AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pressure-driven layer-dependent phase transitions and enhanced interlayer coupling in PdSe2 crystals

Junnan Ding1,2Xing Xie1,2Xinyu Ouyang2Junying Chen1,2Fangping Ouyang1,3Zongwen Liu4,5Jian-Tao Wang6,7,8Jun He1,2( )Yanping Liu1,2( )
Institute of Quantum Physics, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
School of Physics and Technology, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830046, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

Our findings offer a comprehensive investigation into the pressure-driven phase transitions and interlayer coupling enhancement in PdSe2 crystals, providing insights into their electronic and structural properties under extreme conditions.

Abstract

Pressure exerts a profound influence on atomic configurations and interlayer interactions, thereby modulating the electronic and structural properties of materials. While high pressure has been observed to induce a structural phase transition in bulk PdSe2 crystals, leading to a transition from semiconductor to metal, the high-pressure behavior of few-layer PdSe2 remains elusive. Here, employing diamond anvil cell (DAC) techniques and high-pressure Raman spectroscopy, we investigate the structural evolution of layer-dependent PdSe2 under high pressure. We reveal that pressure significantly enhances interlayer coupling in PdSe2, driving structural phase transitions from an orthorhombic to a cubic phase. We demonstrate that PdSe2 crystals exhibit distinct layer-dependent pressure thresholds during the phase transition, with the decrease of transition pressure as the thickness of PdSe2 increases. Furthermore, our results of polarized Raman spectra confirm a reduction in material anisotropy with increasing pressure. This study offers crucial insights into the structural evolution of layer-dependent van der Waals materials under pressure, advancing our understanding of their pressure-induced behaviors.

Electronic Supplementary Material

Download File(s)
6927_ESM.pdf (15.7 MB)

References

[1]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[2]

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

[3]

Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

[4]

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

[5]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[6]

Ahmad, S. Strain dependent tuning electronic properties of noble metal di chalcogenides PdX2 (X = S, Se) mono-layer. Mater. Chem. Phys. 2017, 198, 162–166.

[7]

He, H. R.; Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; Liu, Z. W.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 2024, 17, 3245–3252.

[8]

Cao, G. M.; Meng, P.; Chen, J. G.; Liu, H. S.; Bian, R. J.; Zhu, C.; Liu, F. C.; Liu, Z. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2005443.

[9]

Yang, W. X.; Zhou, H. L.; Su, D.; Yang, Z. R.; Song, Y. J.; Zhang, X. Y.; Zhang, T. Recent progress in 2D material van der Waals heterostructure-based luminescence devices towards the infrared wavelength range. J. Mater. Chem. C 2022, 10, 7352–7367.

[10]

Guo, Y. T.; Yi, S. S. Recent advances in the preparation and application of two-dimensional nanomaterials. Materials 2023, 16, 5798.

[11]

Conti, S.; Calabrese, G.; Parvez, K.; Pimpolari, L.; Pieri, F.; Iannaccone, G.; Casiraghi, C.; Fiori, G. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 2023, 8, 651–667.

[12]

Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

[13]

Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

[14]

Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.

[15]

Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

[16]

Sun, M. L.; Chou, J. P.; Shi, L. H.; Gao, J. F.; Hu, A.; Tang, W. C.; Zhang, G. Few-layer PdSe2 sheets: Promising thermoelectric materials driven by high valley convergence. ACS Omega 2018, 3, 5971–5979.

[17]

Soulard, C.; Rocquefelte, X.; Petit, P. E.; Evain, M.; Jobic, S.; Itié, J. P.; Munsch, P.; Koo, H. J.; Whangbo, M. H. Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2. Inorg. Chem. 2004, 43, 1943–1949.

[18]

Ijjaali, I.; Ibers, J. A. Crystal structure of palladium selenide, PdSe. Z. Kristallogr. New Cryst. Struct. 2001, 216, 485–486.

[19]

Hoffman, A. N.; Gu, Y. Y.; Liang, L. B.; Fowlkes, J. D.; Xiao, K.; Rack, P. D. Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. npj 2D Mater. Appl. 2019, 3, 50.

[20]

Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172–1182.

[21]

Qin, D.; Yan, P.; Ding, G. Q.; Ge, X. J.; Song, H. Y.; Gao, G. Y. Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep. 2018, 8, 2764.

[22]

Lei, W.; Zhang, S. L.; Heymann, G.; Tang, X.; Wen, J. F.; Zheng, X. J.; Hu, G. H.; Ming, X. A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C 2019, 7, 2096–2105.

[23]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[24]

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

[25]

Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

[26]

ElGhazali, M. A.; Naumov, P. G.; Mirhosseini, H.; Süß, V.; Müchler, L.; Schnelle, W.; Felser, C.; Medvedev, S. A. Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B 2017, 96, 060509.

[27]

Mao, H. K.; Chen, B.; Chen, J. H.; Li, K.; Lin, J. F.; Yang, W. G.; Zheng, H. Y. Recent advances in high-pressure science and technology. Matter Radiat. Extremes 2016, 1, 59–75.

[28]

Pei, S. H.; Wang, Z. H.; Xia, J. High pressure studies of 2D materials and heterostructures: A review. Mater. Des. 2022, 213, 110363.

[29]

Zhang, L. J.; Wang, Y. C.; Lv, J.; Ma, Y. M. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 17005.

[30]

Pimenta Martins, L. G.; Carvalho, B. R.; Occhialini, C. A.; Neme, N. P.; Park, J. H.; Song, Q.; Venezuela, P.; Mazzoni, M. S. C.; Matos, M. J. S.; Kong, J. et al. Electronic band tuning and multivalley Raman scattering in monolayer transition metal dichalcogenides at high pressures. ACS Nano 2022, 16, 8064–8075.

[31]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Unveiling layer-dependent interlayer coupling and vibrational properties in MoTe2 under high pressure. Phys. Rev. B 2023, 108, 155302.

[32]

Xie, X.; Ding, J. N.; Wu, B.; Li, S. F.; Chen, J. Y.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Anomalous phonon behavior and tunable exciton emissions: Insights into pressure-driven dynamics in silicon phosphide. Nano Lett. 2024, 24, 8189–8197.

[33]

Puretzky, A. A.; Oyedele, A. D.; Xiao, K.; Haglund, A. V.; Sumpter, B. G.; Mandrus, D.; Geohegan, D. B.; Liang, L. B. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018, 5, 035016.

[34]

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

[35]

Froehlicher, G.; Lorchat, E.; Zill, O.; Romeo, M.; Berciaud, S. Rigid-layer Raman-active modes in N-layer transition metal dichalcogenides: Interlayer force constants and hyperspectral Raman imaging. J. Raman Spectrosc. 2018, 49, 91–99.

[36]

Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

[37]

Luo, W. J.; Oyedele, A. D.; Mao, N. N.; Puretzky, A.; Xiao, K.; Liang, L. B.; Ling, X. Excitation-dependent anisotropic Raman response of atomically thin pentagonal PdSe2. ACS Phys. Chem. Au 2022, 2, 482–489.

[38]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A. et al. Observation of optical anisotropy and a linear dichroism transition in layered silicon phosphide. Nanoscale 2023, 15, 12388–12397.

Nano Research
Pages 10170-10178
Cite this article:
Ding J, Xie X, Ouyang X, et al. Pressure-driven layer-dependent phase transitions and enhanced interlayer coupling in PdSe2 crystals. Nano Research, 2024, 17(11): 10170-10178. https://doi.org/10.1007/s12274-024-6927-4
Topics:

219

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 June 2024
Revised: 17 July 2024
Accepted: 01 August 2024
Published: 05 September 2024
© Tsinghua University Press 2024
Return