Semiconductor quantum dots (QDs), as promising fluorescent materials, have been widely applied in biomedical application due to their unique optical properties. Currently, the most intensively studied are Cd-containing QDs (Cd-based QDs), whose potential toxicity prevents their further commercialization. In recent years, the eco-friendly QDs with low toxicity and environmental friendliness have begun to be developed, showing great potential in biomedical applications. The high-quality synthesis of eco-friendly QDs and the appropriate surface modification are key to realize their applications. This review summarizes the progress of eco-friendly QDs for biomedical applications, including their designed preparation, optical properties, surface modification, toxicity, and their applications in bioimaging and diagnostics. Finally, the challenges of eco-friendly QDs for future bioimaging and diagnostics application were provided. We believe this review will provide important guidance for promoting the development of eco-friendly QDs in bioimaging and diagnostics.
García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.
Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.
Díaz-González, M.; de la Escosura-Muñiz, A.; Fernandez-Argüelles, M. T.; Alonso, F. J. G.; Costa-Fernandez, J. M. Quantum dot bioconjugates for diagnostic applications. Top. Curr. Chem. 2020, 378, 35.
Foubert, A.; Beloglazova, N. V.; Rajkovic, A.; Sas, B.; Madder, A.; Goryacheva, I. Y.; de Saeger, S. Bioconjugation of quantum dots: Review & impact on future application. Trac Trends Anal. Chem. 2016, 83, 31–48.
Shu, J.; Tang, D. P. Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem.—Asian J. 2017, 12, 2780–2789.
Cai, G. N.; Yu, Z. Z.; Ren, R. R.; Tang, D. P. Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sens. 2018, 3, 632–639.
Gidwani, B.; Sahu, V.; Shukla, S. S.; Pandey, R.; Joshi, V.; Jain, V. K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Delivery Sci. Technol. 2021, 61, 102308.
Zhang, L. J.; Xia, L.; Xie, H. Y.; Zhang, Z. L.; Pang, D. W. Quantum dot based biotracking and biodetection. Anal. Chem. 2019, 91, 532–547.
Russ Algar, W.; Massey, M.; Rees, K.; Higgins, R.; Krause, K. D.; Darwish, G. H.; Peveler, W. J.; Xiao, Z. J.; Tsai, H. Y.; Gupta, R. et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358.
Bruchez, Jr. M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.
Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.
Qiu, Z. L.; Shu, J.; He, Y.; Lin, Z. Z.; Zhang, K. Y.; Lv, S. Z.; Tang, D. P. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens. Bioelectron. 2017, 87, 18–24.
Gil, H. M.; Price, T. W.; Chelani, K.; Bouillard, J. S. G.; Calaminus, S. D. J.; Stasiuk, G. J. NIR-quantum dots in biomedical imaging and their future. iScience 2021, 24, 102189.
Sun, J.; Geng, J. T.; Tang, B. Z.; He, X. W. DNA-programmed (De)hybridization of near-infrared photosensitized UCNP-QDs-GNPs nanoprobes for microRNA imaging and image-guided cancer therapy. Adv. Funct. Mater. 2024, 34, 2315299.
Lv, S. Z.; Zhang, K. Y.; Zeng, Y. Y.; Tang, D. P. Double photosystems-based ‘Z-scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker. Anal. Chem. 2018, 90, 7086–7093.
Lv, Y. B.; Yuan, Y. C.; Hu, N.; Jin, N.; Xu, D. D.; Wu, R. L.; Shen, H. B.; Chen, O.; Li, L. S. Thick-shell CdSe/ZnS/CdZnS/ZnS core/shell quantum dots for quantitative immunoassays. ACS Appl. Nano Mater. 2021, 4, 2855–2865.
Zhang, J. K.; Li, C. Y.; Li, J. Z.; Peng, X. G. Synthesis of CdSe/ZnSe core/shell and CdSe/ZnSe/ZnS core/shell/shell nanocrystals: Surface-ligand strain and CdSe-ZnSe lattice strain. Chem. Mater. 2023, 35, 7049–7059.
Liang, Y.; Zhang, T.; Tang, M. Toxicity of quantum dots on target organs and immune system. J. Appl. Toxicol. 2021, 42, 17–40.
Chen, G. C.; Zhang, Y. J.; Huang, D. H.; Liu, Y. Y.; Li, C. Y.; Wang, Q. B. Long-term chemical biotransformation and pathways of Cd-based quantum dots in mice. Nano Today 2022, 44, 101504.
Lu, Y. H.; Xu, S. C.; Chen, H. Y.; He, M. D.; Deng, Y. C.; Cao, Z. W.; Pi, H. F.; Chen, C. H.; Li, M.; Ma, Q. L. et al. CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation. Biomaterials 2016, 90, 27–39.
Cao, W. H.; Liu, X. Q.; Huang, X. Q.; Liu, Z. H.; Cao, X. Y.; Gao, W.; Tang, B. Hepatotoxicity-related oxidative modifications of thioredoxin 1/peroxiredoxin 1 induced by different cadmium-based quantum dots. Anal. Chem. 2022, 94, 3608–3616.
Filali, S.; Pirot, F.; Miossec, P. Biological applications and toxicity minimization of semiconductor quantum dots. Trends Biotechnol. 2020, 38, 163–177.
Shu, J.; Tang, D. P. Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 2020, 92, 363–377.
Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.
Liu, L.; Bai, B.; Yang, X. Y.; Du, Z. L.; Jia, G. H. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications. Chem. Rev. 2023, 123, 3625–3692.
Johnson, C. M.; Pate, K. M.; Shen, Y.; Viswanath, A.; Tan, R.; Benicewicz, B. C.; Moss, M. A.; Greytak, A. B. A methacrylate-based polymeric imidazole ligand yields quantum dots with low cytotoxicity and low nonspecific binding. J. Colloid Interface Sci. 2015, 458, 310–314.
Qiu, Z. L.; Shu, J.; Tang, D. P. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal. Chem. 2017, 89, 5152–5160.
Luo, Z. B.; Qi, Q. G.; Zhang, L. J.; Zeng, R. J.; Su, L. S.; Tang, D. P. Branched polyethylenimine-modified upconversion nanohybrid-mediated photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Anal. Chem. 2019, 91, 4149–4156.
Lin, Y. X.; Zhou, Q.; Tang, D. P.; Niessner, R.; Yang, H. H.; Knopp, D. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal. Chem. 2016, 88, 7858–7866.
Lin, X. T.; Chen, T. T. A review of in vivo toxicity of quantum dots in animal models. Int. J. Nanomed. 2023, 18, 8143–8168.
Jalali, H. B.; Sadeghi, S.; Yuksel, I. B. D.; Onal, A.; Nizamoglu, S. Past, present and future of indium phosphide quantum dots. Nano Res. 2022, 15, 4468–4489.
Yadav, R.; Kwon, Y.; Rivaux, C.; Saint-Pierre, C.; Ling, W. L.; Reiss, P. Narrow near-infrared emission from InP QDs synthesized with indium(I) halides and aminophosphine. J. Am. Chem. Soc. 2023, 145, 5970–5981.
Amor-Gutiérrez, O.; Iglesias-Mayor, A.; Llano-Suárez, P.; Costa-Fernández, J. M.; Soldado, A.; Podadera, A.; Parra, F.; Costa-García, A.; de la Escosura-Muñiz, A. Electrochemical quantification of Ag2S quantum dots: Evaluation of different surface coating ligands for bacteria determination. Microchim. Acta 2020, 187, 169.
Wang, R.; Tong, X.; Long, Z. H.; Channa, A. I.; Zhao, H. Y.; Li, X.; Cai, M. K.; You, Y. M.; Sun, X. P.; Wang, Z. M. Rational design of eco-friendly Mn-doped nonstoichiometric CuInSe/ZnSe core/shell quantum dots for boosted photoelectrochemical efficiency. Nano Res. 2022, 15, 7614–7621.
Zhou, R. H.; Lu, X. M.; Yu, H. M.; Wu, L.; Wu, P.; Hou, X. D. Se powder as precursor without solubilization for Mn-doped ZnSe QDs: Fast synthesis and analytical characterization. Microchem. J. 2017, 134, 191–196.
Xia, B. B.; Lin, G. M.; Zheng, S. M.; Zhang, H.; Yu, Y. Y. Differential effects of PEGylated Cd-free CuInS2/ZnS quantum dot (QDs) on substance P and LL-37 induced human mast cell activation. Ecotoxicol. Environ. Saf. 2022, 245, 114108.
Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.
Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J. Y. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193–6216.
Cui, Y. Y.; Wu, Q. Q.; Li, J. Z.; Gao, Y.; Cao, F.; Yang, X. Y.; He, T. C. Spectroscopic properties of yellow and red InP/ZnSe/ZnS quantum dots. J. Mater. Chem. C 2024, 12, 6696–6701.
Almeida, G.; Ubbink, R. F.; Stam, M.; Du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.
Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.
Kim, T. G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M. H.; Wang, L. W.; Jang, E.; Alivisatos, A. P. Trap passivation in indium-based quantum dots through surface fluorination: Mechanism and applications. ACS Nano 2018, 12, 11529–11540.
Liu, H.; Chen, P. X.; Cui, Y. Y.; Gao, Y.; Cheng, J. J.; He, T. C.; Chen, R. InP semiconductor nanocrystals: Synthesis, optical properties, and applications. Adv. Opt. Mater. 2023, 11, 2300425.
Click, S. M.; Rosenthal, S. J. Synthesis, surface chemistry, and fluorescent properties of InP quantum dots. Chem. Mater. 2023, 35, 822–836.
Proppe, A. H.; Berkinsky, D. B.; Zhu, H.; Šverko, T.; Kaplan, A. E. K.; Horowitz, J. R.; Kim, T.; Chung, H.; Jun, S.; Bawendi, M. G. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 2023, 18, 993–999.
Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. The reaction of indium(III) chloride with tris(trimethylsilyl)phosphine: A novel route to indium phosphide. J. Chem. Soc. Chem. Commun. 1989, 359–360.
Wells, R. L.; Aubuchon, S. R.; Kher, S. S.; Lube, M. S.; White, P. S. Synthesis of nanocrystalline indium arsenide and indium phosphide from indium(III) halides and tris(trimethylsilyl)pnicogens. Synthesis, characterization, and decomposition behavior of I3In·P(SiMe3)3. Chem. Mater. 1995, 7, 793–800.
Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.
Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.
Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.
Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.
Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J. Tuning the lattice parameter of In X Zn y P for highly luminescent lattice-matched core/shell quantum dots. ACS Nano 2016, 10, 4754–4762.
Yang, Y. Qin, H. Y.; Peng, X. G. Intramolecular entropy and size-dependent solution properties of nanocrystal-ligands complexes. Nano Lett. 2016, 16, 2127–2132.
Zhang, X. G.; Hudson, M. H.; Castellano, F. N. Passivation of electron trap states in InP quantum dots with benzoic acid ligands. J. Phys. Chem. C 2021, 125, 18362–18371.
Virieux, H. S.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.
Xie, L. S.; Harris, D. K.; Bawendi, M. G.; Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 2015, 27, 5058–5063.
Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.
Kim, T.; Won, Y. H.; Jang, E.; Kim, D. Negative trion Auger recombination in highly luminescent InP/ZnSe/ZnS quantum dots. Nano Lett. 2021, 21, 2111–2116.
Chen, Y. R.; Wang, R. X.; Kuang, Y. M.; Bian, Y. Y.; Chen, F.; Shen, H. B.; Chi, Z.; Ran, X.; Guo, L. J. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Nanoscale 2023, 15, 18920–18927.
Li, H. Y.; Zhang, W. J.; Bian, Y. Y.; Ahn, T. K.; Shen, H. B.; Ji, B. T. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 2022, 22, 4067–4073.
Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.
Ramasamy, P.; Ko, K. J.; Kang, J. W.; Lee, J. S. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo- and electroluminescence. Chem. Mater. 2018, 30, 3643–3647.
Xu, Y. X.; Lv, Y. B.; Wu, R. L.; Shen, H. B.; Yang, H. W.; Zhang, H.; Li, J. J.; Li, L. S. Preparation of highly stable and photoluminescent cadmium-free InP/GaP/ZnS core/shell quantum dots and application to quantitative immunoassay. Part. Part. Syst. Char. 2020, 37, 1900441.
Shen, C.; Zhu, Y. Q.; Tao, H.; Li, J. L.; Zou, J. H.; Wang, L.; Liang, J. Q.; Xiao, X. D.; Xu, X. Q.; Xu, G. Blue-emitting InP/GaP/ZnS quantum dots with enhanced stability by siloxane capping: Implication for electroluminescent devices. ACS Appl. Nano Mater. 2022, 5, 2801–2811.
Sagar, L. K.; Bappi, G.; Johnston, A.; Chen, B.; Todorović, P.; Levina, L.; Saidaminov, M. I.; García de Arquer, F. P.; Nam, D. H.; Choi, M. J. et al. Suppression of auger recombination by gradient alloying in InAs/CdSe/CdS QDs. Chem. Mater. 2020, 32, 7703–7709.
Enright, M. J.; Jasrasaria, D.; Hanchard, M. M.; Needell, D. R.; Phelan, M. E.; Weinberg, D.; McDowell, B. E.; Hsiao, H. W.; Akbari, H. et al. Role of atomic structure on exciton dynamics and photoluminescence in NIR emissive InAs/InP/ZnSe quantum dots. J. Phys. Chem. C 2022, 126, 7576–7587.
Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M. G.; Jensen, K. F. Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew. Chem., Int. Ed. 2018, 57, 10915–10918.
Koh, S.; Lee, H.; Woo, J. Y.; Ki Bae, W.; Park, Y. S.; Lee, D. C. Cadmium-free colloidal branched nanocrystals with optical anisotropy induced by symmetry breaking. J. Phys. Chem. C 2022, 126, 17176–17186.
Hines, M. A.; Guyot-Sionnest, P. Bright UV-Blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 1998, 102, 3655–3657.
Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.
Shen, H. B.; Wang, H. Z.; Li, X. M.; Niu, J. Z.; Wang, H.; Chen, X.; Li, L. S. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSenanocrystals. Dalton Trans. 2009, 47, 10534–10540.
Ji, B. T.; Koley, S.; Slobodkin, I.; Remennik, S.; Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 2020, 20, 2387–2395.
Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.
Molaei, M.; Khezripour, A. R.; Karimipour, M. Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 2014, 317, 236–240.
Li, X. Y.; Xuan, C. J.; Yang, B. X.; Wang, W. C.; Wang, M. Z.; Zhao, X. P. Highly stable water-soluble ZnSe:Cu quantum dots coated with doubly ZnS shell. J. Alloys Compd. 2023, 947, 169406.
Selvaraj, J.; Mahesh, A.; Asokan, V.; Baskaralingam, V.; Dhayalan, A.; Paramasivam, T. Phosphine-free, highly emissive, water-soluble Mn:ZnSe/ZnS core–shell nanorods: Synthesis, characterization, and in vitro bioimaging of HEK293 and HeLa cells. ACS Appl. Nano Mater. 2018, 1, 371–383.
Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.
Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.
Zhou, R. H.; Sun, S. K.; Li, C. H.; Wu, L.; Hou, X. D.; Wu, P. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl. Mater. Interfaces 2018, 10, 34060–34067.
Kim, J. S.; Kim, S. H.; Lee, H. S. Energy spacing and sub-band modulation of Cu doped ZnSe quantum dots. J. Alloys Compd. 2022, 914, 165372.
Shi, L. J.; Zhu, C. N.; He, H.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W.; Tian, Z. Q. Near-infrared Ag2Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Adv. 2016, 6, 38183–38186.
Zhang, Z. B.; Xu, C. B.; Song, S. L.; Ding, Y.; Meng, N.; Liu, X. S.; Zhang, Y.; Gong, L.; Wu, W. T. Ultrasonic enhancement of microdroplet-based interfacial reaction for improving the synthesis of Ag2S QDs. Ultrason. Sonochem. 2023, 95, 106411.
Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.
Shen, Y. L.; Lifante, J.; Ximendes, E.; Santos, H. D. A.; Ruiz, D.; Juárez, B. H.; Gutiérrez, I. Z.; Vera, V. T.; Retama, J. R.; Rodríguez, E. M. et al. Perspectives for Ag2S NIR-II nanoparticles in biomedicine: From imaging to multifunctionality. Nanoscale 2019, 11, 19251–19264.
Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mater. 2012, 24, 3–5.
Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G. Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid. J. Lumin. 2020, 220, 117008.
Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758–3765.
Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.
Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.
Zhu, C. N.; Chen, G.; Tian, Z. Q.; Wang, W.; Zhong, W. Q.; Li, Z.; Zhang, Z. L.; Pang, D. W. Near-infrared fluorescent Ag2Se-cetuximab nanoprobes for targeted imaging and therapy of cancer. Small 2017, 13, 1602309.
Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. X.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.
Jiang, J. Y.; Zhang, S.; Shan, Q. S.; Yang, L. X.; Ren, J.; Wang, Y. J.; Jeon, S.; Xiang, H. Y.; Zeng, H. B. High-color-rendition white QLEDs by balancing red, green and blue centres in eco-friendly ZnCuGaS:In@ZnS quantum dots. Adv. Mater. 2024, 36, 2304772.
Jain, S.; Bharti, S.; Bhullar, G. K.; Tripathi, S. K. I-III-VI core/shell QDs: Synthesis, characterizations and applications. J. Lumin. 2020, 219, 116912.
Morselli, G.; Villa, M.; Fermi, A.; Critchley, K.; Ceroni, P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horiz. 2021, 6, 676–695.
Knowles, K. E.; Hartstein, K. H.; Kilburn, T. B.; Marchioro, A.; Nelson, H. D.; Whitham, P. J.; Gamelin, D. R. Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem. Rev. 2016, 116, 10820–10851.
Xia, C. H.; Tamarat, P.; Hou, L.; Busatto, S.; Meeldijk, J. D.; de Mello Donega, C.; Lounis, B. Unraveling the emission pathways in copper indium sulfide quantum dots. ACS Nano 2021, 15, 17573–17581.
Long, Z. W.; Zhang, W. F.; Tian, J. H.; Chen, G. T.; Liu, Y. H.; Liu, R. H. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg. Chem. Front. 2021, 8, 880–897.
Gromova, M.; Lefrançois, A.; Vaure, L.; Agnese, F.; Aldakov, D.; Maurice, A.; Djurado, D.; Lebrun, C.; de Geyer, A.; Schülli, T. U. et al. Growth mechanism and surface state of CuInS2 nanocrystals synthesized with dodecanethiol. J. Am. Chem. Soc. 2017, 139, 15748–15759.
Jin, Q. L.; Zhang, X. H.; Zhang, L. F.; Li, J. J.; Lv, Y. B.; Li, N.; Wang, L.; Wu, R. L.; Li, L. S. Fabrication of CuInZnS/ZnS quantum dot microbeads by a two-step approach of emulsification-solvent evaporation and surfactant substitution and its application for quantitative detection. Inorg. Chem. 2023, 62, 3474–3484.
Zhang, J. J.; Bifulco, A.; Amato, P.; Imparato, C.; Qi, K. Z. Copper indium sulfide quantum dots in photocatalysis. J. Colloid Interface Sci. 2023, 638, 193–219.
Lim, L. J.; Zhao, X. F.; Tan, Z. K. Non-toxic CuInS2/ZnS colloidal quantum dots for near-infrared light-emitting diodes. Adv. Mater. 2023, 35, 2301887.
Ning, J. J.; Duan, Z. H.; Kershaw, S. V.; Rogach, A. L. Phase-controlled growth of CuInS2 shells to realize colloidal CuInSe2/CuInS2 core/shell nanostructures. ACS Nano 2020, 14, 11799–11808.
Liu, D.; Guo, Y. X.; Yin, X. T.; Yang, Y. W.; Que, W. X. Nucleation regulation and anchoring of halide ions in all-inorganic perovskite solar cells assisted by CuInSe2 quantum dots. Adv. Funct. Mater. 2022, 33, 2210754.
Lian, W.; Tu, D. T.; Hu, P.; Song, X. R.; Gong, Z. L.; Chen, T.; Song, J. B.; Chen, Z.; Chen, X. Y. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today 2020, 35, 100943.
Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V. Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 2013, 25, 3753–3757.
Lox, J. F. L.; Dang, Z. Y.; Dzhagan, V. M.; Spittel, D.; Martín-García, B.; Moreels, I.; Zahn, D. R. T.; Lesnyak, V. Near-infrared Cu–In–Se-based colloidal nanocrystals via cation exchange. Chem. Mater. 2018, 30, 2607–2617.
Lian, W.; Tu, D. T.; Weng, X. K.; Yang, K. Y.; Li, F. S.; Huang, D. C.; Zhu, H. M.; Xie, Z.; Chen, X. Y. Near-infrared nanophosphors based on CuInSe2 quantum dots with near-unity photoluminescence quantum yield for micro-LEDs applications. Adv. Mater. 2024, 36, 2311011.
Zang, H. D.; Li, H. B.; Makarov, N. S.; Velizhanin, K. A.; Wu, K. F.; Park, Y. S.; Klimov, V. I. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett. 2017, 17, 1787–1795.
Jin, H.; Gui, R. J.; Wang, Z. H.; Xia, J. F.; Yang, M.; Zhang, F. F.; Bia, S. Retracted article: Facile fabrication of water-dispersible AgInS2 quantum dots and mesoporous AgInS2 nanospheres with visible photoluminescence. RSC Adv. 2015, 5, 68287–68292.
Wang, J.; Ma, H. T.; Pan, L. J.; Zhang, L.; Zhang, Z. L. Integrated synthesis and ripening of AgInS2 QDs in droplet microreactors: An update fluorescence regulating via suitable temperature combination. Chin. Chem. Lett. 2022, 33, 3767–3771.
Kosman, R.; Olejniczak, A.; Pawlyta, M.; Bezkrovnyi, O.; Cichy, B. Spectroscopic and structural implications of hosting Zn2+, Cd2+ and Hg2+ ions in the AgInS2 quantum dots. J. Alloys Compd. 2022, 911, 164977.
Liu, J. J.; Chen, S. F.; Liu, Q. Z.; Zhu, Y. F.; Lu, Y. F. Density functional theory study on electronic and photocatalytic properties of orthorhombic AgInS2. Comput. Mater. Sci. 2014, 91, 159–164.
Shamirian, A.; Appelbe, O.; Zhang, Q. B.; Ganesh, B.; Kron, S. J.; Snee, P. T. A toolkit for bioimaging using near-infrared AgInS2/ZnS quantum dots. J. Mater. Chem. B 2015, 3, 8188–8196.
Hu, Z. H.; Chen, T.; Xie, Z. X.; Guo, C. X.; Jiang, W. H.; Chen, Y. H.; Xu, Y. Q. Emission tunable AgInS2 quantum dots synthesized via microwave method for white light-emitting diodes application. Opt. Mater. 2022, 124, 111975.
Langevin, M. A.; Ritcey, A. M.; Allen, C. N. Air-stable near-infrared AgInSe2 nanocrystals. ACS Nano 2014, 8, 3476–3482.
Halder, G.; Bhattacharyya, S. Zinc-diffused silver indium selenide quantum dot sensitized solar cells with enhanced photoconversion efficiency. J. Mater. Chem. A 2017, 5, 11746–11755.
Tappan, B. A.; Horton, M. K.; Brutchey, R. L. Ligand-mediated phase control in colloidal AgInSe2 nanocrystals. Chem. Mater. 2020, 32, 2935–2945.
Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826–24836.
Bai, T. Y.; Li, C. G.; Li, F. F.; Zhao, L.; Wang, Z. R.; Huang, H.; Chen, C. L.; Han, Y.; Shi, Z.; Feng, S. H. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1– x Se x )2 nanocrystals. Nanoscale 2014, 6, 6782–6789.
Oluwafemi, O. S.; May, B. M. M.; Parani, S.; Tsolekile, N. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mater. Sci. Eng. C 2020, 106, 110181.
Yang, L. X.; Zhang, S.; Xu, B.; Jiang, J. Y.; Cai, B.; Lv, X. Y.; Zou, Y. S.; Fan, Z. Y.; Yang, H.; Zeng. H. B. I-III-VI quantum dots and derivatives: Design, synthesis, and properties for light-emitting diodes. Nano Lett. 2023, 23, 2443–2453.
Hussain, S.; Won, N.; Nam, J.; Bang, J.; Chung, H.; Kim, S. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem 2009, 10, 1466–1470.
Ren, C.; Hu, D.; Cui, Y. Y.; Chen, P. X.; Xu, X. Q.; Cheng, J. J.; He, T. C. Ag-doped InP/ZnS quantum dots for type-I photosensitizers. Chem. Commun. 2023, 59, 2311–2314.
Dehghan, F.; Molaei, M.; Amirian, F.; Karimipour, M.; Bahador, A. R. Improvement of the optical and photocatalytic properties of ZnSe QDs by growth of ZnS shell using a new approach. Mater. Chem. Phys. 2018, 206, 76–84.
Li, X. Y.; Zou, H. Y.; Wang, M. Z.; Wang, W. C.; Yang, B. X.; Zhao, X. P. Highly photoluminescent water-soluble ZnSe/ZnS/ZnS quantum dots via successive shell growth approach. J. Mater. Sci. Mater. Electron. 2022, 33, 13905–13912.
Xue, X. X.; Chen, L.; Zhao, C. M.; Chang, L. M. One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method. J. Mater. Sci. Mater. Electron. 2018, 29, 9184–9192.
Gong, F. Z.; Sun, L.; Ruan, H.; Cai, H. M. Hydrothermal synthesis and photoluminescence properties of Cu-doped ZnSe quantum dots using glutathione as stabilizer. Mater. Express 2018, 8, 173–181.
Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012, 33, 5130–5135.
Gao, J. W.; Wu, C. L.; Deng, D.; Wu, P.; Cai, C. X. Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv. Health. Mater. 2016, 5, 2437–2449.
Wu, Q.; Zhou, M.; Shi, J.; Li, Q. J.; Yang, M. Y.; Zhang, Z. X. Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal. Chem. 2017, 89, 6616–6623.
Yang, L. L.; Zhao, W.; Liu, Z. Y.; Ren, M. T.; Kong, J.; Zong, X.; Luo, M. Y.; Tang, B.; Xie, J. H. Y.; Pang, D. W. et al. Acid-resistant near-infrared II Ag2Se quantum dots for gastrointestinal imaging. Anal. Chem. 2023, 95, 15540–15548.
Li, X. L.; Liu, Z. X.; Luo, K.; Yin, X. H.; Lin, X. C.; Zhu, C. L. Biomimetic synthesis of Ag2Se quantum dots with enhanced photothermal properties and as “Gatekeepers” to cap mesoporous silica nanoparticles for chemo-photothermal therapy. Chem. Asian J. 2019, 14, 155–161.
Chen, S. H.; Liu, H. K.; Huang, B.; Zheng, J.; Zhang, Z. L.; Pang, D. W.; Huang, P.; Cui, R. Biosynthesis of NIR-II Ag2Se quantum dots with bacterial catalase for photoacoustic imaging and alleviating-hypoxia photothermal therapy. Small 2024, 20, 2310795.
Gui, W. Y.; Chen, X. Q.; Ma, Q. A novel detection method of human serum albumin based on CuInZnS quantum dots-Co2+ sensing system. Anal. Bioanal. Chem. 2017, 409, 3871–3876.
Mrad, M.; Ben Chaabane, T.; Rinnert, H.; Lavinia, B.; Jasniewski, J.; Medjahdi, G.; Schneider, R. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorg. Chem. 2020, 59, 6220–6231.
Wang, L.; Kang, X. J.; Pan, D. C. Gram-scale synthesis of hydrophilic PEI-coated AgInS2 quantum dots and its application in hydrogen peroxide/glucose detection and cell imaging. Inorg. Chem. 2017, 56, 6122–6130.
Tsolekile, N.; Nahle, S.; Zikalala, N.; Parani, S.; Sakho, E. H. M.; Joubert, O.; Matoetoe, M. C.; Songca, S. P.; Oluwafemi, O. S. Cytotoxicity, fluorescence tagging and gene-expression study of CuInS/ZnS QDs-meso (hydroxyphenyl) porphyrin conjugate against human monocytic leukemia cells. Sci. Rep. 2020, 10, 4936.
Jiao, M. X.; Huang, X. D.; Ma, L. Z.; Li, Y.; Zhang, P. S.; Wei, X. J.; Jing, L. H.; Luo, X. L.; Rogach, A. L.; Gao, M. Y. Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. Chem. Commun. 2019, 55, 15053–15056.
Liu, H.; Cai, P.; McHugh, K. J.; Perkinson, C. F.; Li, L. S.; Wang, S. N.; Wang, W.; Jiao, M. X.; Luo, X. L.; Jing, L. H. Aqueous synthesis of bright near-infrared-emitting Zn–Cu–In–Se quantum dots for multiplexed detection of tumor markers. Nano Res. 2022, 15, 8351–8359.
Lebedev, M. V.; Serov, Y. M.; Lvova, T. V.; Endo, R.; Masuda, T.; Sedova, I. V. InP(100) surface passivation with aqueous sodium sulfide solution. Appl. Sur. Sci. 2020, 533, 147484.
Llopis, M. V.; Rodríguez, J. C. C.; Martín, F. J. F.; Coto, A. M.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Sanz-Medel, A. Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications. Nanotechnology 2011, 22, 385703.
Heyne, B.; Arlt, K.; Geßner, A.; Richter, A. F.; Döblinger, M.; Feldmann, J.; Taubert, A.; Wedel, A. Mixed mercaptocarboxylic acid shells provide stable dispersions of InPZnS/ZnSe/ZnS multishell quantum dots in aqueous media. Nanomaterials 2020, 10, 1858.
Garcia-Cortes, M.; Sotelo González, E.; Fernández-Argüelles, M. T.; Encinar, J. R.; Costa-Fernández, J. M.; Sanz-Medel, A. Capping of Mn-doped ZnS quantum dots with DHLA for their stabilization in aqueous media: Determination of the nanoparticle number concentration and surface ligand density. Langmuir 2017, 33, 6333–6341.
Zhang, F. M.; Ma, P. Y.; Deng, X. Y.; Sun, Y.; Wang, X. H.; Song, D. Q. Enzymatic determination of uric acid using water-soluble CuInS/ZnS quantum dots as a fluorescent probe. Microchim. Acta 2018, 185, 499.
Zhang, Y. B.; Lv, Y. B.; Li, L. S.; Zhao, X. J.; Zhao, M. X.; Shen, H. B. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis. Exploration 2022, 2, 20220082.
Dobhal, G.; Ayupova, D.; Laufersky, G.; Ayed, Z.; Nann, T.; Goreham, R. V. Cadmium-free quantum dots as fluorescent labels for exosomes. Sensors 2018, 18, 3308.
Liu, S. Y.; Hu, J. J.; Su, X. G. Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots. Analyst 2012, 137, 4598–4604.
Gao, J. H.; Chen, K.; Luong, R.; Bouley, D. M.; Mao, H.; Qiao, T. C.; Gambhir, S. S.; Cheng, Z. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett. 2012, 12, 281–286.
Liu, X. Y.; Braun, G. B.; Zhong, H. Z.; Hall, D. J.; Han, W. L.; Qin, M. D.; Zhao, C. Z.; Wang, M. N.; She, Z. G.; Cao, C. B. et al. Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv. Funct. Mater. 2016, 26, 267–276.
Iso, Y.; Isobe, T. Critical review-photostable fluorescent cd-free quantum dots transparently embedded in monolithic silica. ECS J. Solid State Sci. Technol. 2020, 9, 016005.
Li, X.; Tu, D. T.; Yu, S. H.; Song, X. R.; Lian, W.; Wei, J. J.; Shang, X. Y.; Li, R. F.; Chen, X. Y. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res. 2019, 12, 1804–1809.
Zhou, L. L.; Yu, B.; Huang, L. L.; Cao, H. Q.; Lin, D. Y.; Jing, Y. Y.; Wali, F.; Qu, J. L. Nonblinking core-multishell InP/ZnSe/ZnS quantum dot bioconjugates for super-resolution imaging. ACS Appl. Nano Mater. 2022, 5, 18742–18752.
Shi, X. H.; Dai, Y. Y.; Wang, L.; Wang, Z. G.; Liu, S. L. Water-soluble high-quality Ag2Te quantum dots prepared by mutual adaptation of synthesis and surface modification for in vivo imaging. ACS Appl. Bio Mater. 2021, 4, 7692–7700.
Zhang, Y. B.; Qiao, L. L.; Zhang, Z. Q.; Liu, Y. F.; Li, L. S.; Shen, H. B.; Zhao, M. X. A mitochondrial-targetable fluorescent probe based on high-quality InP quantum dots for the imaging of living cells. Mater. Design 2022, 219, 110736.
Chen, Z. L.; Lin, Y.; Yu, X. J.; Zhu, D. L.; Guo, S. W.; Zhang, J. J.; Wang, J. J.; Wang, B. S.; Zhang, Z. L.; Pang, D. W. Preparation of monodisperse hydrophilic quantum dots with amphiphilic polymers. ACS Appl. Mater. Interfaces 2017, 9, 39901–39906.
Michalska, M.; Florczak, A.; Dams-Kozlowska, H.; Gapinski, J.; Jurga, S.; Schneider, R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater. 2016, 35, 293–304.
Wu, R. L.; Wang, T. Y.; Wu, M.; Lv, Y. B.; Liu, X. P.; Li, J. J.; Shen, H. B.; Li, L. S. Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay. Chem. Eng. J. 2018, 348, 447–454.
Wiercigroch-Walkosz, K.; Cichos, J.; Wysokińska, E.; Rotko, G.; Kałas, W.; Karbowiak, M. Near-infrared Ag2S quantum dots loaded in phospholipid nanostructures: Physical properties, stability and cytotoxicity. Colloids Surf. 2019, 579, 123631.
Hu, J. H.; Song, J. L. Q.; Tang, Z. S.; Li, H.; Chen, L.; Zhou, R. Phospholipid-stabilized Cu x Ag1– x InSe2 nanocrystals as luminophores: Fabrication, optical properties, and biological application. J. Mater. Chem. C 2020, 8, 5821–5831.
Sannaikar, M. S.; Inamdar, L. S.; Pujar, G. H.; Wari, M. N.; Balasinor, N. H.; Inamdar, S. R. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin. Luminescence 2018, 33, 495–504.
Speranskaya, E. S.; Beloglazova, N. V.; Abé, S.; Aubert, T.; Smet, P. F.; Poelman, D.; Goryacheva, I. Y.; de Saeger, S.; Hens, Z. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 2014, 30, 7567–7575.
Chen, C. W.; Wu, D. Y.; Chan, Y. C.; Lin, C. C.; Chung, P. H.; Hsiao, M.; Liu, R. S. Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 2015, 119, 2852–2860.
Speranskaya, E. S.; Sevrin, C.; de Saeger, S.; Hens, Z.; Goryacheva, I. Y.; Grandfils, C. Synthesis of hydrophilic CuInS2/ZnS quantum dots with different polymeric shells and study of their cytotoxicity and hemocompatibility. ACS Appl. Mater. Interfaces 2016, 8, 7613–7622.
Sheng, Y.; Li, S.; Sun, Y. X.; Zhang, R.; Zhao, X. Y.; Tan, M. C. Synthesis of deep red emitting Cu–In–Zn–Se/ZnSe quantum dots for dual-modal fluorescence and photoacoustic imaging. Nanotechnology 2021, 32, 085101.
Zhang, L. F.; Xu, H.; Zhang, X. H.; Chen, X. X.; Lv, Y. B.; Zhang, R. X.; Wang, L.; Wu, R. L.; Shen, H. B.; Li, L. S. Highly sensitive, stable InP quantum dot fluorescent probes for quantitative immunoassay through nanostructure tailoring and biotin-streptavidin coupling. Inorg. Chem. 2024, 63, 4604–4613.
Guo, W. S.; Chen, N.; Tu, Y.; Dong, C. H.; Zhang, B. B.; Hu, C. H.; Chang, J. Synthesis of Zn–Cu–In–S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging. Theranostics 2013, 3, 99–108.
Koole, R.; van Schooneveld, M. M.; Hilhorst, J.; de Mello Donegá, C.; ‘t Hart, D. C.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 2008, 20, 2503–2512.
Elzorkany, H. E.; Farghali, M. A.; Hassan, M. A.; El-Sayed, K.; Canonico, M.; Konert, G.; Farroh, K.; Elshoky, H. A.; Kaňa, R. Ecotoxicology impact of silica-coated CdSe/ZnS quantum dots internalized in Chlamydomonas reinhardtii algal cells. Sci. Total Environ. 2019, 666, 480–489.
dos Santos da Silva, A.; dos Santos, J. H. Z. Stöber method and its nuances over the years. Adv. Colloid Interface Sci. 2023, 314, 102888.
Biermann, A.; Aubert, T.; Baumeister, P.; Drijvers, E.; Hens, Z.; Maultzsch, J. Interface formation during silica encapsulation of colloidal CdSe/CdS quantum dots observed by in situ Raman spectroscopy. J. Chem. Phys. 2017, 146, 134708.
Foda, M. F.; Huang, L.; Shao, F.; Han, H. Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 2011–2017.
Beloglazova, N. V.; Sobolev, A. M.; Tessier, M. D.; Hens, Z.; Goryacheva, I. Y.; de Saeger, S. Fluorescently labelled multiplex lateral flow immunoassay based on cadmium-free quantum dots. Methods 2017, 116, 141–148.
Drozd, D.; Zhang, H. Y.; Goryacheva, I.; De Saeger, S.; Beloglazova, N. V. Silanization of quantum dots: Challenges and perspectives. Talanta 2019, 205, 120164.
Xu, Y. X.; Lv, Y. B.; Wu, R. L.; Li, J. J.; Shen, H. B.; Yang, H. W.; Zhang, H.; Li, L. S. Sensitive immunoassay based on biocompatible and robust silica-coated Cd-free InP-based quantum dots. Inorg. Chem. 2021, 60, 6503–6513.
Li, C. F.; Zou, Z.; Liu, H. Q.; Jin, Y.; Li, G. Q.; Yuan, C.; Xiao, Z. D.; Jin, M. L. Synthesis of polystyrene-based fluorescent quantum dots nanolabel and its performance in H5N1 virus and SARS-CoV-2 antibody sensing. Talanta 2021, 225, 122064.
Li, J. J.; Fan, J. J.; Wu, R. L.; Li, N.; Lv, Y. B.; Shen, H. B.; Li, L. S. Biomolecular surface functionalization and stabilization method to fabricate quantum dots nanobeads for accurate biosensing detection. Langmuir 2022, 38, 4969–4978.
Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635.
Li, H. F.; Dong, B. L.; Dou, L. N.; Yu, W. B.; Yu, X. Z.; Wen, K.; Ke, Y. B.; Shen, J. Z.; Wang, Z. H. Fluorescent lateral flow immunoassay for highly sensitive detection of eight anticoagulant rodenticides based on cadmium-free quantum dot-encapsulated nanospheres. Sens. Actuat. B Chem. 2020, 324, 128771.
Li, C. L.; Hosokawa, C.; Suzuki, M.; Taguchi, T.; Murase, N. Preparation and biomedical applications of bright robust silica nanocapsules with multiple incorporated InP/ZnS quantum dots. New J. Chem. 2018, 42, 18951–18960.
Jiang, T. T.; Shen, M. H.; Dai, P.; Wu, M. Z.; Yu, X. X.; Li, G.; Xu, X. L.; Zeng, H. B. Cd-free Cu–Zn–In–S/ZnS quantum dots@SiO2 multiple cores nanostructure: Preparation and application for white LEDs. Nanotechnology, 2017, 28, 435702.
Xiao, Q. B.; Ji, Y. T.; Xiao, Z. H.; Zhang, Y.; Lin, H. Z.; Wang, Q. B. Novel multifunctional NaYF4:Er3+,Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chem. Commun. 2013, 49, 1527–1529.
Kage, D.; Fischer, L.; Hoffmann, K.; Thiele, T.; Schedler, U.; Resch-Genger, U. Close spectroscopic look at dye-stained polymer microbeads. J. Phys. Chem. C 2018, 122, 12782–12791.
Leng, Y. K.; Wu, W. J.; Li, L.; Lin, K.; Sun, K.; Chen, X. Y.; Li, W. W. Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection. Adv. Funct. Mater. 2016, 26, 7581–7589.
Wang, D. Y.; Rogach, A. L.; Caruso, F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett. 2002, 2, 857–861.
Brazhnik, K.; Sokolova, Z.; Baryshnikova, M.; Bilan, R.; Efimov, A.; Nabiev, I.; Sukhanova, A. Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens in clinical human serum samples. Nanomedicine 2015, 11, 1065–1075.
Zhang, L. Y.; Zhu, L.; Larson, S. R.; Zhao, Y. P.; Wang, X. Q. Layer-by-layer assembly of nanorods on a microsphere via electrostatic interactions. Soft Matter 2018, 14, 4541–4550.
Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater. 2009, 21, 4020–4024.
Marin, R. Vivian, A.; Skripka, A.; Migliori, A.; Morandi, V.; Enrichi, F.; Vetrone, F.; Ceroni, P.; Aprile, C.; Canton, P. Mercaptosilane-passivated CuInS2 quantum dots for luminescence thermometry and luminescent labels. ACS Appl. Nano Mater. 2019, 2, 2426–2436.
Ham, K. M.; Kim, M.; Bock, S.; Kim, J.; Kim, W.; Jung, H. S.; An, J.; Song, H. S.; Kim, J. W.; Kim, H. M. et al. Highly bright silica-coated InP/ZnS quantum dot-embedded silica nanoparticles as biocompatible nanoprobes. Int. J. Mol. Sci. 2022, 23, 10977.
Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010, 4, 2531–2538.
Chen, T. T.; Li, L.; Lin, X. T.; Yang, Z. W.; Zou, W. Y.; Chen, Y. J.; Xu, J. Y.; Liu, D. M.; Wang, X. M.; Lin, G. M. In vitro and in vivo immunotoxicity of PEGylated Cd-free CuInS2/ZnS quantum dots. Nanotoxicology 2020, 14, 372–387.
Chetty, S. S.; Praneetha, S.; Basu, S.; Sachidanandan, C.; Murugan, A. V. Sustainable, rapid synthesis of bright-luminescent CuInS2-ZnS alloyed nanocrystals: Multistage nano-xenotoxicity assessment and intravital fluorescence bioimaging in Zebrafish-embryos. Sci. Rep. 2016, 6, 26078.
Kays, J. C.; Saeboe, A. M.; Toufanian, R.; Kurant, D. E.; Dennis, A. M. Shell-free copper indium sulfide quantum dots induce toxicity in vitro and in vivo. Nano Lett. 2020, 20, 1980–1991.
Gottschling, B. C.; Maronpot, R. R.; Hailey, J. R.; Peddada, S.; Moomaw, C. R.; Klaunig, J. E.; Nyska, A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci. 2001, 64, 28–40.
Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 2011, 3, 2552–2559.
Chen, S. Z.; Chen, Y. J.; Chen, Y. H.; Yao, Z. Y. InP/ZnS quantum dots cause inflammatory response in macrophages through endoplasmic reticulum stress and oxidative stress. Int. J. Nanomed. 2019, 14, 9577–9586.
Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J. Maitra, A.; Prasad, P. N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510.
Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment. Nanoscale 2013, 5, 307–317.
Allocca, M.; Mattera, L.; Bauduin, A.; Miedziak, B.; Moros, M.; de Trizio, L.; Tino, A.; Reiss, P.; Ambrosone, A.; Tortiglione, C. An integrated multilevel analysis profiling biosafety and toxicity induced by indium- and cadmium-based quantum dots in vivo. Environ. Sci. Technol. 2019, 53, 3938–3947.
Maji, S. K. Luminescence-tunable ZnS-AgInS2 nanocrystals for cancer cell imaging and photodynamic therapy. ACS Appl. Bio Mater. 2022, 5, 1230–1238.
Gao, N.; Jing, J.; Zhao, H. Z.; Liu, Y. Z.; Yang, C. L.; Gao, M. X.; Chen, B. K.; Zhang, R. B.; Zhang, X. L. Defective Ag–In–S/ZnS quantum dots: An oxygen-derived free radical scavenger for mitigating macrophage inflammation. J. Mater. Chem. B 2021, 9, 8971–8979.
Su, W. H.; Yang, D.; Wang, Y. L.; Kong, Y. W.; Zhang, W. L.; Wang, J.; Fei, Y. Y.; Guo, R. Q.; Ma, J.; Mi, L. AgInS2/ZnS quantum dots for noninvasive cervical cancer screening with intracellular pH sensing using fluorescence lifetime imaging microscopy. Nano Res. 2022, 15, 5193–5204.
Sukhanova, A.; Bozrova, S.; Gerasimovich, E.; Baryshnikova, M.; Sokolova, Z.; Samokhvalov, P.; Guhrenz, C.; Gaponik, N.; Karaulov, A.; Nabiev, I. Dependence of quantum dot toxicity in vitro on their size, chemical composition, and surface charge. Nanomaterials 2022, 12, 2734.
Torres, R.; Thal, L. B.; McBride, J. R.; Cohen, B. E.; Rosenthal, S. J. Quantum dot fluorescent imaging: Using atomic structure correlation studies to improve photophysical properties. J. Phys. Chem. C 2024, 128, 3632–3640.
Bharali, D. J.; Lucey, D. W.; Jayakumar, H.; Pudavar, H. E.; Prasad, P. N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371.
Wu, Y. Z.; Sun, J.; Zhang, Y. Q.; Pu, M. M.; Zhang, G.; He, N. Y.; Zeng. X. Effective integration of targeted tumor imaging and therapy using functionalized InP QDs with VEGFR2 monoclonal antibody and miR-92a inhibitor. ACS Appl. Mater. Interfaces 2017, 9, 13068–13078.
Saeboe, A. M.; Nikiforov, A. Y.; Toufanian, R.; Kays, J. C.; Chern, M.; Casas, J. P.; Han, K. Y.; Piryatinski, A.; Jones, D.; Dennis, A. M. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 2021, 21, 3271–3279.
Deng, D. W.; Chen, Y. Q.; Cao, J.; Tian, J. M.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem. Mater. 2012, 24, 3029–3037.
Zhang, F. M.; He, X.; Ma, P. Y.; Sun, Y.; Wang, X. H.; Song, D. Q. Rapid aqueous synthesis of CuInS/ZnS quantum dots as sensor probe for alkaline phosphatase detection and targeted imaging in cancer cells. Talanta, 2018, 189, 411–417.
Niu, Q.; Yu, X. Y.; Yuan, Q. L.; Hu, W. J.; Yu, D. S.; Zhang, Q. Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer. Chem. Phys. Lett. 2020, 739, 136977.
Jiao, M. X.; Li, Y.; Jia, Y. X.; Li, C. X.; Bian, H.; Gao, L. T.; Cai, P.; Luo, X. L. Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J. Colloid Interface Sci. 2020, 565, 35–42.
Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.
Jiao, M. X.; Portniagin, A. S.; Luo, X. L.; Jing, L. H.; Han, B. X.; Rogach, A. L. Semiconductor nanocrystals emitting in the second near-infrared window: Optical properties and application in biomedical imaging. Adv. Opt. Mater. 2022, 10, 2200226.
Deng, T.; Peng, Y. N.; Zhang, R.; Wang, J.; Zhang, J.; Gu, Y. Q.; Huang, D. C.; Deng, D. W. Water-solubilizing hydrophobic ZnAgInSe/ZnS QDs with tumor-targeted cRGD-sulfobetaine-PIMA-histamine ligands via a self-assembly strategy for bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 11405–11414.
Li, C. Y.; Li, F.; Zhang, Y. J.; Zhang, W. J.; Zhang, X. E.; Wang, Q. B. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 2015, 9, 12255–12263.
Zhang, Y.; Zhao, N.; Qin, Y. S.; Wu, F. X.; Xu, Z. H.; Lan, T.; Cheng, Z.; Zhao, P.; Liu, H. G. Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 2018, 10, 16581–16590.
Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.
Zhang, L.; Yang, X. Q.; An, J.; Zha, S. D.; Zha, T. Y.; Tan, F.; Cao, Y. C.; Zhao, Y. D. In vivo tumor active cancer targeting and CT-fluorescence dual-modal imaging with nanoprobe based on gold nanorods and InP/ZnS quantum dots. J. Mater. Chem. B 2018, 6, 2574–2583.
Li, Y. Y.; Zhang, P. S.; Tang, W.; McHugh, K. J.; Kershaw, S. V.; Jiao, M. X.; Huang, X. D.; Kalytchuk, S.; Perkinson, C. F.; Yue, S. S. et al. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 2022, 16, 8076–8094.
McHugh, K. J.; Jing, L. H.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S. et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 2019, 11, eaay7162.
Huang, D. H.; Cao, Y. H.; Yang, X.; Liu, Y. Y.; Zhang, Y. J.; Li, C. Y.; Chen, G. C.; Wang, Q. B. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for Alzheimer’s disease. Adv. Mater. 2021, 33, 2006357.
Al-Agel, F. A.; Mahmoud, W. E. “Turn-off-on” fluorescence probe based functionalized InP quantum wires for detection of cyanide anions. Sens. Actuat. B Chem. 2013, 183, 441–445.
Gao, X.; Liu, X. C.; Lin, Z. H.; Liu, S. Y.; Su, X. G. CuInS2 quantum dots as a near-infrared fluorescent probe for detecting thrombin in human serum. Analyst 2012, 137, 5620–5624.
Yang, E. L.; Yao, J. D.; Wang, L. M.; Liu, Y.; Xiao, Q.; Huang, S. InP/ZnS quantum dot-based fluorescent probe for directly sensitive and selective detection of horseradish peroxidase. Methods Appl. Fluoresc. 2019, 7, 035008.
Haque, M.; Konthoujam, I.; Lyndem, S.; Koley, S.; Aguan, K.; Singha Roy, A. Formation of ZnS quantum dots using green tea extract: Applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J. Mater. Chem. B 2023, 11, 1998–2015.
Castro, R. C.; Lopes, A. F. R.; Soares, J. X.; Ribeiro, D. S. M.; Santos, J. L. M. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS2 quantum dots and Au nanoparticles. Analyst 2021, 146, 1004–1015.
Cai, Q. Q.; Li, H. K.; Dong, W. S.; Ji, G. F. Versatile photoelectrochemical biosensor based on AIS/ZnS QDs sensitized-WSe2 nanoflowers coupled with DNA nanostructure probe for “On-Off” assays of TNF-α and Mtase. Biosens. Bioelectron. 2023, 241, 115704.
Lin, Z. H.; Pan, D.; Hu, T. Y.; Liu, Z. P.; Su, X. G. A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim. Acta 2015, 182, 1933–1939.
Shen, H. B.; Yuan, H.; Wu, F.; Bai, X. W.; Zhou, C. H.; Wang, H. Z.; Lu, T. K.; Qin, Z. F.; Ma, L.; Li, L. S. Facile synthesis of high-quality CuInZn x S2+ x core/shell nanocrystals and their application for detection of C-reactive protein. J. Mater. Chem. 2012, 22, 18623–18630.
Beloglazova, N. V.; Goryacheva, I. Y.; Niessner, R.; Knopp, D. A comparison of horseradish peroxidase, gold nanoparticles and qantum dots as labels in non-instrumental gel-based immunoassay. Microchim. Acta 2011, 175, 361–367.
Lv, Y. B.; Fan, J. J.; Zhao, M.; Wu, R. L.; Li, L. S. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale 2023, 15, 5560–5578.
Wu, W. J.; Liu, X. Y.; Shen, M. F.; Shen, L. S.; Ke, X.; Cui, D. X.; Li, W. W. Multicolor quantum dot nanobeads based fluorescence-linked immunosorbent assay for highly sensitive multiplexed detection. Sens. Actuat. B Chem. 2021, 338, 129827.
Li, M. W.; Gao, X. W.; Ren, X. X.; Ai, Y. J.; Zhang, B.; Zou, G. Z. Potential-selective electrochemiluminescence of AgInS2/ZnS nanocrystals and its immunoassay application. Chem. Commun. 2024, 60, 4958–4961.
Lv, S. Z.; Li, Y.; Zhang, K. Y.; Lin, Z. Z.; Tang, D. P. Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 38336–38343.
Guo, H. Z.; Lu, Y. H.; Lei, Z. D.; Bao, H.; Zhang, M. W.; Wang, Z. M.; Guan, C. T.; Tang, B. J.; Liu, Z.; Wang. L. Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots. Nat. Commun. 2024, 15, 4843.
Zhou, J. L.; Zhao, R. X.; Liu, S. K.; Feng, L. L.; Li, W. T.; He, F.; Gai, S. L.; Yang, P. P. Europium doped silicon quantum dot as a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, 2100812.
He, C. Y.; Ruan, F. K.; Jiang, S. W.; Zeng, J.; Yin, H. Y.; Liu, R.; Zhang, Y. X.; Huang, L. Q.; Wang, C. G.; Ma, S. H. et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells. Small 2020, 16, 2001371.
Cai, G. N.; Yu, Z. Z.; Tong, P.; Tang, D. P. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 2019, 11, 15659–15667.
Li, Y. X.; Wang, W. Q.; Gong, H. X.; Xu, J. H.; Yu, Z. C.; Wei, Q. H.; Tang, D. P. Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers. J. Mater. Chem. B 2021, 9, 6818–6824.
Lin, Y. X.; Zhou, Q.; Tang, D. P.; Niessner, R.; Knopp, D. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal. Chem. 2017, 89, 5637–5645.
Gough, J. J.; McEvoy, N.; O'Brien, M.; Bell, A. P.; McCloskey, D.; Boland, J. B.; Coleman, J. N.; Duesberg, G. S.; Bradley, A. L. Dependence of photocurrent enhancements in quantum dot (QD)-sensitized MoS2 devices on MoS2 film properties. Adv. Funct. Mater. 2018, 28, 1706149.
Liu, C. K.; Tai, Q. D.; Wang, N. X.; Tang, G. Q.; Loi, H. L.; Yan, F. Sn-based perovskite for highly sensitive photodetectors. Adv. Sci. 2019, 6, 1900751.
Dun, G. H.; Zhang, H. N.; Qin, K.; Tan, X. C.; Zhao, R.; Chen, M.; Huang, Y.; Geng, X. S.; Li, Y. Y.; Li, Y. H. et al. Wafer-scale photolithography-pixeled Pb-free perovskite X-ray detectors. ACS Nano 2022, 16, 10199–10208.
Guo, R. Q.; Meng, J.; Lin, W. H.; Liu, A. Q.; Pullerits, T.; Zheng, K. B.; Tian, J. J. Manganese doped eco-friendly CuInSe2 colloidal quantum dots for boosting near-infrared photodetection performance. Chem. Eng. J. 2021, 403, 126452.
Asor, L.; Liu, J.; Xiang, S. T.; Tessler, N.; Frenkel, A. I.; Banin, U. Zn-doped P-type InAs nanocrystal quantum dots. Adv. Mater. 2023, 35, 2208332.
Zarghami, A.; Dolatyari, M.; Mirtagioglu, H.; Rostami, A. High-efficiency upconversion process in cobalt and neodymium doped graphene QDs for biomedical applications. Sci. Rep. 2023, 13, 10277.