AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Surface oxidation of carbon dots enables highly selective and sensitive chemiluminescence detection of hydroxyl radical

Chan WangYuan FangDongrun ZhouChenxi WuHan Zhu( )Qijun Song( )
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Show Author Information

Graphical Abstract

Abstract

The rapid quantification of hydroxyl radical (·OH) in real samples is a great challenge due to its highly reactive nature and the potential interferences from other coexisting reactive oxygen species (ROS). Herein, a chemiluminescence (CL) probe (ox-CDs) was rationally developed for the detection of ·OH through controlled oxidation treatment of original CDs (o-CDs) with H2O2. Post-oxidation of CDs can reduce the surface defects or functional groups on the CDs, exposing reactive sites capable of effectively reacting with ·OH. The chemical energy generated from redox reaction between ·OH and the ox-CDs can be efficiently utilized to generate strong and selective CL responses to ·OH without interferences from other ROS. Thus, a highly selective and sensitive CL method with a linear range from 0.01 to 150 µM and a detection limit of 3 nM was developed, which was successfully applied for monitoring the ·OH production from cigarette and mosquito coil smoke.

Electronic Supplementary Material

Download File(s)
6928_ESM.pdf (1.3 MB)

References

[1]

Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (OH). Chem. Rev. 2015, 115, 13051–13092.

[2]

Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.

[3]

Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525.

[4]

Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95.

[5]

Kong, L.; Ma, X. Y.; Zhang, C.; Kim, S. I.; Li, B.; Xie, Y. P.; Yeo, I. C.; Thapa, H.; Chen, S. X.; Devarenne, T. P. et al. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell 2024, 187, 609–623.e21.

[6]

Fleming, A. M.; Burrows, C. J. On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chem. Soc. Rev. 2020, 49, 6524–6528.

[7]

Yue, L. Z.; Li, G. F.; Chen, Z. H.; Dai, L. X.; Huang, H. W.; Li, H.; Lin, W. Y. A “hydroxyl radicals standard” for evaluating the efficacy of anti-asthma drugs by using a two-photon NIR optical sensor. Chem. Eng. J. 2023, 451, 139019.

[8]

Cui, H. N.; Ma, J. X.; Liu, Y. Y.; Wang, C.; Song, Q. J. Dimethyl sulfoxide: An ideal electrochemical probe for hydroxyl radical detection. ACS Sens. 2024, 9, 1508–1514.

[9]

Pei, S. Z.; You, S. J.; Ma, J.; Chen, X. D.; Ren, N. Q. Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol. 2020, 54, 13333–13343.

[10]

Chu, C.; Yan, Y. Q.; Ma, J. Y.; Jin, S. Y.; Spinney, R.; Dionysiou, D. D.; Zhang, H. J.; Xiao, R. Y. Implementation of laser flash photolysis for radical-induced reactions and environmental implications. Water Res. 2023, 244, 120526.

[11]

Barroso-Martínez, J. S.; Romo, A. I. B.; Pudar, S.; Putnam, S. T.; Bustos, E.; Rodríguez-López, J. Real-time detection of hydroxyl radical generated at operating electrodes via redox-active adduct formation using scanning electrochemical microscopy. J. Am. Chem. Soc. 2022, 144, 18896–18907.

[12]

Hong, W. J.; Zou, J. M.; Zhao, M. Z.; Yan, S. W.; Song, W. H. Development of a five-chemical-probe method to determine multiple radicals simultaneously in hydroxyl and sulfate radical-mediated advanced oxidation processes. Environ. Sci. Technol. 2024, 58, 5616–5626.

[13]

Hai, X.; Guo, Z. Y.; Lin, X.; Chen, X. W.; Wang, J. H. Fluorescent TPA@GQDs probe for sensitive assay and quantitative imaging of hydroxyl radicals in living cells. ACS Appl. Mater. Interfaces 2018, 10, 5853–5861.

[14]

Roth-Konforti, M.; Green, O.; Hupfeld, M.; Fieseler, L.; Heinrich, N.; Ihssen, J.; Vorberg, R.; Wick, L.; Spitz, U.; Shabat, D. Ultrasensitive detection of salmonella and listeria monocytogenes by small-molecule chemiluminescence probes. Angew. Chem., Int. Ed. 2019, 58, 10361–10367.

[15]

Hananya, N.; Green, O.; Blau, R.; Satchi-Fainaro, R.; Shabat, D. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells. Angew. Chem., Int. Ed. 2017, 56, 11793–11796.

[16]

Shen, C. L.; Zheng, G. S.; Wu, M. Y.; Wei, J. Y.; Lou, Q.; Ye, Y. L.; Liu, Z. Y.; Zang, J. H.; Dong, L.; Shan, C. X. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose. Nanophotonics 2020, 9, 3597–3604.

[17]

Han, J. F.; Lou, Q.; Ding, Z. Z.; Zheng, G. S.; Ni, Q. C.; Song, R. W.; Liu, K. K.; Zang, J. H.; Dong, L.; Shen, C. L. et al. Chemiluminescent carbon nanodots for dynamic and guided antibacteria. Light Sci. Appl. 2023, 12, 104.

[18]

Shen, C. L.; Lou, Q.; Liu, K. K.; Dong, L.; Shan, C. X. Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today 2020, 35, 100954.

[19]

Nguyen, H. A.; Srivastava, I.; Pan, D.; Gruebele, M. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano 2020, 14, 6127–6137.

[20]

Zhang, Y. Q.; Lu, S. Y. Lasing of carbon dots: Chemical design, mechanisms, and bright future. Chem 2024, 10, 134–171.

[21]

Zhang, L. Z.; Yang, A. J.; Ruan, C. P.; Jiang, B. P.; Guo, X. L.; Liang, H.; Kuo, W. S.; Shen, X. C. Copper-nitrogen-coordinated carbon dots: Transformable phototheranostics from precise PTT/PDT to post-treatment imaging-guided PDT for residual tumor cells. ACS Appl. Mater. Interfaces 2023, 15, 3253–3265.

[22]

Liu, C.; Fan, W. B.; Cheng, W. X.; Gu, Y. P.; Chen, Y. M.; Zhou, W. H.; Yu, X. F.; Chen, M. H.; Zhu, M. R.; Fan, K. L. et al. Red emissive carbon dot superoxide dismutase nanozyme for bioimaging and ameliorating acute lung injury. Adv. Funct. Mater. 2023, 33, 2213856.

[23]

Li, H.; Guo, J. Q.; Liu, A. K.; Chen, Y.; He, Y. J.; Qu, J. L.; Yan, W.; Song, J. Multi-functional carbon dots for visualizing and modulating ROS-induced mitophagy in living cells. Adv. Funct. Mater. 2023, 33, 2212141.

[24]

Liu, Y. P.; Lei, J. H.; Wang, G.; Zhang, Z. M.; Wu, J.; Zhang, B. H.; Zhang, H. Q.; Liu, E. S.; Wang, L. M.; Liu, T. M. et al. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering. Adv. Sci. 2022, 9, 2202283.

[25]

Hao, J. C.; Zhu, H.; Zhao, Q. Hao, J. C.; Lu, S. L.; Wang, X. F.; Duan, F.; Du, M. L. Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site. Nano Res. 2023, 16, 8863–8870.

[26]

Niu, K. K.; Ma, C. Q.; Dong, R. Z.; Liu, H.; Yu, S. S.; Xing, L. B. Nitrogen-doped carbon dots as photocatalysts for organic synthesis: Effect of nitrogen content on catalytic activity. Nano Res. 2024, 17, 4825–4833.

[27]

Jiang, B. P.; Yu, Y. X.; Guo, X. L.; Ding, Z. Y.; Zhou, B.; Liang, H.; Shen, X. C. White-emitting carbon dots with long alkyl-chain structure: Effective inhibition of aggregation caused quenching effect for label-free imaging of latent fingerprint. Carbon 2018, 128, 12–20.

[28]

Wang, C.; Fang, Y.; Zhang, M.; Zhuo, H.; Song, Q. J.; Zhu, H. Surface-state controlled synthesis of hydrophobic and hydrophilic carbon dots. Nano Res. 2024, 17, 4391–4399.

[29]

Wang, H. B.; Zhang, M. L.; Ma, Y. R.; Wang, B.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots derived from citric acid and glutathione as a highly efficient intracellular reactive oxygen species scavenger for alleviating the lipopolysaccharide-induced inflammation in macrophages. ACS Appl. Mater. Interfaces 2020, 12, 41088–41095.

[30]

Xu, Y. L.; Wang, C.; Sui, L. Z.; Ran, G. X.; Song, Q. J. Phosphoric acid densified red emissive carbon dots with a well-defined structure and narrow band fluorescence for intracellular reactive oxygen species detection and scavenging. J. Mater. Chem. C 2023, 11, 2984–2994.

[31]

Hu, L. M.; Wang, P.; Shen, T. Y.; Wang, Q.; Wang, X. J.; Xu, P.; Zheng, Q. Z.; Zhang, G. S. The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review. Sci. Total Environ. 2020, 722, 137831.

[32]

Wang, C.; He, Y. M.; Xu, Y. L.; Sui, L. Z.; Jiang, T.; Ran, G. X.; Song, Q. J. “Light on” fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing. J. Mater. Chem. A 2022, 10, 2085–2095.

[33]

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

[34]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[35]

Kalytchuk, S.; Poláková, K.; Wang, Y.; Froning, J. P.; Cepe, K.; Rogach, A. L.; Zbořil, R. Carbon dot nanothermometry: Intracellular photoluminescence lifetime thermal sensing. ACS Nano 2017, 11, 1432–1442.

[36]

Liu, J. J.; Geng, Y. J.; Li, D. W.; Yao, H.; Huo, Z. P.; Li, Y. F.; Zhang, K.; Zhu, S. J.; Wei, H. T.; Xu, W. Q. et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv. Mater. 2020, 32, 1906641.

[37]

Ru, Y.; Sui, L. Z.; Song, H. Q.; Liu, X. J.; Tang, Z. Y.; Zang, S. Q.; Yang, B.; Lu, S. Y. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 14091–14099.

[38]

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

[39]

Shen, X. Y.; Wang, Z. M.; Guo, H. Z.; Lei, Z. D.; Liu, Z.; Wang, L. Solvent engineering of oxygen-enriched carbon dots for efficient electrochemical hydrogen peroxide production. Small 2023, 19, 2303156.

[40]

Xu, Y. L.; Wang, C.; Wu, T.; Ran, G. X.; Song, Q. J. Template-free synthesis of porous fluorescent carbon nanomaterials with gluten for intracellular imaging and drug delivery. ACS Appl. Mater. Interfaces 2022, 14, 21310–21318.

[41]

Wang, C.; Wei, B. Q.; Zhu, H.; He, Y. M.; Ran, G. X.; Song, Q. J. Engineering FeS2 nanoparticles on tubular g-C3N4 for photo-Fenton treatment of paint wastewater. Chin. Chem. Lett. 2022, 33, 3073–3077.

[42]

Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2022, 15, 942–949.

[43]

Wang, C.; He, Y. M.; Huang, J. F.; Sui, L. Z.; Ran, G. X.; Zhu, H.; Song, Q. J. Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. J. Colloid Interface Sci. 2023, 634, 221–230.

[44]

Yang, W.; Leng, T. C.; Miao, W. C.; Cao, X.; Chen, H. R.; Xu, F. F.; Fang, Y. M. Photo-switchable peroxidase/catalase-like activity of carbon quantum dots. Angew. Chem., Int. Ed. 2024, 63, e202403581.

[45]

Sharma, V. D.; Kansay, V.; Chandan, G.; Bhatia, A.; Kumar, N.; Chakrabarti, S.; Bera, M. K. Solid-state fluorescence based on nitrogen and calcium co-doped carbon quantum dots@bioplastic composites for applications in optical displays and light-emitting diodes. Carbon 2023, 201, 972–983.

[46]

Yang, X.; Ai, L.; Yu, J. K.; Waterhouse, G. I. N.; Sui, L. Z.; Ding, J.; Zhang, B. W.; Yong, X.; Lu, S. Y. Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Sci. Bull. 2022, 67, 1450–1457.

[47]

Xu, X. K.; Mo, L. Q.; Li, Y. D.; Pan, X. Q.; Hu, G. Q.; Lei, B. F.; Zhang, X. J.; Zheng, M. T.; Zhuang, J. L.; Liu, Y. L. et al. Construction of carbon dots with color-tunable aggregation-induced emission by nitrogen-induced intramolecular charge transfer. Adv. Mater. 2021, 33, 2104872.

[48]
Wen, Y. K.; Wang, T. D.; Hao, J. C.; Zhuang, Z. C.; Gao, G. H.; Lai, F. L.; Lu, S. L.; Wang, X. F.; Kang, Q.; Wu, G. M. et al. A coherent Pd–Pd16B3 core-shell electrocatalyst for controlled hydrogenation in nitrogen reduction reaction. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202400849.
[49]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[50]

Liang, J. P.; Fu, L.; Gao, K.; Duan, X. G. Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation. Appl. Catal. B Environ. 2022, 315, 121542.

[51]

Zhang, D. M.; Wang, J.; Chen, H.; Gong, C.; Xing, D.; Liu, Z. A.; Gladich, I.; Francisco, J. S.; Zhang, X. Z. Fast hydroxyl radical generation at the air–water interface of aerosols mediated by water-soluble PM2.5 under ultraviolet a radiation. J. Am. Chem. Soc. 2023, 145, 6462–6470.

[52]

Kalyanaraman, B.; Felix, C. C.; Sealy, R. C. Photoionization of melanin precursors: An electron spin resonance investigation using the spin trap 5, 5-dimethyl-1-pyrroline-1-oxide (DMPO). Photochem. Photobiol. 1982, 36, 5–12.

[53]

Xu, Y. L.; Wang, C.; Zhuo, H.; Zhou, D. R.; Song, Q. J. The function-oriented precursor selection for the preparation of carbon dots. Nano Res. 2023, 16, 11221–11249.

[54]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q. Lu, S. L.; Wang, X. F.; Wu, J. S.; Wang, D. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[55]

Tu, H. Y.; Liu, H. X.; Xu, L. Q.; Luo, Z.; Li, L.; Tian, Y.; Deng, W. T.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon dots from alcohol molecules: Principles and the reaction mechanism. Chem. Sci. 2023, 14, 12194–12204.

[56]

Romero, R.; Márquez, K.; Benítez, F. J.; Toro-Labbé, A.; Cornejo-Ponce, L.; Melín, V.; Contreras, D. Chemiluminescence emission in Fenton reaction driven by 1, 2-dihydroxybenzenes: Mechanistic approaches using 4-substituted ligands. J. Photochem. Photobiol. A Chem. 2022, 426, 113744.

[57]

Mao, L.; Gao, H. Y.; Huang, C. H.; Qin, L.; Huang, R.; Shao, B.; Shao, J.; Zhu, B. Z. Unprecedented strong intrinsic chemiluminescence generation from degradation of halogenated hydroxy-quinoid pollutants by co(II)-mediated advanced oxidation processes: The critical role of site-specific production of hydroxyl radicals. Chem. Eng. J. 2020, 394, 125023.

[58]

Zhao, Y. G.; Wang, R. G.; Liu, M. The comparison of protecting methods to the amino group in 2-aminomethylphenylacetic acid. Res. Chem. Intermed. 2014, 40, 1637–1640.

[59]

Arai, T.; Kakino, J. Catalytic asymmetric synthesis of 3-indolyl methanamines using unprotected indoles and N-Boc imines under basic conditions. Angew. Chem., Int. Ed. 2016, 55, 15263–15267.

[60]

Choe, J. H.; Kim, H.; Yun, H.; Kang, M.; Park, S.; Yu, S. M.; Hong, C. S. Boc protection for diamine-appended MOF adsorbents to enhance CO2 recyclability under realistic humid conditions. J. Am. Chem. Soc. 2024, 146, 646–659.

Nano Research
Cite this article:
Wang C, Fang Y, Zhou D, et al. Surface oxidation of carbon dots enables highly selective and sensitive chemiluminescence detection of hydroxyl radical. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6928-3
Topics:

106

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 June 2024
Revised: 20 July 2024
Accepted: 01 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return