AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrasmall high-entropy alloy nanoparticles on hierarchical N-doped carbon nanocages for tremendous electrocatalytic hydrogen evolution

Manman JiaJietao JiangJingyi TianXizhang WangLijun Yang( )Qiang Wu( )Zheng Hu( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

Ultrasmall PtRuCoNiCu high-entropy alloy nanoparticles (NPs, sub-2 nm) are constructed on hierarchical N-doped carbon nanocages, and the optimized catalyst demonstrates the ultralow overpotential, high mass activity and superb stability for hydrogen evolution in acidic media, outperforming the commercial Pt/C catalyst.

Abstract

High-entropy alloys (HEAs) are promising candidates for the electrocatalyst of hydrogen evolution reaction (HER) due to their unique properties such as cocktail electronic effect and lattice distortion effect. Herein, the ultrasmall (sub-2 nm) nanoparticles of PtRuCoNiCu HEA with uniform element distribution are highly dispersed on hierarchical N-doped carbon nanocages (hNCNC) via low-temperature thermal reduction, denoted as us-HEA/hNCNC. The optimal us-HEA/hNCNC exhibits excellent HER performance in 0.5 M H2SO4 solution, achieving an ultralow overpotential of 19 mV at 10 mA·cm−2 (without iR-compensation), high mass activity of 13.1 A·mgnoble metals−1 at −0.10 V and superb stability with a slight overpotential increase of 3 mV after 20,000 cycles of cyclic voltammetry scans, much superior to the commercial Pt/C (20 wt.%). The combined experimental and theoretical studies reveal that the Pt&Ru serve as the main active sites for HER and the CoNiCu species modify the electron density of active sites to facilitate the H* adsorption and achieve an optimum M–H binding energy. The hierarchical pore structure and N-doping of hNCNC support also play a crucial role in the enhancement of HER activity and stability. This study demonstrates an effective strategy to greatly improve the HER performance of noble metals by developing the HEAs on the unique hNCNC support.

Electronic Supplementary Material

Download File(s)
6924_ESM.pdf (6.1 MB)

References

[1]

Carley, S.; Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5, 569–577.

[2]

Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C. L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H. et al. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027.

[3]

Yang, X.; Nielsen, C. P.; Song, S. J.; McElroy, M. B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 2022, 7, 955–965.

[4]

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

[5]

Chatenet, M.; Pollet, B. G.; Dekel, D. R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R. D.; Bazant, M. Z.; Eikerling, M.; Staffell, I. et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.

[6]

Cui, Z. B.; Jiao, W. S.; Huang, Z. Y.; Chen, G. Z.; Zhang, B.; Han, Y. H.; Huang, W. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction. Small 2023, 19, 2301465.

[7]

Rajala, T.; Kronberg, R.; Backhouse, R.; Buan, M. E. M.; Tripathi, M.; Zitolo, A.; Jiang, H.; Laasonen, K.; Susi, T.; Jaouen, F. et al. A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Appl. Catal. B: Environ. 2020, 265, 118582.

[8]

Zhu, M. W.; Shao, Q.; Qian, Y.; Huang, X. Q. Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. Nano Energy 2019, 56, 330–337.

[9]

Tsai, M. H.; Yeh, J. W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123.

[10]

Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

[11]

Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823.

[12]

Du, M.; Li, X. R.; Pang, H.; Xu, Q. Alloy electrocatalysts. EnergyChem 2023, 5, 100083.

[13]

Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

[14]

Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.

[15]

Wang, K.; Huang, J. H.; Chen, H. X.; Wang, Y.; Yan, W.; Yuan, X. X.; Song, S. Q.; Zhang, J. J.; Sun, X. L. Recent progress in high entropy alloys for electrocatalysts. Electrochem. Energy Rev. 2022, 5, 17.

[16]

Fu, X. B.; Zhang, J. H.; Zhan, S. Q.; Xia, F. J.; Wang, C. J.; Ma, D. S.; Yue, Q.; Wu, J. S.; Kang, Y. J. High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catal. 2022, 12, 11955–11959.

[17]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[18]

Liu, S. L.; Mu, X. Q.; Li, W. Q.; Lv, M.; Chen, B. Y.; Chen, C. Y.; Mu, S. C. Cation vacancy-modulated PtPdRuTe five-fold twinned nanomaterial for catalyzing hydrogen evolution reaction. Nano Energy 2019, 61, 346–351.

[19]

Li, H. D.; Sun, M. Z.; Pan, Y.; Xiong, J.; Du, H. Y.; Yu, Y. D.; Feng, S. H.; Li, Z. J.; Lai, J. P.; Huang, B. L. et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B: Environ. 2022, 312, 121431.

[20]

Cao, H.; Wang, Q. L.; Zhang, Z. S.; Yan, H. M.; Zhao, H. Y.; Yang, H. B.; Liu, B.; Li, J.; Wang, Y. G. Engineering single-atom electrocatalysts for enhancing kinetics of acidic Volmer reaction. J. Am. Chem. Soc. 2023, 145, 13038–13047.

[21]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

[22]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[23]

Chen, Z. W.; Li, J.; Ou, P. F.; Huang, J. E.; Wen, Z.; Chen, L. X.; Yao, X.; Cai, G. M.; Yang, C. C.; Singh, C. V. et al. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 2024, 15, 359.

[24]

Chen, Y. N.; Zhang, X.; Zhou, Z. Carbon-based substrates for highly dispersed nanoparticle and even single-atom electrocatalysts. Small Methods 2019, 3, 1900050.

[25]

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

[26]

Cheng, X. Y.; Shen, Z.; Jiao, L.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem 2021, 3, 100066.

[27]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[28]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Mesostructured carbon-based nanocages: An advanced platform for energy chemistry. Sci. China Chem. 2020, 63, 665–681.

[29]

Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

[30]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435–444.

[31]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

[32]

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

[33]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[34]

Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B: Environ. 2022, 313, 121472.

[35]

Huang, K.; Xia, J. Y.; Lu, Y.; Zhang, B. W.; Shi, W. C.; Cao, X.; Zhang, X. Y.; Woods, L. M.; Han, C. C.; Chen, C. J. et al. Self-reconstructed spinel surface structure enabling the long-term stable hydrogen evolution reaction/oxygen evolution reaction efficiency of FeCoNiRu high-entropy alloyed electrocatalyst. Adv. Sci. 2023, 10, 2300094.

[36]

Huang, H. J.; Yan, M. M.; Yang, C. Z.; He, H. Y.; Jiang, Q. G.; Yang, L.; Lu, Z. Y.; Sun, Z. Q.; Xu, X. T.; Bando, Y. et al. Graphene nanoarchitectonics: Recent advances in grapheme-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415.

[37]

Liu, J. W.; Ma, Q. L.; Huang, Z. Q.; Liu, G. G.; Zhang, H. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 2019, 31, 1800696.

[38]

Li, Y. Z.; Tang, J. L.; Zhang, H. L.; Wang, Y. Y.; Lin, B.; Qiao, J. C.; Zheng, H. P.; Yu, Z. X.; Liu, Y. D.; Zhou, T. G. et al. In-situ construction and repair of high catalytic activity interface on corrosion-resistant high-entropy amorphous alloy electrode for hydrogen production in high-temperature dilute sulfuric acid electrolysis. Chem. Eng. J. 2023, 453, 139905.

[39]

Li, L.; Wang, S.; Xiong, L. F.; Wang, B.; Yang, G.; Yang, S. C. Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 12800–12807.

[40]

Zhang, J. R.; Chen, Y. Q.; Xu, F. F.; Zhang, Y.; Tian, J. Y.; Guo, Y.; Chen, G. H.; Wang, X. Z.; Yang, L. J.; Wu, Q. et al. High-dispersive Pd nanoparticles on hierarchical N-doped carbon nanocages to boost electrochemical CO2 reduction to formate at low potential. Small 2023, 19, 2301577.

[41]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[42]

Cheng, Q. Q.; Hu, C. G.; Wang, G. L.; Zou, Z. Q.; Yang, H.; Dai, L. M. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 5594–5601.

[43]

Li, C.; Zhang, L.; Zhang, Y.; Zhou, Y.; Sun, J. W.; Ouyang, X. P.; Wang, X.; Zhu, J. W.; Fu, Y. S. PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions. Chem. Eng. J. 2022, 428, 131085.

Nano Research
Pages 9518-9524
Cite this article:
Jia M, Jiang J, Tian J, et al. Ultrasmall high-entropy alloy nanoparticles on hierarchical N-doped carbon nanocages for tremendous electrocatalytic hydrogen evolution. Nano Research, 2024, 17(11): 9518-9524. https://doi.org/10.1007/s12274-024-6924-7
Topics:

484

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 April 2024
Revised: 26 July 2024
Accepted: 31 July 2024
Published: 22 August 2024
© Tsinghua University Press 2024
Return