AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Recent progress on eco-friendly quantum dots for bioimaging and diagnostics

Yanbing LvLifang ZhangRuili Wu( )Lin Song Li( )
Key Lab for Special Functional Materials of the Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
Show Author Information

Graphical Abstract

Abstract

Semiconductor quantum dots (QDs), as promising fluorescent materials, have been widely applied in biomedical application due to their unique optical properties. Currently, the most intensively studied are Cd-containing QDs (Cd-based QDs), whose potential toxicity prevents their further commercialization. In recent years, the eco-friendly QDs with low toxicity and environmental friendliness have begun to be developed, showing great potential in biomedical applications. The high-quality synthesis of eco-friendly QDs and the appropriate surface modification are key to realize their applications. This review summarizes the progress of eco-friendly QDs for biomedical applications, including their designed preparation, optical properties, surface modification, toxicity, and their applications in bioimaging and diagnostics. Finally, the challenges of eco-friendly QDs for future bioimaging and diagnostics application were provided. We believe this review will provide important guidance for promoting the development of eco-friendly QDs in bioimaging and diagnostics.

References

[1]

García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[2]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[3]

Díaz-González, M.; de la Escosura-Muñiz, A.; Fernandez-Argüelles, M. T.; Alonso, F. J. G.; Costa-Fernandez, J. M. Quantum dot bioconjugates for diagnostic applications. Top. Curr. Chem. 2020, 378, 35.

[4]

Foubert, A.; Beloglazova, N. V.; Rajkovic, A.; Sas, B.; Madder, A.; Goryacheva, I. Y.; de Saeger, S. Bioconjugation of quantum dots: Review & impact on future application. Trac Trends Anal. Chem. 2016, 83, 31–48.

[5]

Shu, J.; Tang, D. P. Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem. Asian J. 2017, 12, 2780–2789.

[6]

Cai, G. N.; Yu, Z. Z.; Ren, R. R.; Tang, D. P. Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sens. 2018, 3, 632–639.

[7]

Gidwani, B.; Sahu, V.; Shukla, S. S.; Pandey, R.; Joshi, V.; Jain, V. K.; Vyas, A. Quantum dots: Prospectives, toxicity, advances and applications. J. Drug Delivery Sci. Technol. 2021, 61, 102308.

[8]

Zhang, L. J.; Xia, L.; Xie, H. Y.; Zhang, Z. L.; Pang, D. W. Quantum dot based biotracking and biodetection. Anal. Chem. 2019, 91, 532–547.

[9]

Russ Algar, W.; Massey, M.; Rees, K.; Higgins, R.; Krause, K. D.; Darwish, G. H.; Peveler, W. J.; Xiao, Z. J.; Tsai, H. Y.; Gupta, R. et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358.

[10]

Bruchez, Jr. M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

[11]

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

[12]

Qiu, Z. L.; Shu, J.; He, Y.; Lin, Z. Z.; Zhang, K. Y.; Lv, S. Z.; Tang, D. P. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens. Bioelectron. 2017, 87, 18–24.

[13]

Gil, H. M.; Price, T. W.; Chelani, K.; Bouillard, J. S. G.; Calaminus, S. D. J.; Stasiuk, G. J. NIR-quantum dots in biomedical imaging and their future. iScience 2021, 24, 102189.

[14]

Sun, J.; Geng, J. T.; Tang, B. Z.; He, X. W. DNA-programmed (De)hybridization of near-infrared photosensitized UCNP-QDs-GNPs nanoprobes for microRNA imaging and image-guided cancer therapy. Adv. Funct. Mater. 2024, 34, 2315299.

[15]

Lv, S. Z.; Zhang, K. Y.; Zeng, Y. Y.; Tang, D. P. Double photosystems-based ‘Z-scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker. Anal. Chem. 2018, 90, 7086–7093.

[16]

Lv, Y. B.; Yuan, Y. C.; Hu, N.; Jin, N.; Xu, D. D.; Wu, R. L.; Shen, H. B.; Chen, O.; Li, L. S. Thick-shell CdSe/ZnS/CdZnS/ZnS core/shell quantum dots for quantitative immunoassays. ACS Appl. Nano Mater. 2021, 4, 2855–2865.

[17]

Zhang, J. K.; Li, C. Y.; Li, J. Z.; Peng, X. G. Synthesis of CdSe/ZnSe core/shell and CdSe/ZnSe/ZnS core/shell/shell nanocrystals: Surface-ligand strain and CdSe-ZnSe lattice strain. Chem. Mater. 2023, 35, 7049–7059.

[18]

Liang, Y.; Zhang, T.; Tang, M. Toxicity of quantum dots on target organs and immune system. J. Appl. Toxicol. 2021, 42, 17–40.

[19]

Chen, G. C.; Zhang, Y. J.; Huang, D. H.; Liu, Y. Y.; Li, C. Y.; Wang, Q. B. Long-term chemical biotransformation and pathways of Cd-based quantum dots in mice. Nano Today 2022, 44, 101504.

[20]

Lu, Y. H.; Xu, S. C.; Chen, H. Y.; He, M. D.; Deng, Y. C.; Cao, Z. W.; Pi, H. F.; Chen, C. H.; Li, M.; Ma, Q. L. et al. CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation. Biomaterials 2016, 90, 27–39.

[21]

Cao, W. H.; Liu, X. Q.; Huang, X. Q.; Liu, Z. H.; Cao, X. Y.; Gao, W.; Tang, B. Hepatotoxicity-related oxidative modifications of thioredoxin 1/peroxiredoxin 1 induced by different cadmium-based quantum dots. Anal. Chem. 2022, 94, 3608–3616.

[22]

Filali, S.; Pirot, F.; Miossec, P. Biological applications and toxicity minimization of semiconductor quantum dots. Trends Biotechnol. 2020, 38, 163–177.

[23]

Shu, J.; Tang, D. P. Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 2020, 92, 363–377.

[24]

Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

[25]

Liu, L.; Bai, B.; Yang, X. Y.; Du, Z. L.; Jia, G. H. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications. Chem. Rev. 2023, 123, 3625–3692.

[26]

Johnson, C. M.; Pate, K. M.; Shen, Y.; Viswanath, A.; Tan, R.; Benicewicz, B. C.; Moss, M. A.; Greytak, A. B. A methacrylate-based polymeric imidazole ligand yields quantum dots with low cytotoxicity and low nonspecific binding. J. Colloid Interface Sci. 2015, 458, 310–314.

[27]

Qiu, Z. L.; Shu, J.; Tang, D. P. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal. Chem. 2017, 89, 5152–5160.

[28]

Luo, Z. B.; Qi, Q. G.; Zhang, L. J.; Zeng, R. J.; Su, L. S.; Tang, D. P. Branched polyethylenimine-modified upconversion nanohybrid-mediated photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Anal. Chem. 2019, 91, 4149–4156.

[29]

Lin, Y. X.; Zhou, Q.; Tang, D. P.; Niessner, R.; Yang, H. H.; Knopp, D. Silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots mediated exciton trapping for signal-on photoelectrochemical immunoassay of mycotoxins. Anal. Chem. 2016, 88, 7858–7866.

[30]

Lin, X. T.; Chen, T. T. A review of in vivo toxicity of quantum dots in animal models. Int. J. Nanomed. 2023, 18, 8143–8168.

[31]

Jalali, H. B.; Sadeghi, S.; Yuksel, I. B. D.; Onal, A.; Nizamoglu, S. Past, present and future of indium phosphide quantum dots. Nano Res. 2022, 15, 4468–4489.

[32]

Yadav, R.; Kwon, Y.; Rivaux, C.; Saint-Pierre, C.; Ling, W. L.; Reiss, P. Narrow near-infrared emission from InP QDs synthesized with indium(I) halides and aminophosphine. J. Am. Chem. Soc. 2023, 145, 5970–5981.

[33]

Amor-Gutiérrez, O.; Iglesias-Mayor, A.; Llano-Suárez, P.; Costa-Fernández, J. M.; Soldado, A.; Podadera, A.; Parra, F.; Costa-García, A.; de la Escosura-Muñiz, A. Electrochemical quantification of Ag2S quantum dots: Evaluation of different surface coating ligands for bacteria determination. Microchim. Acta 2020, 187, 169.

[34]

Wang, R.; Tong, X.; Long, Z. H.; Channa, A. I.; Zhao, H. Y.; Li, X.; Cai, M. K.; You, Y. M.; Sun, X. P.; Wang, Z. M. Rational design of eco-friendly Mn-doped nonstoichiometric CuInSe/ZnSe core/shell quantum dots for boosted photoelectrochemical efficiency. Nano Res. 2022, 15, 7614–7621.

[35]

Zhou, R. H.; Lu, X. M.; Yu, H. M.; Wu, L.; Wu, P.; Hou, X. D. Se powder as precursor without solubilization for Mn-doped ZnSe QDs: Fast synthesis and analytical characterization. Microchem. J. 2017, 134, 191–196.

[36]

Xia, B. B.; Lin, G. M.; Zheng, S. M.; Zhang, H.; Yu, Y. Y. Differential effects of PEGylated Cd-free CuInS2/ZnS quantum dot (QDs) on substance P and LL-37 induced human mast cell activation. Ecotoxicol. Environ. Saf. 2022, 245, 114108.

[37]

Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.

[38]

Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J. Y. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193–6216.

[39]

Cui, Y. Y.; Wu, Q. Q.; Li, J. Z.; Gao, Y.; Cao, F.; Yang, X. Y.; He, T. C. Spectroscopic properties of yellow and red InP/ZnSe/ZnS quantum dots. J. Mater. Chem. C 2024, 12, 6696–6701.

[40]

Almeida, G.; Ubbink, R. F.; Stam, M.; Du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.

[41]

Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

[42]

Kim, T. G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M. H.; Wang, L. W.; Jang, E.; Alivisatos, A. P. Trap passivation in indium-based quantum dots through surface fluorination: Mechanism and applications. ACS Nano 2018, 12, 11529–11540.

[43]

Liu, H.; Chen, P. X.; Cui, Y. Y.; Gao, Y.; Cheng, J. J.; He, T. C.; Chen, R. InP semiconductor nanocrystals: Synthesis, optical properties, and applications. Adv. Opt. Mater. 2023, 11, 2300425.

[44]

Click, S. M.; Rosenthal, S. J. Synthesis, surface chemistry, and fluorescent properties of InP quantum dots. Chem. Mater. 2023, 35, 822–836.

[45]

Proppe, A. H.; Berkinsky, D. B.; Zhu, H.; Šverko, T.; Kaplan, A. E. K.; Horowitz, J. R.; Kim, T.; Chung, H.; Jun, S.; Bawendi, M. G. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 2023, 18, 993–999.

[46]

Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. The reaction of indium(III) chloride with tris(trimethylsilyl)phosphine: A novel route to indium phosphide. J. Chem. Soc. Chem. Commun. 1989, 359–360.

[47]

Wells, R. L.; Aubuchon, S. R.; Kher, S. S.; Lube, M. S.; White, P. S. Synthesis of nanocrystalline indium arsenide and indium phosphide from indium(III) halides and tris(trimethylsilyl)pnicogens. Synthesis, characterization, and decomposition behavior of I3In·P(SiMe3)3. Chem. Mater. 1995, 7, 793–800.

[48]

Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.

[49]

Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.

[50]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[51]

Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.

[52]

Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.

[53]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[54]

Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J. Tuning the lattice parameter of In X Zn y P for highly luminescent lattice-matched core/shell quantum dots. ACS Nano 2016, 10, 4754–4762.

[55]

Yang, Y. Qin, H. Y.; Peng, X. G. Intramolecular entropy and size-dependent solution properties of nanocrystal-ligands complexes. Nano Lett. 2016, 16, 2127–2132.

[56]

Zhang, X. G.; Hudson, M. H.; Castellano, F. N. Passivation of electron trap states in InP quantum dots with benzoic acid ligands. J. Phys. Chem. C 2021, 125, 18362–18371.

[57]

Virieux, H. S.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.

[58]

Xie, L. S.; Harris, D. K.; Bawendi, M. G.; Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 2015, 27, 5058–5063.

[59]

Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

[60]

Kim, T.; Won, Y. H.; Jang, E.; Kim, D. Negative trion Auger recombination in highly luminescent InP/ZnSe/ZnS quantum dots. Nano Lett. 2021, 21, 2111–2116.

[61]

Chen, Y. R.; Wang, R. X.; Kuang, Y. M.; Bian, Y. Y.; Chen, F.; Shen, H. B.; Chi, Z.; Ran, X.; Guo, L. J. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Nanoscale 2023, 15, 18920–18927.

[62]

Li, H. Y.; Zhang, W. J.; Bian, Y. Y.; Ahn, T. K.; Shen, H. B.; Ji, B. T. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 2022, 22, 4067–4073.

[63]

Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.

[64]

Ramasamy, P.; Ko, K. J.; Kang, J. W.; Lee, J. S. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo- and electroluminescence. Chem. Mater. 2018, 30, 3643–3647.

[65]

Xu, Y. X.; Lv, Y. B.; Wu, R. L.; Shen, H. B.; Yang, H. W.; Zhang, H.; Li, J. J.; Li, L. S. Preparation of highly stable and photoluminescent cadmium-free InP/GaP/ZnS core/shell quantum dots and application to quantitative immunoassay. Part. Part. Syst. Char. 2020, 37, 1900441.

[66]

Shen, C.; Zhu, Y. Q.; Tao, H.; Li, J. L.; Zou, J. H.; Wang, L.; Liang, J. Q.; Xiao, X. D.; Xu, X. Q.; Xu, G. Blue-emitting InP/GaP/ZnS quantum dots with enhanced stability by siloxane capping: Implication for electroluminescent devices. ACS Appl. Nano Mater. 2022, 5, 2801–2811.

[67]

Sagar, L. K.; Bappi, G.; Johnston, A.; Chen, B.; Todorović, P.; Levina, L.; Saidaminov, M. I.; García de Arquer, F. P.; Nam, D. H.; Choi, M. J. et al. Suppression of auger recombination by gradient alloying in InAs/CdSe/CdS QDs. Chem. Mater. 2020, 32, 7703–7709.

[68]

Enright, M. J.; Jasrasaria, D.; Hanchard, M. M.; Needell, D. R.; Phelan, M. E.; Weinberg, D.; McDowell, B. E.; Hsiao, H. W.; Akbari, H. et al. Role of atomic structure on exciton dynamics and photoluminescence in NIR emissive InAs/InP/ZnSe quantum dots. J. Phys. Chem. C 2022, 126, 7576–7587.

[69]

Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M. G.; Jensen, K. F. Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew. Chem., Int. Ed. 2018, 57, 10915–10918.

[70]

Koh, S.; Lee, H.; Woo, J. Y.; Ki Bae, W.; Park, Y. S.; Lee, D. C. Cadmium-free colloidal branched nanocrystals with optical anisotropy induced by symmetry breaking. J. Phys. Chem. C 2022, 126, 17176–17186.

[71]

Hines, M. A.; Guyot-Sionnest, P. Bright UV-Blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 1998, 102, 3655–3657.

[72]

Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

[73]

Shen, H. B.; Wang, H. Z.; Li, X. M.; Niu, J. Z.; Wang, H.; Chen, X.; Li, L. S. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSenanocrystals. Dalton Trans. 2009, 47, 10534–10540.

[74]

Ji, B. T.; Koley, S.; Slobodkin, I.; Remennik, S.; Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 2020, 20, 2387–2395.

[75]

Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.

[76]

Molaei, M.; Khezripour, A. R.; Karimipour, M. Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 2014, 317, 236–240.

[77]

Li, X. Y.; Xuan, C. J.; Yang, B. X.; Wang, W. C.; Wang, M. Z.; Zhao, X. P. Highly stable water-soluble ZnSe:Cu quantum dots coated with doubly ZnS shell. J. Alloys Compd. 2023, 947, 169406.

[78]

Selvaraj, J.; Mahesh, A.; Asokan, V.; Baskaralingam, V.; Dhayalan, A.; Paramasivam, T. Phosphine-free, highly emissive, water-soluble Mn:ZnSe/ZnS core–shell nanorods: Synthesis, characterization, and in vitro bioimaging of HEK293 and HeLa cells. ACS Appl. Nano Mater. 2018, 1, 371–383.

[79]

Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.

[80]

Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.

[81]

Zhou, R. H.; Sun, S. K.; Li, C. H.; Wu, L.; Hou, X. D.; Wu, P. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl. Mater. Interfaces 2018, 10, 34060–34067.

[82]

Kim, J. S.; Kim, S. H.; Lee, H. S. Energy spacing and sub-band modulation of Cu doped ZnSe quantum dots. J. Alloys Compd. 2022, 914, 165372.

[83]

Shi, L. J.; Zhu, C. N.; He, H.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W.; Tian, Z. Q. Near-infrared Ag2Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Adv. 2016, 6, 38183–38186.

[84]

Zhang, Z. B.; Xu, C. B.; Song, S. L.; Ding, Y.; Meng, N.; Liu, X. S.; Zhang, Y.; Gong, L.; Wu, W. T. Ultrasonic enhancement of microdroplet-based interfacial reaction for improving the synthesis of Ag2S QDs. Ultrason. Sonochem. 2023, 95, 106411.

[85]

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

[86]

Shen, Y. L.; Lifante, J.; Ximendes, E.; Santos, H. D. A.; Ruiz, D.; Juárez, B. H.; Gutiérrez, I. Z.; Vera, V. T.; Retama, J. R.; Rodríguez, E. M. et al. Perspectives for Ag2S NIR-II nanoparticles in biomedicine: From imaging to multifunctionality. Nanoscale 2019, 11, 19251–19264.

[87]

Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mater. 2012, 24, 3–5.

[88]

Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G. Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid. J. Lumin. 2020, 220, 117008.

[89]

Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758–3765.

[90]

Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

[91]

Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.

[92]

Zhu, C. N.; Chen, G.; Tian, Z. Q.; Wang, W.; Zhong, W. Q.; Li, Z.; Zhang, Z. L.; Pang, D. W. Near-infrared fluorescent Ag2Se-cetuximab nanoprobes for targeted imaging and therapy of cancer. Small 2017, 13, 1602309.

[93]

Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. X.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.

[94]

Jiang, J. Y.; Zhang, S.; Shan, Q. S.; Yang, L. X.; Ren, J.; Wang, Y. J.; Jeon, S.; Xiang, H. Y.; Zeng, H. B. High-color-rendition white QLEDs by balancing red, green and blue centres in eco-friendly ZnCuGaS:In@ZnS quantum dots. Adv. Mater. 2024, 36, 2304772.

[95]

Jain, S.; Bharti, S.; Bhullar, G. K.; Tripathi, S. K. I-III-VI core/shell QDs: Synthesis, characterizations and applications. J. Lumin. 2020, 219, 116912.

[96]

Morselli, G.; Villa, M.; Fermi, A.; Critchley, K.; Ceroni, P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horiz. 2021, 6, 676–695.

[97]

Knowles, K. E.; Hartstein, K. H.; Kilburn, T. B.; Marchioro, A.; Nelson, H. D.; Whitham, P. J.; Gamelin, D. R. Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem. Rev. 2016, 116, 10820–10851.

[98]

Xia, C. H.; Tamarat, P.; Hou, L.; Busatto, S.; Meeldijk, J. D.; de Mello Donega, C.; Lounis, B. Unraveling the emission pathways in copper indium sulfide quantum dots. ACS Nano 2021, 15, 17573–17581.

[99]

Long, Z. W.; Zhang, W. F.; Tian, J. H.; Chen, G. T.; Liu, Y. H.; Liu, R. H. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg. Chem. Front. 2021, 8, 880–897.

[100]

Gromova, M.; Lefrançois, A.; Vaure, L.; Agnese, F.; Aldakov, D.; Maurice, A.; Djurado, D.; Lebrun, C.; de Geyer, A.; Schülli, T. U. et al. Growth mechanism and surface state of CuInS2 nanocrystals synthesized with dodecanethiol. J. Am. Chem. Soc. 2017, 139, 15748–15759.

[101]

Jin, Q. L.; Zhang, X. H.; Zhang, L. F.; Li, J. J.; Lv, Y. B.; Li, N.; Wang, L.; Wu, R. L.; Li, L. S. Fabrication of CuInZnS/ZnS quantum dot microbeads by a two-step approach of emulsification-solvent evaporation and surfactant substitution and its application for quantitative detection. Inorg. Chem. 2023, 62, 3474–3484.

[102]

Zhang, J. J.; Bifulco, A.; Amato, P.; Imparato, C.; Qi, K. Z. Copper indium sulfide quantum dots in photocatalysis. J. Colloid Interface Sci. 2023, 638, 193–219.

[103]

Lim, L. J.; Zhao, X. F.; Tan, Z. K. Non-toxic CuInS2/ZnS colloidal quantum dots for near-infrared light-emitting diodes. Adv. Mater. 2023, 35, 2301887.

[104]

Ning, J. J.; Duan, Z. H.; Kershaw, S. V.; Rogach, A. L. Phase-controlled growth of CuInS2 shells to realize colloidal CuInSe2/CuInS2 core/shell nanostructures. ACS Nano 2020, 14, 11799–11808.

[105]

Liu, D.; Guo, Y. X.; Yin, X. T.; Yang, Y. W.; Que, W. X. Nucleation regulation and anchoring of halide ions in all-inorganic perovskite solar cells assisted by CuInSe2 quantum dots. Adv. Funct. Mater. 2022, 33, 2210754.

[106]

Lian, W.; Tu, D. T.; Hu, P.; Song, X. R.; Gong, Z. L.; Chen, T.; Song, J. B.; Chen, Z.; Chen, X. Y. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today 2020, 35, 100943.

[107]

Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V. Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 2013, 25, 3753–3757.

[108]

Lox, J. F. L.; Dang, Z. Y.; Dzhagan, V. M.; Spittel, D.; Martín-García, B.; Moreels, I.; Zahn, D. R. T.; Lesnyak, V. Near-infrared Cu–In–Se-based colloidal nanocrystals via cation exchange. Chem. Mater. 2018, 30, 2607–2617.

[109]

Lian, W.; Tu, D. T.; Weng, X. K.; Yang, K. Y.; Li, F. S.; Huang, D. C.; Zhu, H. M.; Xie, Z.; Chen, X. Y. Near-infrared nanophosphors based on CuInSe2 quantum dots with near-unity photoluminescence quantum yield for micro-LEDs applications. Adv. Mater. 2024, 36, 2311011.

[110]

Zang, H. D.; Li, H. B.; Makarov, N. S.; Velizhanin, K. A.; Wu, K. F.; Park, Y. S.; Klimov, V. I. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett. 2017, 17, 1787–1795.

[111]

Jin, H.; Gui, R. J.; Wang, Z. H.; Xia, J. F.; Yang, M.; Zhang, F. F.; Bia, S. Retracted article: Facile fabrication of water-dispersible AgInS2 quantum dots and mesoporous AgInS2 nanospheres with visible photoluminescence. RSC Adv. 2015, 5, 68287–68292.

[112]

Wang, J.; Ma, H. T.; Pan, L. J.; Zhang, L.; Zhang, Z. L. Integrated synthesis and ripening of AgInS2 QDs in droplet microreactors: An update fluorescence regulating via suitable temperature combination. Chin. Chem. Lett. 2022, 33, 3767–3771.

[113]

Kosman, R.; Olejniczak, A.; Pawlyta, M.; Bezkrovnyi, O.; Cichy, B. Spectroscopic and structural implications of hosting Zn2+, Cd2+ and Hg2+ ions in the AgInS2 quantum dots. J. Alloys Compd. 2022, 911, 164977.

[114]

Liu, J. J.; Chen, S. F.; Liu, Q. Z.; Zhu, Y. F.; Lu, Y. F. Density functional theory study on electronic and photocatalytic properties of orthorhombic AgInS2. Comput. Mater. Sci. 2014, 91, 159–164.

[115]

Shamirian, A.; Appelbe, O.; Zhang, Q. B.; Ganesh, B.; Kron, S. J.; Snee, P. T. A toolkit for bioimaging using near-infrared AgInS2/ZnS quantum dots. J. Mater. Chem. B 2015, 3, 8188–8196.

[116]

Hu, Z. H.; Chen, T.; Xie, Z. X.; Guo, C. X.; Jiang, W. H.; Chen, Y. H.; Xu, Y. Q. Emission tunable AgInS2 quantum dots synthesized via microwave method for white light-emitting diodes application. Opt. Mater. 2022, 124, 111975.

[117]

Langevin, M. A.; Ritcey, A. M.; Allen, C. N. Air-stable near-infrared AgInSe2 nanocrystals. ACS Nano 2014, 8, 3476–3482.

[118]

Halder, G.; Bhattacharyya, S. Zinc-diffused silver indium selenide quantum dot sensitized solar cells with enhanced photoconversion efficiency. J. Mater. Chem. A 2017, 5, 11746–11755.

[119]

Tappan, B. A.; Horton, M. K.; Brutchey, R. L. Ligand-mediated phase control in colloidal AgInSe2 nanocrystals. Chem. Mater. 2020, 32, 2935–2945.

[120]

Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826–24836.

[121]

Bai, T. Y.; Li, C. G.; Li, F. F.; Zhao, L.; Wang, Z. R.; Huang, H.; Chen, C. L.; Han, Y.; Shi, Z.; Feng, S. H. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1– x Se x )2 nanocrystals. Nanoscale 2014, 6, 6782–6789.

[122]

Oluwafemi, O. S.; May, B. M. M.; Parani, S.; Tsolekile, N. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mater. Sci. Eng. C 2020, 106, 110181.

[123]

Yang, L. X.; Zhang, S.; Xu, B.; Jiang, J. Y.; Cai, B.; Lv, X. Y.; Zou, Y. S.; Fan, Z. Y.; Yang, H.; Zeng. H. B. I-III-VI quantum dots and derivatives: Design, synthesis, and properties for light-emitting diodes. Nano Lett. 2023, 23, 2443–2453.

[124]

Hussain, S.; Won, N.; Nam, J.; Bang, J.; Chung, H.; Kim, S. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem 2009, 10, 1466–1470.

[125]

Ren, C.; Hu, D.; Cui, Y. Y.; Chen, P. X.; Xu, X. Q.; Cheng, J. J.; He, T. C. Ag-doped InP/ZnS quantum dots for type-I photosensitizers. Chem. Commun. 2023, 59, 2311–2314.

[126]

Dehghan, F.; Molaei, M.; Amirian, F.; Karimipour, M.; Bahador, A. R. Improvement of the optical and photocatalytic properties of ZnSe QDs by growth of ZnS shell using a new approach. Mater. Chem. Phys. 2018, 206, 76–84.

[127]

Li, X. Y.; Zou, H. Y.; Wang, M. Z.; Wang, W. C.; Yang, B. X.; Zhao, X. P. Highly photoluminescent water-soluble ZnSe/ZnS/ZnS quantum dots via successive shell growth approach. J. Mater. Sci. Mater. Electron. 2022, 33, 13905–13912.

[128]

Xue, X. X.; Chen, L.; Zhao, C. M.; Chang, L. M. One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method. J. Mater. Sci. Mater. Electron. 2018, 29, 9184–9192.

[129]

Gong, F. Z.; Sun, L.; Ruan, H.; Cai, H. M. Hydrothermal synthesis and photoluminescence properties of Cu-doped ZnSe quantum dots using glutathione as stabilizer. Mater. Express 2018, 8, 173–181.

[130]

Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012, 33, 5130–5135.

[131]

Gao, J. W.; Wu, C. L.; Deng, D.; Wu, P.; Cai, C. X. Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv. Health. Mater. 2016, 5, 2437–2449.

[132]

Wu, Q.; Zhou, M.; Shi, J.; Li, Q. J.; Yang, M. Y.; Zhang, Z. X. Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal. Chem. 2017, 89, 6616–6623.

[133]

Yang, L. L.; Zhao, W.; Liu, Z. Y.; Ren, M. T.; Kong, J.; Zong, X.; Luo, M. Y.; Tang, B.; Xie, J. H. Y.; Pang, D. W. et al. Acid-resistant near-infrared II Ag2Se quantum dots for gastrointestinal imaging. Anal. Chem. 2023, 95, 15540–15548.

[134]

Li, X. L.; Liu, Z. X.; Luo, K.; Yin, X. H.; Lin, X. C.; Zhu, C. L. Biomimetic synthesis of Ag2Se quantum dots with enhanced photothermal properties and as “Gatekeepers” to cap mesoporous silica nanoparticles for chemo-photothermal therapy. Chem. Asian J. 2019, 14, 155–161.

[135]

Chen, S. H.; Liu, H. K.; Huang, B.; Zheng, J.; Zhang, Z. L.; Pang, D. W.; Huang, P.; Cui, R. Biosynthesis of NIR-II Ag2Se quantum dots with bacterial catalase for photoacoustic imaging and alleviating-hypoxia photothermal therapy. Small 2024, 20, 2310795.

[136]

Gui, W. Y.; Chen, X. Q.; Ma, Q. A novel detection method of human serum albumin based on CuInZnS quantum dots-Co2+ sensing system. Anal. Bioanal. Chem. 2017, 409, 3871–3876.

[137]

Mrad, M.; Ben Chaabane, T.; Rinnert, H.; Lavinia, B.; Jasniewski, J.; Medjahdi, G.; Schneider, R. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorg. Chem. 2020, 59, 6220–6231.

[138]

Wang, L.; Kang, X. J.; Pan, D. C. Gram-scale synthesis of hydrophilic PEI-coated AgInS2 quantum dots and its application in hydrogen peroxide/glucose detection and cell imaging. Inorg. Chem. 2017, 56, 6122–6130.

[139]

Tsolekile, N.; Nahle, S.; Zikalala, N.; Parani, S.; Sakho, E. H. M.; Joubert, O.; Matoetoe, M. C.; Songca, S. P.; Oluwafemi, O. S. Cytotoxicity, fluorescence tagging and gene-expression study of CuInS/ZnS QDs-meso (hydroxyphenyl) porphyrin conjugate against human monocytic leukemia cells. Sci. Rep. 2020, 10, 4936.

[140]

Jiao, M. X.; Huang, X. D.; Ma, L. Z.; Li, Y.; Zhang, P. S.; Wei, X. J.; Jing, L. H.; Luo, X. L.; Rogach, A. L.; Gao, M. Y. Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. Chem. Commun. 2019, 55, 15053–15056.

[141]

Liu, H.; Cai, P.; McHugh, K. J.; Perkinson, C. F.; Li, L. S.; Wang, S. N.; Wang, W.; Jiao, M. X.; Luo, X. L.; Jing, L. H. Aqueous synthesis of bright near-infrared-emitting Zn–Cu–In–Se quantum dots for multiplexed detection of tumor markers. Nano Res. 2022, 15, 8351–8359.

[142]

Lebedev, M. V.; Serov, Y. M.; Lvova, T. V.; Endo, R.; Masuda, T.; Sedova, I. V. InP(100) surface passivation with aqueous sodium sulfide solution. Appl. Sur. Sci. 2020, 533, 147484.

[143]

Llopis, M. V.; Rodríguez, J. C. C.; Martín, F. J. F.; Coto, A. M.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Sanz-Medel, A. Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications. Nanotechnology 2011, 22, 385703.

[144]
Zhang, W. D.; Duan, X. J.; Tan, Y. Z.; Hao, J. J.; Zhu, H. M.; Wang, Q. Q.; Yang, H. C.; Liu, H. C.; Wang, K.; Wang, Z. W. et al. Giant pyramidal near-infrared InP/ZnS quantum dots with size over 15 nm for cell imaging. Laser Photonics Rev., in press, https://doi.org/10.1002/lpor.202400367.
[145]

Heyne, B.; Arlt, K.; Geßner, A.; Richter, A. F.; Döblinger, M.; Feldmann, J.; Taubert, A.; Wedel, A. Mixed mercaptocarboxylic acid shells provide stable dispersions of InPZnS/ZnSe/ZnS multishell quantum dots in aqueous media. Nanomaterials 2020, 10, 1858.

[146]

Garcia-Cortes, M.; Sotelo González, E.; Fernández-Argüelles, M. T.; Encinar, J. R.; Costa-Fernández, J. M.; Sanz-Medel, A. Capping of Mn-doped ZnS quantum dots with DHLA for their stabilization in aqueous media: Determination of the nanoparticle number concentration and surface ligand density. Langmuir 2017, 33, 6333–6341.

[147]

Zhang, F. M.; Ma, P. Y.; Deng, X. Y.; Sun, Y.; Wang, X. H.; Song, D. Q. Enzymatic determination of uric acid using water-soluble CuInS/ZnS quantum dots as a fluorescent probe. Microchim. Acta 2018, 185, 499.

[148]

Zhang, Y. B.; Lv, Y. B.; Li, L. S.; Zhao, X. J.; Zhao, M. X.; Shen, H. B. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis. Exploration 2022, 2, 20220082.

[149]

Dobhal, G.; Ayupova, D.; Laufersky, G.; Ayed, Z.; Nann, T.; Goreham, R. V. Cadmium-free quantum dots as fluorescent labels for exosomes. Sensors 2018, 18, 3308.

[150]

Liu, S. Y.; Hu, J. J.; Su, X. G. Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots. Analyst 2012, 137, 4598–4604.

[151]

Gao, J. H.; Chen, K.; Luong, R.; Bouley, D. M.; Mao, H.; Qiao, T. C.; Gambhir, S. S.; Cheng, Z. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett. 2012, 12, 281–286.

[152]

Liu, X. Y.; Braun, G. B.; Zhong, H. Z.; Hall, D. J.; Han, W. L.; Qin, M. D.; Zhao, C. Z.; Wang, M. N.; She, Z. G.; Cao, C. B. et al. Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv. Funct. Mater. 2016, 26, 267–276.

[153]

Iso, Y.; Isobe, T. Critical review-photostable fluorescent cd-free quantum dots transparently embedded in monolithic silica. ECS J. Solid State Sci. Technol. 2020, 9, 016005.

[154]

Li, X.; Tu, D. T.; Yu, S. H.; Song, X. R.; Lian, W.; Wei, J. J.; Shang, X. Y.; Li, R. F.; Chen, X. Y. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res. 2019, 12, 1804–1809.

[155]

Zhou, L. L.; Yu, B.; Huang, L. L.; Cao, H. Q.; Lin, D. Y.; Jing, Y. Y.; Wali, F.; Qu, J. L. Nonblinking core-multishell InP/ZnSe/ZnS quantum dot bioconjugates for super-resolution imaging. ACS Appl. Nano Mater. 2022, 5, 18742–18752.

[156]

Shi, X. H.; Dai, Y. Y.; Wang, L.; Wang, Z. G.; Liu, S. L. Water-soluble high-quality Ag2Te quantum dots prepared by mutual adaptation of synthesis and surface modification for in vivo imaging. ACS Appl. Bio Mater. 2021, 4, 7692–7700.

[157]

Zhang, Y. B.; Qiao, L. L.; Zhang, Z. Q.; Liu, Y. F.; Li, L. S.; Shen, H. B.; Zhao, M. X. A mitochondrial-targetable fluorescent probe based on high-quality InP quantum dots for the imaging of living cells. Mater. Design 2022, 219, 110736.

[158]

Chen, Z. L.; Lin, Y.; Yu, X. J.; Zhu, D. L.; Guo, S. W.; Zhang, J. J.; Wang, J. J.; Wang, B. S.; Zhang, Z. L.; Pang, D. W. Preparation of monodisperse hydrophilic quantum dots with amphiphilic polymers. ACS Appl. Mater. Interfaces 2017, 9, 39901–39906.

[159]

Michalska, M.; Florczak, A.; Dams-Kozlowska, H.; Gapinski, J.; Jurga, S.; Schneider, R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater. 2016, 35, 293–304.

[160]

Wu, R. L.; Wang, T. Y.; Wu, M.; Lv, Y. B.; Liu, X. P.; Li, J. J.; Shen, H. B.; Li, L. S. Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay. Chem. Eng. J. 2018, 348, 447–454.

[161]

Wiercigroch-Walkosz, K.; Cichos, J.; Wysokińska, E.; Rotko, G.; Kałas, W.; Karbowiak, M. Near-infrared Ag2S quantum dots loaded in phospholipid nanostructures: Physical properties, stability and cytotoxicity. Colloids Surf. 2019, 579, 123631.

[162]

Hu, J. H.; Song, J. L. Q.; Tang, Z. S.; Li, H.; Chen, L.; Zhou, R. Phospholipid-stabilized Cu x Ag1– x InSe2 nanocrystals as luminophores: Fabrication, optical properties, and biological application. J. Mater. Chem. C 2020, 8, 5821–5831.

[163]

Sannaikar, M. S.; Inamdar, L. S.; Pujar, G. H.; Wari, M. N.; Balasinor, N. H.; Inamdar, S. R. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin. Luminescence 2018, 33, 495–504.

[164]

Speranskaya, E. S.; Beloglazova, N. V.; Abé, S.; Aubert, T.; Smet, P. F.; Poelman, D.; Goryacheva, I. Y.; de Saeger, S.; Hens, Z. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 2014, 30, 7567–7575.

[165]

Chen, C. W.; Wu, D. Y.; Chan, Y. C.; Lin, C. C.; Chung, P. H.; Hsiao, M.; Liu, R. S. Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 2015, 119, 2852–2860.

[166]

Speranskaya, E. S.; Sevrin, C.; de Saeger, S.; Hens, Z.; Goryacheva, I. Y.; Grandfils, C. Synthesis of hydrophilic CuInS2/ZnS quantum dots with different polymeric shells and study of their cytotoxicity and hemocompatibility. ACS Appl. Mater. Interfaces 2016, 8, 7613–7622.

[167]

Sheng, Y.; Li, S.; Sun, Y. X.; Zhang, R.; Zhao, X. Y.; Tan, M. C. Synthesis of deep red emitting Cu–In–Zn–Se/ZnSe quantum dots for dual-modal fluorescence and photoacoustic imaging. Nanotechnology 2021, 32, 085101.

[168]

Zhang, L. F.; Xu, H.; Zhang, X. H.; Chen, X. X.; Lv, Y. B.; Zhang, R. X.; Wang, L.; Wu, R. L.; Shen, H. B.; Li, L. S. Highly sensitive, stable InP quantum dot fluorescent probes for quantitative immunoassay through nanostructure tailoring and biotin-streptavidin coupling. Inorg. Chem. 2024, 63, 4604–4613.

[169]

Guo, W. S.; Chen, N.; Tu, Y.; Dong, C. H.; Zhang, B. B.; Hu, C. H.; Chang, J. Synthesis of Zn–Cu–In–S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging. Theranostics 2013, 3, 99–108.

[170]

Koole, R.; van Schooneveld, M. M.; Hilhorst, J.; de Mello Donegá, C.; ‘t Hart, D. C.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 2008, 20, 2503–2512.

[171]

Elzorkany, H. E.; Farghali, M. A.; Hassan, M. A.; El-Sayed, K.; Canonico, M.; Konert, G.; Farroh, K.; Elshoky, H. A.; Kaňa, R. Ecotoxicology impact of silica-coated CdSe/ZnS quantum dots internalized in Chlamydomonas reinhardtii algal cells. Sci. Total Environ. 2019, 666, 480–489.

[172]

dos Santos da Silva, A.; dos Santos, J. H. Z. Stöber method and its nuances over the years. Adv. Colloid Interface Sci. 2023, 314, 102888.

[173]

Biermann, A.; Aubert, T.; Baumeister, P.; Drijvers, E.; Hens, Z.; Maultzsch, J. Interface formation during silica encapsulation of colloidal CdSe/CdS quantum dots observed by in situ Raman spectroscopy. J. Chem. Phys. 2017, 146, 134708.

[174]

Foda, M. F.; Huang, L.; Shao, F.; Han, H. Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 2011–2017.

[175]

Beloglazova, N. V.; Sobolev, A. M.; Tessier, M. D.; Hens, Z.; Goryacheva, I. Y.; de Saeger, S. Fluorescently labelled multiplex lateral flow immunoassay based on cadmium-free quantum dots. Methods 2017, 116, 141–148.

[176]

Drozd, D.; Zhang, H. Y.; Goryacheva, I.; De Saeger, S.; Beloglazova, N. V. Silanization of quantum dots: Challenges and perspectives. Talanta 2019, 205, 120164.

[177]

Xu, Y. X.; Lv, Y. B.; Wu, R. L.; Li, J. J.; Shen, H. B.; Yang, H. W.; Zhang, H.; Li, L. S. Sensitive immunoassay based on biocompatible and robust silica-coated Cd-free InP-based quantum dots. Inorg. Chem. 2021, 60, 6503–6513.

[178]

Li, C. F.; Zou, Z.; Liu, H. Q.; Jin, Y.; Li, G. Q.; Yuan, C.; Xiao, Z. D.; Jin, M. L. Synthesis of polystyrene-based fluorescent quantum dots nanolabel and its performance in H5N1 virus and SARS-CoV-2 antibody sensing. Talanta 2021, 225, 122064.

[179]

Li, J. J.; Fan, J. J.; Wu, R. L.; Li, N.; Lv, Y. B.; Shen, H. B.; Li, L. S. Biomolecular surface functionalization and stabilization method to fabricate quantum dots nanobeads for accurate biosensing detection. Langmuir 2022, 38, 4969–4978.

[180]

Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635.

[181]

Li, H. F.; Dong, B. L.; Dou, L. N.; Yu, W. B.; Yu, X. Z.; Wen, K.; Ke, Y. B.; Shen, J. Z.; Wang, Z. H. Fluorescent lateral flow immunoassay for highly sensitive detection of eight anticoagulant rodenticides based on cadmium-free quantum dot-encapsulated nanospheres. Sens. Actuat. B Chem. 2020, 324, 128771.

[182]

Li, C. L.; Hosokawa, C.; Suzuki, M.; Taguchi, T.; Murase, N. Preparation and biomedical applications of bright robust silica nanocapsules with multiple incorporated InP/ZnS quantum dots. New J. Chem. 2018, 42, 18951–18960.

[183]

Jiang, T. T.; Shen, M. H.; Dai, P.; Wu, M. Z.; Yu, X. X.; Li, G.; Xu, X. L.; Zeng, H. B. Cd-free Cu–Zn–In–S/ZnS quantum dots@SiO2 multiple cores nanostructure: Preparation and application for white LEDs. Nanotechnology, 2017, 28, 435702.

[184]

Xiao, Q. B.; Ji, Y. T.; Xiao, Z. H.; Zhang, Y.; Lin, H. Z.; Wang, Q. B. Novel multifunctional NaYF4:Er3+,Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chem. Commun. 2013, 49, 1527–1529.

[185]

Kage, D.; Fischer, L.; Hoffmann, K.; Thiele, T.; Schedler, U.; Resch-Genger, U. Close spectroscopic look at dye-stained polymer microbeads. J. Phys. Chem. C 2018, 122, 12782–12791.

[186]

Leng, Y. K.; Wu, W. J.; Li, L.; Lin, K.; Sun, K.; Chen, X. Y.; Li, W. W. Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection. Adv. Funct. Mater. 2016, 26, 7581–7589.

[187]

Wang, D. Y.; Rogach, A. L.; Caruso, F. Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett. 2002, 2, 857–861.

[188]

Brazhnik, K.; Sokolova, Z.; Baryshnikova, M.; Bilan, R.; Efimov, A.; Nabiev, I.; Sukhanova, A. Quantum dot-based lab-on-a-bead system for multiplexed detection of free and total prostate-specific antigens in clinical human serum samples. Nanomedicine 2015, 11, 1065–1075.

[189]

Zhang, L. Y.; Zhu, L.; Larson, S. R.; Zhao, Y. P.; Wang, X. Q. Layer-by-layer assembly of nanorods on a microsphere via electrostatic interactions. Soft Matter 2018, 14, 4541–4550.

[190]

Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater. 2009, 21, 4020–4024.

[191]

Marin, R. Vivian, A.; Skripka, A.; Migliori, A.; Morandi, V.; Enrichi, F.; Vetrone, F.; Ceroni, P.; Aprile, C.; Canton, P. Mercaptosilane-passivated CuInS2 quantum dots for luminescence thermometry and luminescent labels. ACS Appl. Nano Mater. 2019, 2, 2426–2436.

[192]

Ham, K. M.; Kim, M.; Bock, S.; Kim, J.; Kim, W.; Jung, H. S.; An, J.; Song, H. S.; Kim, J. W.; Kim, H. M. et al. Highly bright silica-coated InP/ZnS quantum dot-embedded silica nanoparticles as biocompatible nanoprobes. Int. J. Mol. Sci. 2022, 23, 10977.

[193]

Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 2010, 4, 2531–2538.

[194]

Chen, T. T.; Li, L.; Lin, X. T.; Yang, Z. W.; Zou, W. Y.; Chen, Y. J.; Xu, J. Y.; Liu, D. M.; Wang, X. M.; Lin, G. M. In vitro and in vivo immunotoxicity of PEGylated Cd-free CuInS2/ZnS quantum dots. Nanotoxicology 2020, 14, 372–387.

[195]

Chetty, S. S.; Praneetha, S.; Basu, S.; Sachidanandan, C.; Murugan, A. V. Sustainable, rapid synthesis of bright-luminescent CuInS2-ZnS alloyed nanocrystals: Multistage nano-xenotoxicity assessment and intravital fluorescence bioimaging in Zebrafish-embryos. Sci. Rep. 2016, 6, 26078.

[196]

Kays, J. C.; Saeboe, A. M.; Toufanian, R.; Kurant, D. E.; Dennis, A. M. Shell-free copper indium sulfide quantum dots induce toxicity in vitro and in vivo. Nano Lett. 2020, 20, 1980–1991.

[197]

Gottschling, B. C.; Maronpot, R. R.; Hailey, J. R.; Peddada, S.; Moomaw, C. R.; Klaunig, J. E.; Nyska, A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci. 2001, 64, 28–40.

[198]

Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 2011, 3, 2552–2559.

[199]

Chen, S. Z.; Chen, Y. J.; Chen, Y. H.; Yao, Z. Y. InP/ZnS quantum dots cause inflammatory response in macrophages through endoplasmic reticulum stress and oxidative stress. Int. J. Nanomed. 2019, 14, 9577–9586.

[200]

Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J. Maitra, A.; Prasad, P. N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510.

[201]

Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: In vitro and in vivo toxicity assessment. Nanoscale 2013, 5, 307–317.

[202]

Allocca, M.; Mattera, L.; Bauduin, A.; Miedziak, B.; Moros, M.; de Trizio, L.; Tino, A.; Reiss, P.; Ambrosone, A.; Tortiglione, C. An integrated multilevel analysis profiling biosafety and toxicity induced by indium- and cadmium-based quantum dots in vivo. Environ. Sci. Technol. 2019, 53, 3938–3947.

[203]

Maji, S. K. Luminescence-tunable ZnS-AgInS2 nanocrystals for cancer cell imaging and photodynamic therapy. ACS Appl. Bio Mater. 2022, 5, 1230–1238.

[204]

Gao, N.; Jing, J.; Zhao, H. Z.; Liu, Y. Z.; Yang, C. L.; Gao, M. X.; Chen, B. K.; Zhang, R. B.; Zhang, X. L. Defective Ag–In–S/ZnS quantum dots: An oxygen-derived free radical scavenger for mitigating macrophage inflammation. J. Mater. Chem. B 2021, 9, 8971–8979.

[205]

Su, W. H.; Yang, D.; Wang, Y. L.; Kong, Y. W.; Zhang, W. L.; Wang, J.; Fei, Y. Y.; Guo, R. Q.; Ma, J.; Mi, L. AgInS2/ZnS quantum dots for noninvasive cervical cancer screening with intracellular pH sensing using fluorescence lifetime imaging microscopy. Nano Res. 2022, 15, 5193–5204.

[206]

Sukhanova, A.; Bozrova, S.; Gerasimovich, E.; Baryshnikova, M.; Sokolova, Z.; Samokhvalov, P.; Guhrenz, C.; Gaponik, N.; Karaulov, A.; Nabiev, I. Dependence of quantum dot toxicity in vitro on their size, chemical composition, and surface charge. Nanomaterials 2022, 12, 2734.

[207]

Torres, R.; Thal, L. B.; McBride, J. R.; Cohen, B. E.; Rosenthal, S. J. Quantum dot fluorescent imaging: Using atomic structure correlation studies to improve photophysical properties. J. Phys. Chem. C 2024, 128, 3632–3640.

[208]

Bharali, D. J.; Lucey, D. W.; Jayakumar, H.; Pudavar, H. E.; Prasad, P. N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371.

[209]

Wu, Y. Z.; Sun, J.; Zhang, Y. Q.; Pu, M. M.; Zhang, G.; He, N. Y.; Zeng. X. Effective integration of targeted tumor imaging and therapy using functionalized InP QDs with VEGFR2 monoclonal antibody and miR-92a inhibitor. ACS Appl. Mater. Interfaces 2017, 9, 13068–13078.

[210]

Saeboe, A. M.; Nikiforov, A. Y.; Toufanian, R.; Kays, J. C.; Chern, M.; Casas, J. P.; Han, K. Y.; Piryatinski, A.; Jones, D.; Dennis, A. M. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 2021, 21, 3271–3279.

[211]

Deng, D. W.; Chen, Y. Q.; Cao, J.; Tian, J. M.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem. Mater. 2012, 24, 3029–3037.

[212]

Zhang, F. M.; He, X.; Ma, P. Y.; Sun, Y.; Wang, X. H.; Song, D. Q. Rapid aqueous synthesis of CuInS/ZnS quantum dots as sensor probe for alkaline phosphatase detection and targeted imaging in cancer cells. Talanta, 2018, 189, 411–417.

[213]

Niu, Q.; Yu, X. Y.; Yuan, Q. L.; Hu, W. J.; Yu, D. S.; Zhang, Q. Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer. Chem. Phys. Lett. 2020, 739, 136977.

[214]

Jiao, M. X.; Li, Y.; Jia, Y. X.; Li, C. X.; Bian, H.; Gao, L. T.; Cai, P.; Luo, X. L. Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J. Colloid Interface Sci. 2020, 565, 35–42.

[215]

Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.

[216]

Jiao, M. X.; Portniagin, A. S.; Luo, X. L.; Jing, L. H.; Han, B. X.; Rogach, A. L. Semiconductor nanocrystals emitting in the second near-infrared window: Optical properties and application in biomedical imaging. Adv. Opt. Mater. 2022, 10, 2200226.

[217]

Deng, T.; Peng, Y. N.; Zhang, R.; Wang, J.; Zhang, J.; Gu, Y. Q.; Huang, D. C.; Deng, D. W. Water-solubilizing hydrophobic ZnAgInSe/ZnS QDs with tumor-targeted cRGD-sulfobetaine-PIMA-histamine ligands via a self-assembly strategy for bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 11405–11414.

[218]

Li, C. Y.; Li, F.; Zhang, Y. J.; Zhang, W. J.; Zhang, X. E.; Wang, Q. B. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 2015, 9, 12255–12263.

[219]

Zhang, Y.; Zhao, N.; Qin, Y. S.; Wu, F. X.; Xu, Z. H.; Lan, T.; Cheng, Z.; Zhao, P.; Liu, H. G. Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 2018, 10, 16581–16590.

[220]

Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem., Int. Ed. 2012, 51, 9818–9821.

[221]

Zhang, L.; Yang, X. Q.; An, J.; Zha, S. D.; Zha, T. Y.; Tan, F.; Cao, Y. C.; Zhao, Y. D. In vivo tumor active cancer targeting and CT-fluorescence dual-modal imaging with nanoprobe based on gold nanorods and InP/ZnS quantum dots. J. Mater. Chem. B 2018, 6, 2574–2583.

[222]

Li, Y. Y.; Zhang, P. S.; Tang, W.; McHugh, K. J.; Kershaw, S. V.; Jiao, M. X.; Huang, X. D.; Kalytchuk, S.; Perkinson, C. F.; Yue, S. S. et al. Bright, magnetic NIR-II quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano 2022, 16, 8076–8094.

[223]

McHugh, K. J.; Jing, L. H.; Severt, S. Y.; Cruz, M.; Sarmadi, M.; Jayawardena, H. S. N.; Perkinson, C. F.; Larusson, F.; Rose, S.; Tomasic, S. et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 2019, 11, eaay7162.

[224]

Huang, D. H.; Cao, Y. H.; Yang, X.; Liu, Y. Y.; Zhang, Y. J.; Li, C. Y.; Chen, G. C.; Wang, Q. B. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for Alzheimer’s disease. Adv. Mater. 2021, 33, 2006357.

[225]

Al-Agel, F. A.; Mahmoud, W. E. “Turn-off-on” fluorescence probe based functionalized InP quantum wires for detection of cyanide anions. Sens. Actuat. B Chem. 2013, 183, 441–445.

[226]

Gao, X.; Liu, X. C.; Lin, Z. H.; Liu, S. Y.; Su, X. G. CuInS2 quantum dots as a near-infrared fluorescent probe for detecting thrombin in human serum. Analyst 2012, 137, 5620–5624.

[227]

Yang, E. L.; Yao, J. D.; Wang, L. M.; Liu, Y.; Xiao, Q.; Huang, S. InP/ZnS quantum dot-based fluorescent probe for directly sensitive and selective detection of horseradish peroxidase. Methods Appl. Fluoresc. 2019, 7, 035008.

[228]

Haque, M.; Konthoujam, I.; Lyndem, S.; Koley, S.; Aguan, K.; Singha Roy, A. Formation of ZnS quantum dots using green tea extract: Applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J. Mater. Chem. B 2023, 11, 1998–2015.

[229]

Castro, R. C.; Lopes, A. F. R.; Soares, J. X.; Ribeiro, D. S. M.; Santos, J. L. M. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS2 quantum dots and Au nanoparticles. Analyst 2021, 146, 1004–1015.

[230]

Cai, Q. Q.; Li, H. K.; Dong, W. S.; Ji, G. F. Versatile photoelectrochemical biosensor based on AIS/ZnS QDs sensitized-WSe2 nanoflowers coupled with DNA nanostructure probe for “On-Off” assays of TNF-α and Mtase. Biosens. Bioelectron. 2023, 241, 115704.

[231]

Lin, Z. H.; Pan, D.; Hu, T. Y.; Liu, Z. P.; Su, X. G. A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim. Acta 2015, 182, 1933–1939.

[232]

Shen, H. B.; Yuan, H.; Wu, F.; Bai, X. W.; Zhou, C. H.; Wang, H. Z.; Lu, T. K.; Qin, Z. F.; Ma, L.; Li, L. S. Facile synthesis of high-quality CuInZn x S2+ x core/shell nanocrystals and their application for detection of C-reactive protein. J. Mater. Chem. 2012, 22, 18623–18630.

[233]

Beloglazova, N. V.; Goryacheva, I. Y.; Niessner, R.; Knopp, D. A comparison of horseradish peroxidase, gold nanoparticles and qantum dots as labels in non-instrumental gel-based immunoassay. Microchim. Acta 2011, 175, 361–367.

[234]

Lv, Y. B.; Fan, J. J.; Zhao, M.; Wu, R. L.; Li, L. S. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale 2023, 15, 5560–5578.

[235]

Wu, W. J.; Liu, X. Y.; Shen, M. F.; Shen, L. S.; Ke, X.; Cui, D. X.; Li, W. W. Multicolor quantum dot nanobeads based fluorescence-linked immunosorbent assay for highly sensitive multiplexed detection. Sens. Actuat. B Chem. 2021, 338, 129827.

[236]

Li, M. W.; Gao, X. W.; Ren, X. X.; Ai, Y. J.; Zhang, B.; Zou, G. Z. Potential-selective electrochemiluminescence of AgInS2/ZnS nanocrystals and its immunoassay application. Chem. Commun. 2024, 60, 4958–4961.

[237]

Lv, S. Z.; Li, Y.; Zhang, K. Y.; Lin, Z. Z.; Tang, D. P. Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 38336–38343.

[238]

Guo, H. Z.; Lu, Y. H.; Lei, Z. D.; Bao, H.; Zhang, M. W.; Wang, Z. M.; Guan, C. T.; Tang, B. J.; Liu, Z.; Wang. L. Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots. Nat. Commun. 2024, 15, 4843.

[239]

Zhou, J. L.; Zhao, R. X.; Liu, S. K.; Feng, L. L.; Li, W. T.; He, F.; Gai, S. L.; Yang, P. P. Europium doped silicon quantum dot as a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, 2100812.

[240]

He, C. Y.; Ruan, F. K.; Jiang, S. W.; Zeng, J.; Yin, H. Y.; Liu, R.; Zhang, Y. X.; Huang, L. Q.; Wang, C. G.; Ma, S. H. et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells. Small 2020, 16, 2001371.

[241]

Cai, G. N.; Yu, Z. Z.; Tong, P.; Tang, D. P. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 2019, 11, 15659–15667.

[242]

Li, Y. X.; Wang, W. Q.; Gong, H. X.; Xu, J. H.; Yu, Z. C.; Wei, Q. H.; Tang, D. P. Graphene-coated copper-doped ZnO quantum dots for sensitive photoelectrochemical bioanalysis of thrombin triggered by DNA nanoflowers. J. Mater. Chem. B 2021, 9, 6818–6824.

[243]

Lin, Y. X.; Zhou, Q.; Tang, D. P.; Niessner, R.; Knopp, D. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal. Chem. 2017, 89, 5637–5645.

[244]

Gough, J. J.; McEvoy, N.; O'Brien, M.; Bell, A. P.; McCloskey, D.; Boland, J. B.; Coleman, J. N.; Duesberg, G. S.; Bradley, A. L. Dependence of photocurrent enhancements in quantum dot (QD)-sensitized MoS2 devices on MoS2 film properties. Adv. Funct. Mater. 2018, 28, 1706149.

[245]

Liu, C. K.; Tai, Q. D.; Wang, N. X.; Tang, G. Q.; Loi, H. L.; Yan, F. Sn-based perovskite for highly sensitive photodetectors. Adv. Sci. 2019, 6, 1900751.

[246]

Dun, G. H.; Zhang, H. N.; Qin, K.; Tan, X. C.; Zhao, R.; Chen, M.; Huang, Y.; Geng, X. S.; Li, Y. Y.; Li, Y. H. et al. Wafer-scale photolithography-pixeled Pb-free perovskite X-ray detectors. ACS Nano 2022, 16, 10199–10208.

[247]

Guo, R. Q.; Meng, J.; Lin, W. H.; Liu, A. Q.; Pullerits, T.; Zheng, K. B.; Tian, J. J. Manganese doped eco-friendly CuInSe2 colloidal quantum dots for boosting near-infrared photodetection performance. Chem. Eng. J. 2021, 403, 126452.

[248]

Asor, L.; Liu, J.; Xiang, S. T.; Tessler, N.; Frenkel, A. I.; Banin, U. Zn-doped P-type InAs nanocrystal quantum dots. Adv. Mater. 2023, 35, 2208332.

[249]

Zarghami, A.; Dolatyari, M.; Mirtagioglu, H.; Rostami, A. High-efficiency upconversion process in cobalt and neodymium doped graphene QDs for biomedical applications. Sci. Rep. 2023, 13, 10277.

Nano Research
Cite this article:
Lv Y, Zhang L, Wu R, et al. Recent progress on eco-friendly quantum dots for bioimaging and diagnostics. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6926-5
Topics:

321

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 May 2024
Revised: 22 July 2024
Accepted: 01 August 2024
Published: 04 September 2024
© Tsinghua University Press 2024
Return