Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Encapsulating natural enzymes in metal–organic frameworks (MOFs) can maintain the original biological functions of enzymes in harsh environments. However, the nature of interfacial interactions between a MOF and enzyme is currently unclear, rendering effective regulation of the biocatalytic activity of the enzyme@MOF composite difficult. Differences in the hydrophilicity of MOF carriers are closely related to the conformational changes and catalytic properties of the enzyme. In this study, the catalytic activity, stability, and conformational changes of alkaline phosphatase (ALP) encapsulated in hydrophilic zeolite imidazolate framework-90 (ZIF-90) and hydrophobic ZIF-8 were systematically investigated using experimental methods and molecular dynamics simulations. The results demonstrated that hydrophilic ZIF-90-encapsulated ALP exhibited superior stability and was 2.22-fold more retained catalytically active than hydrophobic ALP@ZIF-8 after 20 cycles of utilization. Moreover, the hydrophilic interface provided by ZIF-90 effectively regulated the structure of ALP to maintain the optimal catalytic conformation of its active center. The practical application of highly bioactive ALP@ZIF-90 was demonstrated by employing it in a self-calibrated colorimetric/fluorescence dual-mode sensing method for the efficient, reliable, and accurate detection of methyl paraoxon. This study provides new insights for improving enzyme immobilization strategies and promoting the rapid development of enzyme@MOF composites for catalytic and sensing applications.
Wang, K. Y.; Zhang, J. Q.; Hsu, Y. C.; Lin, H. Y.; Han, Z. S.; Pang, J. D.; Yang, Z. T.; Liang, R. R.; Shi, W.; Zhou, H. C. Bioinspired framework catalysts: From enzyme immobilization to biomimetic catalysis. Chem. Rev. 2023, 123, 5347–5420.
Yu, Z. C.; Tang, J.; Gong, H. X.; Gao, Y.; Zeng, Y. Y.; Tang, D. P.; Liu, X. L. Enzyme-encapsulated protein trap engineered metal–organic framework-derived biomineral probes for non-invasive prostate cancer surveillance. Adv. Funct. Mater. 2023, 33, 2301457.
Luo, Z. B.; Zhang, L. J.; Zeng, R. J.; Su, L. S.; Tang, D. P. Near-infrared light-excited core–core–shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal. Chem. 2018, 90, 9568–9575.
An, H. D.; Li, M. M.; Gao, J.; Zhang, Z. J.; Ma, S. Q.; Chen, Y. Incorporation of biomolecules in metal–organic frameworks for advanced applications. Coord. Chem. Rev. 2019, 384, 90–106.
Chen, Y. J.; Jiménez-Ángeles, F.; Qiao, B. F.; Krzyaniak, M. D.; Sha, F. R.; Kato, S.; Gong, X. Y.; Buru, C. T.; Chen, Z. J.; Zhang, X. et al. Insights into the enhanced catalytic activity of cytochrome c when encapsulated in a metal–organic framework. J. Am. Chem. Soc. 2020, 142, 18576–18582.
Li, X. Y.; Cao, X.; Xiong, J. R.; Ge, J. Enzyme-metal hybrid catalysts for chemoenzymatic reactions. Small 2020, 16, 1902751.
Matsuura, S. I.; Baba, T.; Ikeda, T.; Yamamoto, K.; Tsunoda, T.; Yamaguchi, A. Highly precise and sensitive polymerase chain reaction using mesoporous silica-immobilized enzymes. ACS Appl. Mater. Interfaces 2022, 14, 29483–29490.
Chen, Q.; Qu, G.; Li, X.; Feng, M. J.; Yang, F.; Li, Y. J.; Li, J. C.; Tong, F. F.; Song, S. Y.; Wang, Y. J. et al. Active and stable alcohol dehydrogenase-assembled hydrogels via synergistic bridging of triazoles and metal ions. Nat. Commun. 2023, 14, 2117.
Zhang, F.; Lian, M. Y.; Alhadhrami, A.; Huang, M. N.; Li, B.; Mersal, G.; Ibrahim, M. M.; Xu, M. J. Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol a degradation from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 1852–1864.
Xu, W. Q.; Jiao, L.; Wu, Y.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Metal–organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv. Mater. 2021, 33, 2005172.
Liu, X. P.; Yan, Z. Q.; Zhang, Y.; Liu, Z. W.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Two-dimensional metal–organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222–5230.
Tian, D. P.; Hao, R. P.; Zhang, X. M.; Shi, H.; Wang, Y. W.; Liang, L. F.; Liu, H. C.; Yang, H. Q. Multi-compartmental MOF microreactors derived from pickering double emulsions for chemo-enzymatic cascade catalysis. Nat. Commun. 2023, 14, 3226.
Liang, J. Y.; Gao, S.; Liu, J.; Zulkifli, M. Y. B.; Xu, J. T.; Scott, J.; Chen, V.; Shi, J. F.; Rawal, A.; Liang, K. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5421–5428.
Snyder, B. E. R.; Turkiewicz, A. B.; Furukawa, H.; Paley, M. V.; Velasquez, E. O.; Dods, M. N.; Long, J. R. A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks. Nature 2023, 613, 287–291.
Ji, Z.; Li, T.; Yaghi, O. M. Sequencing of metals in multivariate metal–organic frameworks. Science 2020, 369, 674–680.
Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Benahmed, L.; Bourdreux, F.; Zhang, Q.; Serre, C.; Mahy, J. P.; Steunou, N. Enzyme encapsulation in mesoporous metal–organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem., Int. Ed. 2018, 57, 16141–16146.
Gao, Y.; Li, M. J.; Zeng, Y. Y.; Liu, X. L.; Tang, D. P. Tunable competitive absorption-induced signal-on photoelectrochemical immunoassay for cardiac troponin I based on Z-scheme metal–organic framework heterojunctions. Anal. Chem. 2022, 94, 13582–13589.
Lv, S. Z.; Tang, Y.; Zhang, K. Y.; Tang, D. P. Wet NH3-triggered NH2-MIL-125(Ti) structural switch for visible fluorescence immunoassay impregnated on paper. Anal. Chem. 2018, 90, 14121–14125.
Lv, S. Z.; Zhang, K. Y.; Zhu, L.; Tang, D. P. ZIF-8-assisted NaYF4:Yb, Tm@ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal. Chem. 2020, 92, 1470–1476.
Lv, S. Z.; Zhang, K. Y.; Zhu, L.; Tang, D. P.; Niessner, R.; Knopp, D. H2-based electrochemical biosensor with Pd nanowires@ZIF-67 molecular sieve bilayered sensing interface for immunoassay. Anal. Chem. 2019, 91, 12055–12062.
Yang, C. Q.; Liu, W.; Chen, S. F.; Zong, X. Q.; Yuan, P. F.; Chen, X. J.; Li, X. D.; Li, Y. C.; Xue, W.; Dai, J. MOF-immobilized two-in-one engineered enzymes enhancing activity of biocatalytic cascade for tumor therapy. Adv. Healthc. Mater. 2023, 12, 2203035.
Sun, H. B.; Yuan, F.; Jia, S. R.; Zhang, X. K.; Xing, W. H. Laccase encapsulation immobilized in mesoporous ZIF-8 for enhancement bisphenol a degradation. J. Hazard. Mater. 2023, 445, 130460.
Pei, R.; Ye, L.; Jing, C. Y. Enzyme-based electrochemical biosensor for antimonite detection in water. Biosens. Bioelectron. 2023, 229, 115244.
Liang, W. B.; Xu, H. S.; Carraro, F.; Maddigan, N. K.; Li, Q. W.; Bell, S. G.; Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H. et al. Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J. Am. Chem. Soc. 2019, 141, 2348–2355.
Li, Y. M.; Yuan, J.; Ren, H.; Ji, C. Y.; Tao, Y.; Wu, Y. H.; Chou, L. Y.; Zhang, Y. B.; Cheng, L. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal–organic frameworks. J. Am. Chem. Soc. 2021, 143, 15378–15390.
Liang, W. B.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C. K.; Falcaro, P.; Doonan, C. J. Metal–organic framework-based enzyme biocomposites. Chem. Rev. 2021, 121, 1077–1129.
Mao, X. X.; Qiu, D. H.; Wei, S. J.; Zhang, X. B.; Lei, J. P.; Mergny, J. L.; Ju, H. X.; Zhou, J. A double hemin bonded G-quadruplex embedded in metal–organic frameworks for biomimetic cascade reaction. ACS Appl. Mater. Interfaces 2022, 14, 54598–54606.
Ge, D. H.; Li, M. W.; Wei, D. L.; Zhu, N. F.; Wang, Y.; Li, M. F.; Zhang, Z.; Zhao, H. J. Enhanced activity of enzyme encapsulated in hydrophilic metal–organic framework for biosensing. Chem. Eng. J. 2023, 469, 144067.
Wei, D. L.; Li, M. W.; Ai, F. X.; Wang, K.; Zhu, N. F.; Wang, Y.; Yin, D. Q.; Zhang, Z. Fabrication of biomimetic cascade nanoreactor based on covalent organic framework capsule for biosensing. Anal. Chem. 2023, 95, 11052–11060.
Mei, D. C.; Liu, L. J.; Li, H.; Wang, Y. D.; Ma, F. Q.; Zhang, C. H.; Dong, H. X. Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate. J. Hazard. Mater. 2022, 422, 126872.
Liu, S. Y.; Liu, J. X.; Wang, Z. F.; Wu, Z. Q.; Wei, Y. L.; Liu, P. R.; Lan, X. D.; Liao, Y. X.; Lan, P. In situ embedding of glucose oxidase in amorphous ZIF-7 with high catalytic activity and stability and mechanism investigation. Int. J. Biol. Macromol. 2023, 242, 124806.
Li, D. W.; Cheng, Y.; Zuo, H.; Zhang, W.; Pan, G. W.; Fu, Y. J.; Wei, Q. F. Dual-functional biocatalytic membrane containing laccase-embedded metal–organic frameworks for detection and degradation of phenolic pollutant. J. Colloid Interface Sci. 2021, 603, 771–782.
Li, W. P.; Shi, J. F.; Chen, Y.; Liu, X. Y.; Meng, X. X.; Guo, Z. Y.; Li, S. H.; Zhang, B. Y.; Jiang, Z. Y. Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization. Chem. Eng. J. 2023, 468, 143609.
Zhou, Z. X.; Chao, H.; He, W. T.; Su, P.; Song, J. Y.; Yang, Y. Boosting the activity of enzymes in metal–organic frameworks by a one-stone-two-bird enzymatic surface functionalization strategy. Appl. Surf. Sci. 2022, 586, 152815.
Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.
Fried, D. I.; Bednarski, D.; Dreifke, M.; Brieler, F. J.; Thommes, M.; Fröba, M. Influence of the hydrophilic-hydrophobic contrast of porous surfaces on the enzymatic performance. J. Mater. Chem. B 2015, 3, 2341–2349.
Mathesh, M.; Luan, B. Q.; Akanbi, T. O.; Weber, J. K.; Liu, J. Q.; Barrow, C. J.; Zhou, R. H.; Yang, W. R. Opening lids: Modulation of lipase immobilization by graphene oxides. ACS Catal. 2016, 6, 4760–4768.
Zhang, J. H.; Wang, Z. X.; Zhuang, W.; Rabiee, H.; Zhu, C. J.; Deng, J. W.; Ge, L.; Ying, H. J. Amphiphilic nanointerface: Inducing the interfacial activation for lipase. ACS Appl. Mater. Interfaces 2022, 14, 39622–39636.
Kang, H.; Vázquez, F. X.; Zhang, L. L.; Das, P.; Toledo-Sherman, L.; Luan, B. Q.; Levitt, M.; Zhou, R. H. Emerging β-sheet rich conformations in supercompact huntingtin exon-1 mutant structures. J. Am. Chem. Soc. 2017, 139, 8820–8827.
Bhatt, P.; Bhatt, K.; Chen, W. J.; Huang, Y. H.; Xiao, Y.; Wu, S. Y.; Lei, Q. Q.; Zhong, J. F.; Zhu, X. X.; Chen, S. H. Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation. J. Hazard. Mater. 2023, 443, 130319.
Kokkonen, P.; Bednar, D.; Pinto, G.; Prokop, Z.; Damborsky, J. Engineering enzyme access tunnels. Biotechnol. Adv. 2019, 37, 107386.
Huang, Y. Y.; Richardson, S. J.; Brennan, C. S.; Kasapis, S. Mechanistic insights into α-amylase inhibition, binding affinity and structural changes upon interaction with Gallic acid. Food Hydrocoll. 2024, 148, 109467.
Anderson, R. A.; Bosron, W. F.; Kennedy, F. S.; Vallee, B. L. Role of magnesium in Escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. USA 1975, 72, 2989–2993.
Nadar, S. S.; Vaidya, L.; Rathod, V. K. Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization. Int. J. Biol. Macromol. 2020, 149, 861–876.
Shao, P. J.; He, Z.; Hu, Y. T.; Shen, Y.; Zhang, S. H.; Yu, Y. A. Zeolitic imidazolate frameworks with different organic ligands as carriers for carbonic anhydrase immobilization to promote the absorption of CO2 into tertiary amine solution. Chem. Eng. J. 2022, 435, 134957.
Liu, Q.; Chapman, J.; Huang, A. S.; Williams, K. C.; Wagner, A.; Garapati, N.; Sierros, K. A.; Dinu, C. Z. User-tailored metal organic frameworks as supports for carbonic anhydrase. ACS Appl. Mater. Interfaces 2018, 10, 41326–41337.
Liang, W. B.; Flint, K.; Yao, Y. C.; Wu, J. C.; Wang, L. Z.; Doonan, C.; Huang, J. Enhanced bioactivity of enzyme/MOF biocomposite via host framework engineering. J. Am. Chem. Soc. 2023, 145, 20365–20374.
Zhao, M. Q.; Wang, M.; Zhang, X. G.; Zhu, Y. A.; Cao, J.; She, Y. X.; Cao, Z.; Li, G. Y.; Wang, J.; Abd El-Aty, A. M. Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4942–4965.
Liu, S. L.; Zhou, J. T.; Yuan, X.; Xiong, J.; Zong, M. H.; Wu, X. L.; Lou, W. Y. A dual-mode sensing platform based on metal–organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem. 2024, 432, 137272.