc. 2024, 146, 3210–3219.

[13]

Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

[14]

Balamurugan, J.; Austeria, P. M.; Kim, J. B.; Jeong, E. S.; Huang, H. H.; Kim, D. H.; Koratkar, N.; Kim, S. O. Electrocatalysts for zinc-air batteries featuring single molybdenum atoms in a nitrogen-doped carbon framework. Adv. Mater. 2023, 35, 2302625.

[15]

Zhong, L. X.; Li, S. Z. Unconventional oxygen reduction reaction mechanism and scaling relation on single-atom catalysts. ACS Catal. 2020, 10, 4313–4318.

[16]

Song, M.; Liu, W.; Zhang, J. J.; Zhang, C.; Huang, X.; Wang, D. L. Single-atom catalysts for H2O2 electrosynthesis via two-electron oxygen reduction reaction. Adv. Funct. Mater. 2023, 33, 2212087.

[17]

Cheng, X.; Wang, Y. S.; Lu, Y.; Zheng, L. R.; Sun, S. R.; Li, H. Y.; Chen, G.; Zhang, J. J. Single-atom alloy with Pt–Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. Appl. Catal. B: Environ. 2022, 306, 121112.

[18]

Kumeda, T.; Laverdure, L.; Honkala, K.; Melander, M. M.; Sakaushi, K. Cations determine the mechanism and selectivity of alkaline oxygen reduction reaction on Pt(111). Angew. Chem., Int. Ed. 2023, 62, e202312841.

[19]

Li, L. B.; Huang, B. Y.; Tang, X. N.; Hong, Y. S.; Zhai, W. J.; Hu, T.; Yuan, K.; Chen, Y. W. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.

[20]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[21]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[22]

Shin, H.; Ko, J.; Park, C.; Kim, D. H.; Ahn, J.; Jang, J. S.; Kim, Y. H.; Cho, S. H.; Baik, H.; Kim, I. D. Sacrificial template-assisted synthesis of inorganic nanosheets with high-loading single-atom catalysts: A general approach. Adv. Funct. Mater. 2022, 32, 2110485.

[23]

Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co–N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.

[24]

Pang, M. Y.; Yang, M.; Yan, J.; Zhang, B.; Zang, L.; Fu, A. P.; Guo, P. Z. Assembly of alloyed PdCu nanosheets and their electrocatalytic oxidation of ethanol. Langmuir 2022, 38, 4287–4294.

[25]

Li, Z.; Lao, X. Z.; Yang, L. K.; Fu, A. P.; Guo, P. Z. Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation. Sci. China Mater. 2023, 66, 150–159.

[26]

Jiang, G. M.; Li, X. W.; Lv, X. S.; Chen, L. Core/shell FePd/Pd catalyst with a superior activity to Pt in oxygen reduction reaction. Sci. Bull. 2016, 61, 1248–1254.

[27]

Li, Y. Y.; Zhu, X. R.; Li, L.; Li, F. Y.; Zhang, X. Y.; Li, Y. F.; Zheng, Z. P. Study on the structure-activity relationship between single-atom, cluster and nanoparticle catalysts in a hierarchical structure for the oxygen reduction reaction. Small 2022, 18, 2105487.

[28]

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

[29]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[30]

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

[31]

Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.

[32]

Wang, Y. X.; Cui, X. Z.; Zhang, J. Q.; Qiao, J. L.; Huang, H. T.; Shi, J. L.; Wang, G. X. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Prog. Mater. Sci. 2022, 128, 100964.

[33]

Chen, Y.; He, T.; Liu, Q. M.; Hu, Y. F.; Gu, H.; Deng, L.; Liu, H. T.; Liu, Y. C.; Liu, Y. N.; Zhang, Y. et al. Highly durable iron single-atom catalysts for low-temperature zinc-air batteries by electronic regulation of adjacent iron nanoclusters. Appl. Catal. B: Environ. 2023, 323, 122163.

[34]

Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe–Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.

[35]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[36]

Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

[37]

Wei, W.; Shi, X. M.; Gao, P.; Wang, S. S.; Hu, W.; Zhao, X. X.; Ni, Y. M.; Xu, X. Y.; Xu, Y. Q.; Yan, W. S. et al. Well-elaborated, mechanochemically synthesized Fe-TPP⊂ZIF precursors (Fe-TPP = tetraphenylporphine iron) to atomically dispersed iron-nitrogen species for oxygen reduction reaction and Zn-air batteries. Nano Energy 2018, 52, 29–37.

[38]

Ren, Y. J.; Wang, J. Y.; Zhang, M. Y.; Wang, Y. Q.; Cao, Y.; Kim, D. H.; Liu, Y.; Lin, Z. Q. Strategies toward high selectivity, activity, and stability of single-atom catalysts. Small 2024, 20, 2308213.

[39]

Wang, K.; Lu, Z. J.; Lei, J.; Liu, Z. Y.; Li, Y. Z.; Cao, Y. L. Modulation of ligand fields in a single-atom site by the molten salt strategy for enhanced oxygen bifunctional activity for zinc-air batteries. ACS Nano 2022, 16, 11944–11956.

[40]

Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

[41]

Li, H. L.; Dai, S.; Wu, Y. W.; Dong, Q.; Chen, J. J.; Chen, H. Y. T.; Hu, A.; Chou, J. P.; Chen, T. Y. Atomic scaled depth correlation to the oxygen reduction reaction performance of single atom Ni alloy to the NiO2 supported Pd nanocrystal. Adv. Sci. 2023, 10, 2207109.

[42]

Li, L. B.; Huang, S. H.; Cao, R.; Yuan, K.; Lu, C. B.; Huang, B. Y.; Tang, X. N.; Hu, T.; Zhuang, X. D.; Chen, Y. W Optimizing microenvironment of asymmetric N,S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 2022, 18, 2105387.

[43]

Zhao, S. N.; Li, J. K.; Wang, R.; Cai, J. M.; Zang, S. Q. Electronically and geometrically modified single-atom Fe sites by adjacent fe nanoparticles for enhanced oxygen reduction. Adv. Mater. 2022, 34, 2107291.

[44]

Yi, M. J.; Li, N.; Lu, B. B.; Li, L.; Zhu, Z. Y.; Zhang, J. H. Single-atom Pt decorated in heteroatom (N, B, and F)-doped ReS2 Grown on Mo2CT x for efficient pH-universal hydrogen evolution reaction and flexible Zn-air batteries. Energy Storage Mater. 2021, 42, 418–429.

[45]

Li, S. W.; Liu, J. J.; Yin, Z.; Ren, P. J.; Lin, L. L.; Gong, Y.; Yang, C.; Zheng, X. S.; Cao, R. C.; Yao, S. Y. et al. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catal. 2020, 10, 907–913.

[46]

Yuan, L. J.; Liu, B.; Shen, L. X.; Dai, Y. K.; Li, Q.; Liu, C.; Gong, W.; Sui, X. L.; Wang, Z. B. d-Orbital electron delocalization realized by axial Fe4C atomic clusters delivers high-performance Fe–N–C catalysts for oxygen reduction reaction. Adv. Mater. 2023, 35, 2305945.

[47]

Kang, G. S.; Jang, J. H.; Son, S. Y.; Lee, C. H.; Lee, Y. K.; Lee, D. C.; Yoo, S. J.; Lee, S.; Joh, H. I. Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 22379–22388.

[48]

Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

[49]

Han, J. X.; Bian, J. J.; Sun, C. W. Recent advances in single-atom electrocatalysts for oxygen reduction reaction. Research 2020, 2020, 9512763.

[50]

Zhao, Y. L.; Chen, H. C.; Ma, X. L.; Li, J. Y.; Yuan, Q.; Zhang, P.; Wang, M. M.; Li, J. X.; Li, M.; Wang, S. F.et al. Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe–N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 2024, 36, 2308243.

[51]

Xiong, H. F.; Datye, A. K.; Wang, Y. Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 2021, 33, 2004319.

[52]

Zhang, L.; Banis, M. N.; Sun, X. L. Single-atom catalysts by the atomic layer deposition technique. Natl. Sci. Rev. 2018, 5, 628–630.

[53]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[54]

Cao, S. F. ; Yang, M.; Elnabawy, A. O.; Trimpalis, A.; Li, S.; Wang, C. Y.; Göltl, F.; Chen, Z. H. Y.; Liu, J. L.; Shan, J. J. et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 2019, 11, 1098–1105.

[55]

Liu, D. W.; Srinivas, K.; Chen, X.; Ma, F.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Chen, Y. F. Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2022, 624, 680–690.

[56]

Ribeiro, R. S.; Vieira, A. L. S.; Biernacki, K.; Magalhães, A. L.; Delgado, J. J.; Morais, R. G.; Rey-Raap, N.; Rocha, R. P.; Pereira, M. F. R. Engineering single-atom Fe–N active sites on hollow carbon spheres for oxygen reduction reaction. Carbon 2023, 213, 118192.

[57]

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

[58]

Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, eaax6322.

[59]

Hou, P. F.; Song, W. L.; Wang, X. P.; Hu, Z. P.; Kang, P. Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small 2020, 16, 2001896.

[60]

Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

[61]

Xu, C. X.; Wu, J. X.; Chen, L.; Gong, Y.; Mao, B. Y.; Zhang, J. C.; Deng, J. H.; Mao, M. X.; Shi, Y.; Hou, Z. H. et al. Boric acid-assisted pyrolysis for high-loading single-atom catalysts to boost oxygen reduction reaction in Zn-air batteries. Energy Environ. Mater. 2024, 7, e12569.

[62]

Xia, C.; Qiu, Y. R.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z. Y.; Kim, J. Y.; Cullen, D. A.; Zheng, D. X. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887–894.

[63]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[64]

Li, N. N.; Liu, W.; Zhu, C.; Hao, C.; Guo, J. Y.; Jing, H. Y.; Hu, J. W.; Xin, C. C.; Wu, D. Y.; Shi, Y. T. Molten salt as ultrastrong polar solvent enables the most straightforward pyrolysis towards highly efficient and stable single-atom electrocatalyst. J. Energy Chem. 2021, 54, 519–527.

[65]

Ma, R.; Cui, X.; Wang, Y. L.; Xiao, Z. Y.; Luo, R.; Gao, L. K.; Wei, Z. N.; Yang, Y. K. Pyrolysis-free synthesis of single-atom cobalt catalysts for efficient oxygen reduction. J. Mater. Chem. A 2022, 10, 5918–5924.

[66]

Hu, L. Y.; Li, W. R.; Wang, L.; Wang, B. Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem 2021, 3, 100056.

[67]

Han, G. K.; Zheng, Y.; Zhang, X.; Wang, Z. Q.; Gong, Y.; Du, C. Y.; Banis, M. N.; Yiu, Y. M.; Sham, T. K.; Gu, L. et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 2019, 66, 104088.

[68]

Song, K. X.; Feng, Y.; Zhang, W.; Zheng, W. T. MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. J. Energy Chem. 2022, 67, 391–422.

[69]

Liu, X. Y.; Song, X. T.; Jiang, G. M.; Tao, L. J.; Jin, Z. Y.; Li, F. K.; He, Y. Z.; Dong, F. Pt single-atom collaborate with Pt atom-clusters by an in-situ confined strategy for accelerating electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 481, 148430.

[70]

Yang, H. J.; Zhang, P. Y.; Yi, X. Y.; Yan, C.; Pang, D. W.; Chen, L. N.; Wang, S. B.; Wang, C. R.; Liu, B. H.; Zhang, G. N. et al. Constructing highly utilizable Fe–N4 single-atom sites by one-step gradient pyrolysis for electroreduction of O2 and CO2. Chem. Eng. J. 2022, 440, 135749.

[71]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[72]

Zhou, Z. Y.; Zhang, J.; Mukherjee, S.; Hou, S. J.; Khare, R.; Döblinger, M.; Tomanec, O.; Otyepka, M.; Koch, M.; Gao, P. et al. Porphyrinic MOF derived single-atom electrocatalyst enables methanol oxidation. Chem. Eng. J. 2022, 449, 137888.

[73]

Li, J. J.; Xia, W.; Xu, X. T.; Jiang, D.; Cai, Z. X.; Tang, J.; Guo, Y. N.; Huang, X. L.; Wang, T.; He, J. P. et al. Selective etching of metal-organic frameworks for open porous structures: Mass-efficient catalysts with enhanced oxygen reduction reaction for fuel cells. J. Am. Chem. Soc. 2023, 145, 27262–27272.

[74]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[75]

Xie, X. Y.; Shang, L.; Xiong, X. Y.; Shi, R.; Zhang, T. R. Fe Single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102688.

[76]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[77]

Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 Single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.

[78]

Rao, P.; Deng, Y. J.; Fan, W. J.; Luo, J. M.; Deng, P. L.; Li, J.; Shen, Y. J.; Tian, X. L. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat. Commun. 2022, 13, 5071.

[79]

Li, Y. G.; Wu, Z. S.; Lu, P. F.; Wang, X.; Liu, W.; Liu, Z. B.; Ma, J. Y.; Ren, W. C.; Jiang, Z.; Bao, X. H. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 2020, 7, 1903089.

[80]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[81]

Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe–N–C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B: Environ. 2021, 280, 119411.

[82]

Song, Y.; Li, W.; Ma, Y. N.; Tang, S. R.; Wang, H. M.; Wang, Q. Construction of hierarchically porous carbon spheres supported nonprecious metal single-atom electrocatalysts for oxygen reduction reaction. J. Power Sources 2022, 545, 231913.

[83]

Wang, X. L.; Zhu, H. W.; Yang, C.; Lu, J. J.; Zheng, L. R.; Liang, H. P. Mesoporous carbon promoting the efficiency and stability of single atomic electrocatalysts for oxygen reduction reaction. Carbon 2022, 191, 393–402.

[84]

Wang, L. X.; Wang, J.; Gao, X. P.; Chen, C.; Da, Y. L.; Wang, S. C.; Yang, J.; Wang, Z. Y.; Song, J.; Yao, T. et al. Periodic one-dimensional single-atom arrays. J. Am. Chem. Soc. 2022, 144, 15999–16005.

[85]

Gao, Y.; Duan, X. G.; Li, B.; Jia, Q. Q.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Wang, S. B.; Peng, W. C. Fe containing template derived atomic Fe–N–C to boost Fenton-like reaction and charge migration analysis on highly active Fe–N4 sites. J. Mater. Chem. A 2021, 9, 14793–14805.

[86]

Lim, B. S.; Rahtu, A.; Gordon, R. G. Atomic layer deposition of transition metals. Nat. Mater. 2003, 2, 749–754.

[87]

Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y. E.; Li, Y. D. Porous molybdenum phosphide Nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854–12858.

[88]

Liu, S. W.; Wang, M. Y.; Yang, X. X.; Shi, Q. R.; Qiao, Z.; Lucero, M.; Ma, Q.; More, K. L.; Cullen, D. A.; Feng, Z. X. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem., Int. Ed. 2020, 59, 21698–21705.

[89]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[90]

Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper(I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

[91]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[92]

Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

[93]

Qiu, H. J.; Du, P.; Hu, K. L.; Gao, J. J.; Li, H. L.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. W. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843.

[94]

Rao, P.; Wu, D. X.; Luo, J. M.; Li, J.; Deng, P. L.; Shen, Y. J.; Tian, X. L. A plasma bombing strategy to synthesize high-loading single-atom catalysts for oxygen reduction reaction. Cell Rep. Phys. Sci. 2022, 3, 100880.

[95]

Rao, P.; Wu, D. X.; Qin, Y. Y.; Luo, J. M.; Li, J.; Jia, C. M.; Deng, P. L.; Huang, W.; Su, Y. Q.; Shen, Y. J. et al. Facile fabrication of single-atom catalysts by a plasma-etching strategy for oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 6531–6537.

[96]

Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

[97]

Egorov, I. N.; Santra, S.; Kopchuk, D. S.; Kovalev, I. S.; Zyryanov, G. V.; Majee, A.; Ranu, B. C.; Rusinov, V. L.; Chupakhin, O. N. Ball milling: An efficient and green approach for asymmetric organic syntheses. Green Chem. 2020, 22, 302–315.

[98]

Gan, T.; He, Q.; Zhang, H.; Xiao, H. J.; Liu, Y. F.; Zhang, Y.; He, X. H.; Ji, H. B. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

[99]

Du, P.; Huang, K.; Fan, X. Y.; Ma, J. T.; Hussain, N.; Wang, R. Y.; Deng, B. H.; Ge, B. H.; Tang, H. L.; Zhang, R. et al. Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts. Nano Res. 2022, 15, 3065–3072.

[100]

He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.

[101]

Zhang, X. C.; Zhong, Y. Z.; Chen, H. Y.; Cheng, Y. J.; Sun, Q. D.; Zhang, H.; He, Q.; Zhang, Y.; Guo, G. H.; He, X. H. et al. Synthesis of nitrogen-doped carbon supported cerium single atom catalyst by ball milling for selective oxidation of ethylbenzene. Chem. Res. Chin. Univ. 2022, 38, 1258–1262.

[102]

Tan, X. H.; Li, H. P.; Zhang, W.; Jiang, K. R.; Zhai, S. L.; Zhang, W. Y.; Chen, N.; Li, H.; Li, Z. Square-pyramidal Fe–N4 with defect-modulated O-coordination: Two-tier electronic structure fine-tuning for enhanced oxygen reduction. Chem. Catal. 2022, 2, 816–835.

[103]

Jin, T.; Liu, X. F.; Gao, Q.; Zhu, H. Y.; Lian, C.; Wang, J. T.; Wu, R. Q.; Lyu, Y. Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chem. Eng. J. 2022, 433, 134089.

[104]

Wang, X. P.; Ding, S. S.; Yue, T.; Zhu, Y.; Fang, M. W.; Li, X. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M. Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction. Nano Energy 2021, 82, 105689.

[105]

Wang, H. L.; Wang, X.; Pan, J.; Zhang, L. L.; Zhao, M.; Xu, J.; Liu, B.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 23154–23158.

[106]

Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 2019, 4, 126–132.

[107]

Han, G. H.; Lee, S. H.; Hwang, S. Y.; Lee, K. Y. Advanced development strategy of Nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 2021, 11, 2003121.

[108]

Feng, Z.; Zhang, B. J.; Li, R. Y.; Li, F. C.; Guo, Z. Y.; Zheng, S.; Su, G.; Ma, Y. Q.; Tang, Y. N.; Dai, X. Q. Biphenylene with doping B/N as promising metal-free single-atom catalysts for electrochemical oxygen reduction reaction. J. Power Sources 2023, 558, 232613.

[109]

Talib, S. H.; Ali, B.; Mohamed, S.; Jiang, X. L.; Ahmad, K.; Qurashi, A.; Li, J. Computational screening of M1/PW12O40 single-atom electrocatalysts for water splitting and oxygen reduction reactions. J. Mater. Chem. A 2023, 11, 16334–16348.

[110]

Zhang, X. Q.; Liu, J. M.; Li, R.; Jian, X.; Gao, X. M.; Lu, Z. L.; Yue, X. P. Machine learning screening of high-performance single-atom electrocatalysts for two-electron oxygen reduction reaction. J. Colloid Interface Sci. 2023, 645, 956–963.

[111]

Fan, W. J.; Duan, Z. Y.; Liu, W.; Mehmood, R.; Qu, J. T.; Cao, Y. C.; Guo, X. Y.; Zhong, J.; Zhang, F. X. Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 2023, 14, 1426.

[112]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe–N–C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[113]

Gu, J. X.; Zhao, Y. H.; Lin, S. R.; Huang, J. S.; Cabrera, C. R.; Sumpter, B. G.; Chen, Z. F. Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond. J. Energy Chem. 2021, 63, 285–293.

[114]

Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res. 2022, 15, 1753–1778.

[115]

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

[116]

Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. Y.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M–N x catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.

[117]

Jin, Q. Y.; Wang, C. H.; Guo, Y. Y.; Xiao, Y. H.; Tan, X. H.; Chen, J. P.; He, W. D.; Li, Y.; Cui, H.; Wang, C. X. Axial oxygen ligands regulating electronic and geometric structure of Zn–N–C sites to boost oxygen reduction reaction. Adv. Sci. 2023, 10, 2302152.

[118]

Yang, H. Q.; Li, Z. Y.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. A complex-sequestered strategy to fabricate Fe single-atom catalyst for efficient oxygen reduction in a broad pH-range. Appl. Catal. B: Environ. 2020, 278, 119270.

[119]

Xie, L.; Zhou, W.; Huang, Y. M.; Qu, Z. B.; Li, L. H.; Yang, C. W.; Ding, Y. N.; Li, J. F.; Meng, X. X.; Sun, F. et al. Elucidating the impact of oxygen functional groups on the catalytic activity of M–N4–C catalysts for the oxygen reduction reaction: A density functional theory and machine learning approach. Mater. Horiz. 2024, 11, 1719–1731.

[120]

Zhou, W.; Su, H.; Wang, Z. J.; Yu, F.; Wang, W.; Chen, X.; Liu, Q. H. Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient oxygen reduction. J. Mater. Chem. A 2021, 9, 1127–1133.

[121]

Liu, J. Q.; Chen, W. B.; Yuan, S.; Liu, T.; Wang, Q. High-coordination Fe–N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn-air battery cathodes. Energy Environ. Sci. 2024, 17, 249–259.

[122]

Yang, Z.; Xiang, M.; Zhu, Y. F.; Hui, J.; Jiang, Y.; Dong, S.; Yu, C. B.; Ou, J. F.; Qin, H. F. Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for oxygen reduction reaction. Chem. Eng. J. 2021, 426, 131347.

[123]

Yang, M.; Pang, M. Y.; Chen, J. Y.; Gao, F. H.; Li, H. L.; Guo, P. Z. Surfactant-assisted synthesis of palladium nanosheets and nanochains for the electrooxidation of ethanol. ACS Appl. Mater. Interfaces 2021, 13, 9830–9837.

[124]

Yang, M.; Lao, X. Z.; Sun, J.; Ma, N.; Wang, S. Q.; Ye, W. N.; Guo, P. Z. Assembly of bimetallic PdAg nanosheets and their enhanced electrocatalytic activity toward ethanol oxidation. Langmuir 2020, 36, 11094–11101.

[125]

Liu, J.; Bak, J.; Roh, J.; Lee, K. S.; Cho, A.; Han, J. W.; Cho, E. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal. 2021, 11, 466–475.

[126]

Liu, B. W.; Feng, R. H.; Busch, M.; Wang, S. H.; Wu, H. F.; Liu, P.; Gu, J. J.; Bahadoran, A.; Matsumura, D.; Tsuji, T. et al. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano 2022, 16, 14121–14133.

[127]

Sun, J. K.; Pan, Y. W.; Xu, M. Q.; Sun, L.; Zhang, S. L.; Deng, W. Q.; Zhai, D. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Res. 2024, 17, 1086–1093.

[128]

Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.

[129]

Cui, L. X.; Fan, K. C.; Zong, L. B.; Lu, F. H.; Zhou, M.; Li, B.; Zhang, L. C.; Feng, L. Y.; Li, X.; Chen, Y. N. et al. Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 44, 469–476.

[130]

Zhang, C. H.; Sha, J. W.; Fei, H. L.; Liu, M. J.; Yazdi, S.; Zhang, J. B.; Zhong, Q. F.; Zou, X. L.; Zhao, N. Q.; Yu, H. S. et al. Single-Atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930–6941.

[131]

Qin, J. Y.; Liu, H.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207.

[132]

Tong, M. M.; Wang, L.; Fu, H. G. Designed synthesis and catalytic mechanisms of non-precious metal single-atom catalysts for oxygen reduction reaction. Small Methods 2021, 5, 2100865.

[133]

Niu, X. D.; Wei, J.; Xu, D. Y.; Pei, J. J.; Sui, R. Charge-asymmetry Fe1Cu single-atom alloy catalyst for efficient oxygen reduction reaction. Nano Res. 2024, 17, 4702–4710.

[134]

Niu, W. J.; He, J. Z.; Gu, B. N.; Liu, M. C.; Chueh, Y. L. Opportunities and challenges in precise synthesis of transition metal single-atom supported by 2D materials as catalysts toward oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2103558.

[135]

Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.

[136]

Zuo, H. Y.; Zhao, Z. Y.; He, Y.; Li, S.; Li, X. P.; Cheng, Z. H.; Cheng, C.; Thomas, A.; Liao, Y. Z. Regulating single-atom distance in carbon electrocatalysts for efficient oxygen reduction reaction via conjugated microporous polymer precursors strategy. Carbon 2023, 201, 984–990.

[137]

Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe–N x –C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

[138]

Ye, C. W.; Xu, L. Recent advances in the design of a high performance metal-nitrogen-carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 22218–22247.

[139]

Luo, X.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Z. Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 2020, 12, 163.

[140]

Yan, J.; Gu, T. Y.; Shi, R. H.; Chen, X.; Rümmeli, M. H.; Yang, R. Z. Heteroatom sulfur-doping in single-atom Fe–NC catalysts for durable oxygen reduction reaction in both alkaline and acidic media. J. Mater. Chem. A 2023, 11, 16180–16189.

[141]

Xu, H. B.; Jia, H. X.; Li, H. Z.; Liu, J.; Gao, X. W.; Zhang, J. C.; Liu, M.; Sun, D. L.; Chou, S. L.; Fang, F. et al. Dual carbon-hosted Co–N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 297, 120390.

[142]
Liu, M. H.; Zhang, J.; Su, H.; Jiang, Y. L.; Zhou, W. L.; Yang, C. Y.; Bo, S. W.; Pan, J.; Liu, Q. H. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 2024 , 15, 1675.
[143]

Rong, J.; Gao, E. H.; Liu, N. C.; Chen, W. Y.; Rong, X. S.; Zhang, Y. Z.; Zheng, X. D.; Ao, H. S.; Xue, S. L.; Huang, B. et al. Porphyrinic MOF-derived rich N-doped porous carbon with highly active CoN4C single-atom sites for enhanced oxygen reduction reaction and Zn-air batteries performance. Energy Storage Mater. 2023, 56, 165–173.

[144]

Gao, C.; Li, L. Z.; Yan, X. M.; Zhang, N.; Bao, J. J.; Zhang, X. P.; Li, Y. Q. Triethylenediamine cobalt complex encapsulated in a metal-organic framework cage to prepare a cobalt single-atom catalyst with a high Co–N4 density for an efficient oxygen reduction reaction. J. Colloid Interface Sci. 2024, 653, 296–307.

[145]

Wang, F. Q.; Li, Y.; Zhang, R.; Liu, H.; Zhang, Y. Y.; Zheng, X. R.; Zhang, J.; Chen, C.; Zheng, S. J.; Xin, H. L. Activating single-atom Ni site via first-shell Si modulation boosts oxygen reduction reaction. Small 2023, 19, 2206071.

[146]

Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 7384–7389.

[147]

Jiang, R.; Qiao, Z. L.; Xu, H. X.; Cao, D. P. Defect engineering of Fe–N–C single-atom catalysts for oxygen reduction reaction. Chin. J. Catal. 2023, 48, 224–234.

[148]

Hunter, M. A.; Fischer, J. M. T. A.; Yuan, Q. H.; Hankel, M.; Searles, D. J. Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction. ACS Catal. 2019, 9, 7660–7667.

[149]

Lu, B. Z.; Liu, Q. M.; Chen, S. W. Electrocatalysis of single-atom sites: Impacts of atomic coordination. ACS Catal. 2020, 10, 7584–7618.

[150]

Xie, Y. H.; Chen, X.; Sun, K. A.; Zhang, J. Q.; Lai, W. H.; Liu, H.; Wang, G. X. Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202301833.

[151]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-Derived N-Doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[152]

Zhao, X.; Sun, Y.; Wang, J. M.; Nie, A. M.; Zou, G. D.; Ren, L. Q.; Wang, J.; Wang, Y.; Fernandez, C.; Peng, Q. M. Regulating d-orbital hybridization of subgroup-IVB single atoms for efficient oxygen reduction reaction. Adv. Mater. 2024, 36, 2312117.

[153]

Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

[154]

Zhong, X. W.; Ye, S. L.; Tang, J.; Zhu, Y. M.; Wu, D. J.; Gu, M.; Pan, H.; Xu, B. M. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Appl. Catal. B: Environ. 2021, 286, 119891.

[155]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu−N4 and Zn−N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[156]

Yang, H. Z.; Huang, H.; Wang, Q.; Shang, L.; Zhang, T. R.; Wang, S. G. Fe, Cu dual-metal single atom catalyst on commercial carbon black for efficient oxygen reduction reaction. J. Mater. Chem. A 2023, 11, 6191–6197.

Nano Research
Pages 9371-9396
Cite this article:
Pang M, Yang M, Zhang H, et al. Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions. Nano Research, 2024, 17(11): 9371-9396. https://doi.org/10.1007/s12274-024-6923-8
Topics:

555

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 June 2024
Revised: 28 July 2024
Accepted: 30 July 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return