AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Drawing highly ordered MXene fibers from dynamically aggregated hydrogels

Shengyang Zhou1,2( )Xuan Li1Yilin Zhang1Joseph Halim3Chao Xu2Johanna Rosen3Maria Strømme2
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala 751 03, Sweden
Materials Design, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
Show Author Information

Graphical Abstract

This work provides fundamental insights into the aggregation behavior of MXene colloid systems and introduces a straightforward method for spinning highly ordered MXene fibers with the assistance of polyanions. The demonstrated approach holds significant application potential in the field of wearable electronics.

Abstract

Assembly of two-dimensional (2D) nanomaterials into well-organized architectures is pivotal for controlling their function and enhancing performance. As a promising class of 2D nanomaterials, MXenes have attracted significant interest for use in wearable electronics due to their unique electrical and mechanical properties. However, facile approaches for fabricating MXenes into macroscopic fibers with controllable structures are limited. In this study, we present a strategy for easily spinning MXene fibers by incorporating polyanions. The introduction of poly(acrylic acid) (PAA) into MXene colloids has been found to alter MXene aggregation behavior, resulting in a reduced concentration threshold for lyotropic liquid crystal phase. This modification also enhances the viscosity and shear sensitivity of MXene colloids. Consequently, we were able to draw continuous fibers directly from the gel of MXene aggregated with PAA. These fibers exhibit homogeneous diameter and high alignment of MXene nanosheets, attributed to the shear-induced long-range order of the liquid crystal phase. Furthermore, we demonstrate proof-of-concept applications of the ordered MXene fibers, including textile-based supercapacitor, sensor and electrical thermal management, highlighting their great potential applied in wearable electronics. This work provides a guideline for processing 2D materials into controllable hierarchical structures by regulating aggregation behavior through the addition of ionic polymers.

Electronic Supplementary Material

Download File(s)
6930_ESM.pdf (1.4 MB)

References

[1]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[2]

Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[3]

Qin, L. Q.; Jiang, J. X.; Hou, L. T.; Zhang, F. L.; Rosen, J. MXene-based multifunctional smart fibers for wearable and portable electronics. J. Mater. Chem. A 2022, 10, 12544–12550.

[4]

Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

[5]

Sarycheva, A.; Polemi, A.; Liu, Y. Q.; Dandekar, K.; Anasori, B.; Gogotsi, Y. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 2018, 4, eaau0920.

[6]

Eom, W.; Shin, H.; Ambade, R. B.; Lee, S. H.; Lee, K. H.; Kang, D. J.; Han, T. H. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 2020, 11, 2825.

[7]

Zhang, J. Z.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z. Y.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W. W. et al. Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 2020, 6, 254–265.

[8]
Cao, X. H.; Wu, G. Q.; Li, K. R.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. High-performance Zn2+-crosslinked MXene fibers for versatile flexible electronics. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202407975.
[9]

Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J. F.; Duguay, F.; Chretien, N.; Welsh, E. A.; Soares, J. W.; Karatzas, C. N. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002, 295, 472–476.

[10]

Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008.

[11]

Teulé, F.; Miao, Y. G.; Sohn, B. H.; Kim, Y. S.; Hull, J. J.; Fraser, M. J.; Lewis, R. V.; Jarvis, D. L. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. USA 2012, 109, 923–928.

[12]

Zhang, X. K.; Cui, M. K.; Wang, S. S.; Han, F.; Xu, P. P.; Teng, L. Y.; Zhao, H.; Wang, P.; Yue, G. C.; Zhao, Y. et al. Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nat. Commun. 2022, 13, 2731.

[13]

Abdolhosseinzadeh, S.; Jiang, X. T.; Zhang, H.; Qiu, J. S.; Zhang, C. F. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 2021, 48, 214–240.

[14]

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

[15]

Liu, Y. J.; Xu, Z.; Gao, W. W.; Cheng, Z. D.; Gao, C. Graphene and other 2D colloids: Liquid crystals and macroscopic fibers. Adv. Mater. 2017, 29, 1606794.

[16]

Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659.

[17]

Zheng, Y. C.; Wang, Y. L.; Zhao, J. P.; Li, Y. Electrostatic interfacial cross-linking and structurally oriented fiber constructed by surface-modified 2D MXene for high-performance flexible pseudocapacitive storage. ACS Nano 2023, 17, 2487–2496.

[18]

Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N. J.; Kumbur, E. C.; Gogotsi, Y. Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano 2018, 12, 2685–2694.

[19]

Ge, G.; Zhang, Y. Z.; Zhang, W.; Yuan, W.; El-Demellawi, J. K.; Zhang, P.; Di Fabrizio, E.; Dong, X. and Alshareef, H. N. Ti3C2TX MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach. ACS Nano 2021, 15, 2698–2706.

[20]

Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

[21]

Forsyth, P. A. Jr.; Marčelja, S.; Mitchell, D. J.; Ninham, B. W. Onsager transition in hard plate fluid. J. Chem. Soc. Faraday Trans. 2 1977, 73, 84–88.

[22]

Verberg, R.; de Schepper, I. M.; Cohen, E. G. D. Viscosity of colloidal suspensions. Phys. Rev. E 1997, 55, 3143–3158.

[23]

Lintuvuori, J. S.; Marenduzzo, D.; Stratford, K.; Cates, M. E. Colloids in liquid crystals: A lattice Boltzmann study. J. Mater. Chem. 2010, 20, 10547–10552.

[24]
Mewis, J.; Wagner, N. J. Colloidal Suspension Rheology; Cambridge University Press: Cambridge, 2012.
[25]

Blair, G. W. S.; Hening, J. C.; Wagstaff, A. The flow of cream through narrow glass tubes. J. Phys. Chem. 1939, 43, 853–864.

[26]
Bingham, E. C. An Investigation of the Laws of Plastic Flow; Government Printing Office: Washington, 1917.
[27]

Li, Y. X.; Yan, J. H.; Liu, Y. J.; Xie, X. M. Super tough and intelligent multibond network physical hydrogels facilitated by Ti3C2TX MXene nanosheets. ACS Nano 2022, 16, 1567–1577.

Nano Research
Pages 9815-9821
Cite this article:
Zhou S, Li X, Zhang Y, et al. Drawing highly ordered MXene fibers from dynamically aggregated hydrogels. Nano Research, 2024, 17(11): 9815-9821. https://doi.org/10.1007/s12274-024-6930-9
Topics:

248

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 June 2024
Revised: 30 July 2024
Accepted: 31 July 2024
Published: 27 August 2024
© Tsinghua University Press 2024
Return