AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of ternary Sn/SnO2/nitrogen-doped carbon superstructures as anodes for advanced lithium-ion batteries

Zizhou Shen1,§Xiaotian Guo1,§( )Hongye Ding1Dianheng Yu1Yihao Chen1Nana Li2Huijie Zhou1Songtao Zhang1Jun Wu1Huan Pang1( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, China

§ Zizhou Shen and Xiaotian Guo contributed equally to this work.

Show Author Information

Graphical Abstract

A facile electrospray-carbonization strategy was adopted for the synthesis of a ternary Sn/SnO2/nitrogen-doped carbon (NC) superstructure as an anode for lithium-ion batteries (LIBs). By merits of the synergistic effect of Sn nanoparticles (NPs), SnO2 NPs and NC matrix, the Sn/SnO2/NC anode exhibited superb specific capacity and cyclability. This work provides inspiration for fabricating Sn-based anodes, which suffers poor conductivity and huge volume expansion.

Abstract

Pristine tin (Sn) and tin dioxide (SnO2) have sparked wide interest owing to their abundant resources and superior theoretical capacity. Nevertheless, the obvious volume expansion effect upon cycling and undesirable conductivity of Sn-based materials lead to undesirable specific capacity. In this work, a nanostructured Sn/SnO2/nitrogen-doped carbon (NC) superstructure was prepared through a facile electrospray-carbonization strategy. The Sn/SnO2 nanoparticles (NPs) were uniformly dispersed in a spherical NC matrix, which prevented the volume expansion and aggregation of NPs and facilitated the ion diffusion and charge transfer kinetics. When the optimized Sn/SnO2/NC superstructures were employed as lithium-ion battery anodes, a remarkable specific capacity of 747.9 mAh·g−1 over 200 cycles at 0.5 A·g−1 and a superior cyclability of 644.1 mAh·g−1 over 1000 cycles at 2 A·g−1 were obtained. This effective synthetic strategy for synthesizing superstructures provides valuable insights for the advancement of lithium-ion batteries.

Electronic Supplementary Material

Download File(s)
6931_ESM.pdf (3.2 MB)

References

[1]

Liu, H.; Zhao, C.; Wu, X.; Hu, C. J.; Geng, F. S.; Shen, M.; Hu, B.; Hu, B.; Li, C. Inconsistency between superstructure stability and long-term cyclability of oxygen redox in Na layered oxides. Energy Environ. Sci. 2024, 17, 668–679.

[2]

Ai, Y.; Yang, C. C.; Yin, Z. Q.; Wang, T.; Gai, T. Y.; Feng, J. Y.; Li, K. L.; Zhang, W.; Li, Y. F.; Wang, F. et al. Biomimetic superstructured interphase for aqueous zinc-ion batteries. J. Am. Chem. Soc. 2024, 146, 15496–15505.

[3]

Ma, Y. R.; Qu, H. Q.; Wang, W. N.; Yu, Y. Q.; Zhang, X. H.; Li, B.; Wang, L. Si/SiO2@graphene superstructures for high-performance lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2211648.

[4]

Cai, G. R.; Gao, H. P.; Li, M. Q.; Gupta, V.; Holoubek, J.; Pascal, T. A.; Liu, P.; Chen, Z. Partially ion-paired solvation structure design for lithium-sulfur batteries under extreme operating conditions. Angew. Chem., Int. Ed. 2024, 63, e202316786.

[5]

Jiang, H. M.; Zhang, S.; Yan, L. T.; Xing, Y. L.; Zhang, Z. C.; Zheng, Q. J.; Shen, J. X.; Zhao, X. B.; Wang, L. Z. Stress-dispersed superstructure of Sn3(PO4)2@PC derived from programmable assembly of metal-organic framework as long-life potassium/sodium-ion batteries anodes. Adv. Sci. 2023, 10, 2206587.

[6]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[7]

Li, H. W.; Wang, Z. Y.; Dang, L. Y.; Yu, K. L.; Yang, R.; Fu, A. P.; Liu, X. H.; Guo, Y. G.; Li, H. L.; Zhao, X. S. Si nanoparticles enclosed in hierarchically structured dual-component porous carbon as superior anode for lithium-ion batteries: Structure formation and properties investigation. Energy Storage Mater. 2024, 70, 103547.

[8]

Wang, C.; Yang, F. Z.; Wan, W.; Wang, S. H.; Zhang, Y. Y.; Huang, Y. H.; Li, J. A large-area lithium metal-carbon nanotube film for precise contact prelithiation in lithium-ion batteries. Energy Environ. Sci. 2023, 16, 4660–4669.

[9]

Li, Z. W.; Han, M. S.; Yu, P. L.; Lin, J. S.; Yu, J. Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 2024, 16, 98.

[10]

Zhang, Y. H.; Song, Z. Y.; Miao, L.; Lv, Y. K.; Gan, L. H.; Liu, M. X. Non-metallic NH4+/H+ Co-storage in organic superstructures for ultra-fast and long-life zinc-organic batteries. Angew. Chem., Int. Ed. 2024, 63, e202316835.

[11]

Xiong, X. H.; Yang, L. T.; Liang, G. S.; Liu, Z. W.; Yang, Z. Q.; Zhang, R. X.; Wang, C.; Che, R. C. Cation-vacancy ordered superstructure enhanced cycling stability in tungsten bronze anode. Adv. Energy Mater. 2022, 12, 2201967.

[12]
Sun, J. R.; Chen, G. D.; Wang, B.; Li, J. D.; Xu, G. J.; Wu, T. Y.; Tang, Y. F.; Dong, S. M.; Huang, J. Y.; Cui, G. L. Lithium hydride in the solid electrolyte interphase of lithium-ion batteries as a pulverization accelerator of silicon. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202406198.
[13]

Tao, L.; Xia, D. W.; Sittisomwong, P.; Zhang, H. R.; Lai, J. W.; Hwang, S.; Li, T. Y.; Ma, B. Y.; Hu, A. Y.; Min, J. et al. Solvent-mediated, reversible ternary graphite intercalation compounds for extreme-condition Li-ion batteries. J. Am. Chem. Soc. 2024, 146, 16764–16774.

[14]
Wu, X. X.; Liu, Y. H.; Wang, J. X.; Tan, Y. H.; Liang, Z.; Zhou, G. M. Toward circular energy: Exploring direct regeneration for lithium-ion battery sustainability. Adv. Mater., in press, DOI: 10.1002/adma.202403818.
[15]

Guo, X. T.; Xu, H. Y.; Li, W. T.; Liu, Y. Y.; Shi, Y. X.; Li, Q.; Pang, H. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv. Sci. 2023, 10, 2206084.

[16]

Wang, H. C.; Liu, Y. T.; Jiang, M. Z.; Yao, Y. X.; Hu, C. H.; Yan, C.; Zhang, Q.; Li, L. M. The potential regulation of working anode for long-term zero-volt storage at 37 °C in Li-ion batteries. Adv. Mater. 2024, 36, 2400656.

[17]

Huang, Y. M.; Li, J. Key challenges for grid-scale lithium-ion battery energy storage. Adv. Energy Mater. 2022, 12, 2202197.

[18]

Park, G. T.; Sun, H. H.; Noh, T. C.; Maglia, F.; Kim, S. J.; Lamp, P.; Sun, Y. K. Nanostructured Co-free layered oxide cathode that affords fast-charging lithium-ion batteries for electric vehicles. Adv. Energy Mater. 2022, 12, 2202719.

[19]
Egun, I. L.; Liu, Z. X.; Zheng, Y. Y.; Wang, Z. H.; Song, J. H.; Hou, Y.; Lu, J.; Wang, Y. C.; Chen, Z. F. Turning waste tyres into carbon electrodes for batteries: Exploring conversion methods, material traits, and performance factors. Carbon Energy, in press, DOI: 10.1002/cey2.571.
[20]

Zheng, Z.; Hu, S. J.; Yin, W. J.; Peng, J.; Wang, R.; Jin, J.; He, B. B.; Gong, Y. S.; Wang, H. W.; Fan, H. J. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 2024, 14, 2303064.

[21]

Khossossi, N.; Luo, W.; Haman, Z.; Singh, D.; Essaoudi, I.; Ainane, A.; Ahuja, R. Revealing the superlative electrochemical properties of O-B2N2 monolayer in lithium/sodium-ion batteries. Nano Energy 2022, 96, 107066.

[22]

Ying, H. J.; Han, W. Q. Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 2017, 4, 1700298.

[23]

Shin, J. H.; Song, J. Y. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery. Nano Converg. 2016, 3, 9.

[24]

Wu, Y. W.; Lin, G. Z.; Zhou, X. M.; Chen, J.; Zhuang, J. Y.; Chen, Q.; Luo, Y. F.; Lu, D. S.; Ganesh, V.; Zeng, R. H. Exploring structural stability mechanism of TiO2 encapsulated in 3D flower-like SnS2 anode for lithium ion batteries. J. Electroanal. Chem. 2020, 857, 113740.

[25]

Zuo, D. C.; Song, S. C.; An, C. S.; Tang, L. B.; He, Z. J.; Zheng, J. C. Synthesis of sandwich-like structured Sn/SnO x @MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy 2019, 62, 401–409.

[26]

Zhang, N.; Liu, K.; Zhang, H. B.; Wang, X. F.; Zhou, Y. H.; He, W. X.; Cui, J. L.; Sun, J. C. Constructing biomass-based ultrahigh-rate performance SnO y @C/SiO x anode for LIBs via disproportionation effect. Small 2023, 19, 2204867.

[27]

Zu, L. H.; Su, Q. M.; Zhu, F.; Chen, B. J.; Lu, H. H.; Peng, C. X.; He, T.; Du, G. H.; He, P. F.; Chen, K. et al. Antipulverization electrode based on low-carbon triple-shelled superstructures for lithium-ion batteries. Adv. Mater. 2017, 29, 1701494.

[28]

Qiu, H. L.; Zhao, L. N.; Asif, M.; Huang, X. X.; Tang, T. Y.; Li, W.; Zhang, T.; Shen, T.; Hou, Y. L. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 571–578.

[29]

Wu, X. Y.; Qian, C.; Wu, H. Y.; Xu, L.; Bu, L. L.; Piao, Y. Z.; Diao, G. W.; Chen, M. Gestated uniform yolk–shell Sn@N-doped hollow mesoporous carbon spheres with buffer space for boosting lithium storage performance. Chem. Commun. 2020, 56, 7629–7632.

[30]

Wang, S. H.; Cheng, Y.; Xue, H. J.; Zhang, D. Y.; Liu, W. Q.; Chang, L. M.; Wang, L. M. Verification of electrolyte decomposition in lithium-ion batteries: Based on the unique bowling-like Sn@C/EG-S composite. Chem. Eng. J. 2021, 422, 130520.

[31]
Kim, T. Y.; Im, C. Y.; Choi, J. H.; Gu, D.; Yoon, S.; Kim, U.; Kim, S. J. Fabrication of a porous copper/graphite/zirconium oxide hybrid anode via screen printing for lithium-ion batteries. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202411648.
[32]

Li, R.; Nie, S. Q.; Miao, C.; Xin, Y.; Mou, H. Y.; Xu, G. L.; Xiao, W. Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J. Colloid Interface Sci. 2022, 606, 1042–1054.

[33]

Gao, S. W.; Wang, N.; Li, S.; Li, D. M.; Cui, Z. M.; Yue, G. C.; Liu, J. C.; Zhao, X. X.; Jiang, L.; Zhao, Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 2465–2472.

[34]

Le, H. T. T.; Ngo, D. T.; Pham, X. M.; Nguyen, T. Y.; Dang, T. D.; Park, C. J. Graphitic N-CMK3 pores filled with SnO2 nanoparticles as an ultrastable anode for rechargeable Li-ion batteries. J. Power Sources 2019, 440, 227104.

[35]

Al-Enizi, A. M.; Naushad, M.; Al-Muhtaseb, A. H.; Ruksana; Alshehri, S. M.; Alothman, Z. A.; Ahamad, T. Synthesis and characterization of highly selective and sensitive Sn/SnO2/N-doped carbon nanocomposite (Sn/SnO2@NGC) for sensing toxic NH3 gas. Chem. Eng. J. 2018, 345, 58–66.

[36]

Liang, F. H.; Dong, H. L.; Ji, Z. Y.; Zhang, W.; Zhang, H. F.; Cao, C. Y.; Li, H.; Liu, H. C.; Zhang, K. Q.; Lai, Y. K. et al. Temperature-dependent synthesis of SnO2 or Sn embedded in hollow porous carbon nanofibers toward customized lithium-ion batteries. Sci. China Mater. 2023, 66, 1736–1746.

[37]

Guo, X. T.; Li, W. T.; Geng, P. B.; Zhang, Q. Y.; Pang, H.; Xu, Q. Construction of SiO x /nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. J. Colloid Interface Sci. 2022, 606, 784–792.

[38]

Yang, T. T.; Ying, H. J.; Zhang, S. L.; Wang, J. L.; Zhang, Z.; Han, W. Q. Electrochemical performance enhancement of micro-sized porous Si by integrating with nano-Sn and carbonaceous materials. Materials 2021, 14, 920.

[39]

Liu, K.; Wang, J. A.; Zheng, H. F.; Guo, S. H.; Wang, X. F.; Man, J. Z.; Wang, X. Y.; Sun, J. C. A sustainable strategy for fabricating porous carbon supported Sn submicron spheres by self-generated Na2CO3 as templates for lithium-ion battery anode. Green Chem. 2021, 23, 6490–6500.

[40]

Leng, J.; Wang, Z. X.; Li, X. H.; Guo, H. J.; Yan, G. C.; Hu, Q. Y.; Peng, W. J.; Wang, J. X. A novel dried plum-like yolk–shell architecture of tin oxide nanodots embedded into a carbon matrix: Ultra-fast assembly and superior lithium storage properties. J. Mater. Chem. A 2019, 7, 5803–5810.

[41]

Zhu, M.; Huang, Y. F.; Chen, G. R.; Lu, M.; Nevar, A. A.; Dudko, N.; Shi, L. Y.; Huang, L.; V Tarasenko, N.; Zhang, D. S. Sn, S co-doped LiCoO2 with low lithium ion diffusion energy barrier and high passivation surface for fast charging lithium ion batteries. Chem. Eng. J. 2023, 468, 143585.

[42]
Wu, H. Y.; Wei, L.; Li, W.; Shi, C. F.; Yao, X. Y.; Fu, Q. G.; Li, H. J.; Guo, X. Highly conductive carbon/carbon composites as advanced multifunctional anode materials for structural lithium-ion batteries. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202403729.
[43]

Wei, S. Y.; Hartman, T.; Mourdikoudis, S.; Liu, X. T.; Wang, G.; Kovalska, E.; Wu, B.; Azadmanjiri, J.; Yu, R. Z.; Chacko, L. et al. Reaction mechanism and performance of innovative 2D germanane-silicane alloys: Si x Ge1− x H electrodes in lithium-ion batteries. Adv. Sci. 2024, 11, 2308955.

[44]

Zhang, Y. L.; He, D. F.; Lu, J. H.; Huang, J.; Jiang, H. Y.; Rong, J. F.; Hou, G. L.; Chen, H. Q. Large-scale production of graphene encapsulated silicon nanospheres as flexible anodes for lithium ion batteries. Chem. Eng. J. 2024, 487, 150564.

[45]

Xi, F. S.; Zhang, Z.; Hu, Y. X.; Li, S. Y.; Ma, W. H.; Chen, X. H.; Wan, X. H.; Chong, C. M.; Luo, B.; Wang, L. Z. PSi@SiO x /nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries. J. Hazard. Mater. 2021, 414, 125480.

[46]

Mukhopadhyay, A.; Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 2014, 63, 58–116.

Nano Research
Pages 9721-9727
Cite this article:
Shen Z, Guo X, Ding H, et al. Construction of ternary Sn/SnO2/nitrogen-doped carbon superstructures as anodes for advanced lithium-ion batteries. Nano Research, 2024, 17(11): 9721-9727. https://doi.org/10.1007/s12274-024-6931-8
Topics:

454

Views

2

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 02 July 2024
Revised: 29 July 2024
Accepted: 31 July 2024
Published: 28 August 2024
© Tsinghua University Press 2024
Return