AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

A switchable high-sensitivity strain sensor based on piezotronic resonant tunneling junctions

Gongwei Hu1( )Li Zeng1Fobao Huang2,3( )Shuaiwei Fan1Qiao Chen4Wei Huang2,3( )
Hubei Engineering Research Center of Weak Magnetic-field Detection, Department of Physics, China Three Gorges University, Yichang 443002, China
School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China
Show Author Information

Graphical Abstract

Abstract

Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa−1, two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications.

Electronic Supplementary Material

Download File(s)
6932_ESM.pdf (518.1 KB)

References

[1]

Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

[2]

Wang, L. F.; Liu, S. H.; Feng, X. L.; Zhang, C. L.; Zhu, L. P.; Zhai, J. Y.; Qin, Y.; Wang, Z. L. Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 2020, 15, 661–667.

[3]

Shi, Q. F.; Dong, B. W.; He, T. Y. Y.; Sun, Z. D.; Zhu, J. X.; Zhang, Z. X.; Lee, C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162.

[4]

Shen, Z. R.; Liu, F. M.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W. H.; Xie, X. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298.

[5]

Yu, Q. H.; Ge, R.; Wen, J.; Du, T.; Zhai, J. Y.; Liu, S. H.; Wang, L. F.; Qin, Y. Highly sensitive strain sensors based on piezotronic tunneling junction. Nat. Commun. 2022, 13, 778.

[6]

Guo, D.; Guo, P. W.; Ren, L. L.; Yao, Y.; Wang, W.; Jia, M. M.; Wang, Y. L.; Wang, L. F.; Wang, Z. L.; Zhai, J. Y. Silicon flexoelectronic transistors. Sci. Adv. 2023, 9, eadd3310.

[7]

Mazumder, P.; Kulkarni, S.; Bhattacharya, M.; Sun, J. P.; Haddad, G. I. Digital circuit applications of resonant tunneling devices. Proc. IEEE 1998, 86, 664–686.

[8]

Cimbri, D.; Wang, J.; Al-Khalidi, A.; Wasige, E. Resonant tunneling diodes high-speed terahertz wireless communications - A review. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 226–244.

[9]

Petrzela, J. Multi-valued static memory with resonant tunneling diodes as natural source of chaos. Nonlinear Dyn. 2018, 94, 1867–1887.

[10]

Shim, J.; Oh, S.; Kang, D. H.; Jo, S. H.; Ali, M. H.; Choi, W. Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 2016, 7, 13413.

[11]

Iwamatsu, S.; Nishida, Y.; Fujita, M.; Nagatsuma, T. Terahertz coherent oscillator integrated with slot-ring antenna using two resonant tunneling diodes. Appl. Phys. Express 2021, 14, 034001.

[12]

Ourednik, P.; Feiginov, M. Double-resonant-tunneling-diode bridge-less patch-antenna oscillators operating up to 1.09 THz. Appl. Phys. Lett. 2022, 120, 183501.

[13]

Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156–159.

[14]

Hejda, M.; Alanis, J. A.; Ortega-Piwonka, I.; Lourenço, J.; Figueiredo, J.; Javaloyes, J.; Romeira, B.; Hurtado, A. Resonant tunneling diode nano-optoelectronic excitable nodes for neuromorphic spike-based information processing. Phys. Rev. Appl. 2022, 17, 024072.

[15]

Zhang, W. D.; Xue, C. Y.; Xiong, J. J.; Xie, B.; Wei, T. J.; Chen, Y. Piezoresistive effects of resonant tunneling structure for application in micro-sensors. Indian J. Pure Appl. Phys. 2007, 45, 294–298.

[16]

Xiong, J. J.; Wang, J.; Zhang, W. D.; Xue, C. Y.; Zhang, B. Z.; Hu, J. Piezoresistive effect in GaAs/In x Ga1− x As/AlAs resonant tunneling diodes for application in micromechanical sensors. Microelectron. J. 2008, 39, 771–776.

[17]

Li, J.; Guo, H.; Liu, J.; Tang, J.; Ni, H. Q.; Shi, Y. B.; Xue, C. Y.; Niu, Z. C.; Zhang, W. D.; Li, M. F. et al. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications. Nanoscale Res. Lett. 2013, 8, 218.

[18]

Zoghi, M.; Goharrizi, A. Y. Strain-induced armchair graphene nanoribbon resonant-tunneling diodes. IEEE Trans. Electron. Devices 2017, 64, 4322–4326.

[19]

Zoghi, M.; Kabir, M. Z. Effects of uniaxial strain on the performance of armchair graphene nanoribbon resonant tunneling diode. Semicond. Sci. Technol. 2019, 34, 055012.

[20]

Zhang, W. D.; Hu, J.; Xue, C. Y.; Zhang, B. Z.; Xiong, J. J.; Qiao, H.; Li, J. H. Piezoresistivity in GaAs/In x Ga1– x As/AlAs superlattice structures. Phys. Status Solidi (RRL) 2008, 2, 43–45.

[21]

Xu, L. P.; Wen, T. D.; Yang, X. F.; Xue, C. Y.; Xiong, J. J.; Zhang, W. D.; Wu, M. Z.; Hochheimer, H. D. Mesopiezoresistive effects in double-barrier resonant tunneling structures. Appl. Phys. Lett. 2008, 92, 043508.

[22]

Yan, W. J.; Fuh, H. R.; Lv, Y. H.; Chen, K. Q.; Tsai, T. Y.; Wu, Y. R.; Shieh, T. H.; Hung, K. M.; Li, J. C.; Zhang, D. et al. Giant gauge factor of Van der Waals material based strain sensors. Nat. Commun. 2021, 12, 2018.

[23]

Xue, C. Y.; Hu, J.; Zhang, W. D.; Zhang, B. Z.; Xiong, J. J.; Chen, Y. Integration of GaAs/In0.1Ga0.9As/AlAs resonance tunneling heterostructures into micro-electro-mechanical systems for sensor applications. Phys. Status Solidi (a) 2010, 207, 462–467.

[24]

Li, B.; Zhang, W. D.; Xie, B.; Xue, C. Y.; Xiong, J. J. Development of a novel GaAs micromachined accelerometer based on resonant tunneling diodes. Sens. Actuators A: Phys. 2008, 143, 230–236.

[25]

Young, E. S. K.; Akimov, A. V.; Henini, M.; Eaves, L.; Kent, A. J. Subterahertz acoustical pumping of electronic charge in a resonant tunneling device. Phys. Rev. Lett. 2012, 108, 226601.

[26]

Tajika, T.; Kakutani, Y.; Mori, M.; Maezawa, K. Experimental demonstration of strain detection using resonant tunneling delta-sigma modulation sensors. Phys. Status Solidi (a) 2017, 214, 1600548.

[27]
Osadchuk, I. A.; Osadchuk, A. V.; Osadchuk, V. S.; Semenov, A. O. Nanoelectronic pressure transducer with a frequency output based on a resonance tunnel diode. In Proceedings of 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp 452–457.
[28]

Osadchuk, O. V.; Osadchuk, V. S.; Osadchuk, I. A. Mathematical model of a frequency pressure transducer based on a resonant tunneling diode. Phys. Chem. Solid State 2022, 23, 277–284.

[29]

Xiong, J. J.; Zhang, W. D.; Mao, H. Y.; Wang, K. Q. Research on double-barrier resonant tunneling effect based stress measurement methods. Sens. Actuators A: Phys. 2009, 150, 169–174.

[30]

Xing, J. J.; Mao, H. Y.; Zhang, W. D.; Wang, K. Q. A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes. Chin. Phys. B 2009, 18, 1242–1247.

[31]

Cong, L.; Albrecht, J. D.; Nathan, M. I.; Ruden, P. P. Piezoelectric effect in (001)- and (111)-oriented double-barrier resonant tunneling devices. J. Appl. Phys. 1996, 79, 7770–7774.

[32]

Zhang, B. Z.; Guo, H.; Tang, J.; Liu, J.; Wang, J. Temperature characteristic optimizations of the RTD sensitivity for the MEMS sensor applications. Appl. Mech. Mater. 2012, 220–223, 1906–1910.

[33]

Cong, L.; Albrecht, J. D.; Nathan, M. I.; Ruden, P. P.; Smith, D. L. Piezoelectric effects in (001)-oriented double barrier resonant tunneling structures. Appl. Phys. Lett. 1995, 66, 1358–1360.

[34]

Wang, J.; Zhang, W. D.; Xue, C. Y.; Xiong, J. J.; Liu, J.; Xie, B. Pressure effects in AlAs/In x Ga1− x As/GaAs resonant tunnelling diodes for application in micromachined sensors. Chin. Phys. 2007, 16, 1150–1154.

[35]

Boucherit, M.; Soltani, A.; Monroy, E.; Rousseau, M.; Deresmes, D.; Berthe, M.; Durand, C.; De Jaeger, J. C. Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes. Appl. Phys. Lett. 2011, 99, 182109.

[36]

Nagase, M.; Tokizaki, T. Bistability characteristics of GaN/AlN resonant tunneling diodes caused by intersubband transition and electron accumulation in quantum well. IEEE Trans. Electron. Devices 2014, 61, 1321–1326.

[37]

Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

[38]

Wang, Z. N.; Yu, R. M.; Wen, X. N.; Liu, Y.; Pan, C. F.; Wu, W. Z.; Wang, Z. L. Optimizing performance of silicon-based p–n junction photodetectors by the piezo-phototronic effect. ACS Nano 2014, 8, 12866–12873.

[39]

Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire. ACS Nano 2012, 6, 9229–9236.

[40]

Mintken, M.; Schweichel, M.; Schröder, S.; Kaps, S.; Carstensen, J.; Mishra, Y. K.; Strunskus, T.; Faupel, F.; Adelung, R. Nanogenerator and piezotronic inspired concepts for energy efficient magnetic field sensors. Nano Energy 2019, 56, 420–425.

[41]

Yan, S. K.; Zheng, Z.; Rai, S.; Retana, M. A.; Bhatt, M.; Malkinski, L.; Zhou, W. L. Coupling effect of magnetic fields on piezotronic and piezophototronic properties of ZnO and ZnO/Co3O4 core/shell nanowire arrays. ACS Appl. Nano Mater. 2018, 1, 6897–6903.

[42]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[43]

Yu, R. M.; Niu, S. M.; Pan, C. F.; Wang, Z. L. Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors. Nano Energy 2015, 14, 312–339.

[44]

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

[45]

Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.

[46]

Zhang, Y.; Leng, Y. S.; Willatzen, M.; Huang, B. L. Theory of piezotronics and piezo-phototronics. MRS Bull. 2018, 43, 928–935.

[47]

Liao, X. Q.; Yan, X. Q.; Lin, P.; Lu, S. N.; Tian, Y.; Zhang, Y. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. ACS Appl. Mater. Interfaces 2015, 7, 1602–1607.

[48]

Zhang, Q. Y.; Feng, X. L.; Li, L. J. Theoretical study of piezotronic metal-insulator-semiconductor tunnel devices. J. Phys. D: Appl. Phys. 2018, 51, 324006.

[49]

Liu, S. H.; Wang, L. F.; Feng, X. L.; Liu, J. M.; Qin, Y.; Wang, Z. L. Piezotronic tunneling junction gated by mechanical stimuli. Adv. Mater. 2019, 31, 1905436.

[50]

Dan, M. J.; Hu, G. W.; Li, L. J.; Zhang, Y. High performance quantum piezotronic tunneling transistor based on edge states of MoS2 nanoribbon. Nano Energy 2022, 98, 107275.

[51]

Hu, G. W.; Huang, F. B.; Liu, J. F. Ultrasensitive strain sensor based on a tunnel junction with an AlN/GaN core–shell nanowire. Phys. Rev. Appl. 2023, 19, 014066.

[52]

Grifoni, M.; Hänggi, P. Driven quantum tunneling. Phys. Rep. 1998, 304, 229–354.

[53]

Encomendero, J.; Faria, F. A.; Islam, S. M.; Protasenko, V.; Rouvimov, S.; Sensale-Rodriguez, B.; Fay, P.; Jena, D.; Xing, H. G. New tunneling features in polar III-nitride resonant tunneling diodes. Phys. Rev. X 2017, 7, 041017.

[54]

Encomendero, J.; Yan, R. S.; Verma, A.; Islam, S. M.; Protasenko, V.; Rouvimov, S.; Fay, P.; Jena, D.; Xing, H. G. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2. Appl. Phys. Lett. 2018, 112, 103101.

[55]

Encomendero, J.; Protasenko, V.; Sensale-Rodriguez, B.; Fay, P.; Rana, F.; Jena, D.; Xing, H. G. Broken symmetry effects due to polarization on resonant tunneling transport in double-barrier nitride heterostructures. Phys. Rev. Appl. 2019, 11, 034032.

[56]

Lin, S. J.; Wang, D.; Tong, Y. Z.; Shen, B.; Wang, X. Q. III-nitrides based resonant tunneling diodes. J. Phys. D: Appl. Phys. 2020, 53, 253002.

[57]

Encomendero, J.; Protasenko, V.; Rana, F.; Jena, D.; Xing, H. G. Fighting broken symmetry with doping: Toward polar resonant tunneling diodes with symmetric characteristics. Phys. Rev. Appl. 2020, 13, 034048.

[58]

Encomendero, J.; Islam, S. M.; Jena, D.; Xing, H. G. Molecular beam epitaxy of polar III-nitride resonant tunneling diodes. J. Vac. Sci. Technol. A 2021, 39, 023409.

[59]

Encomendero, J.; Protasenko, V.; Jena, D.; Xing, H. G. Defeating broken symmetry with doping: Symmetric resonant tunneling in noncentrosymetric heterostructures. Phys. Rev. B 2023, 107, 125301.

[60]

Sakr, S.; Warde, E.; Tchernycheva, M.; Julien, F. H. Ballistic transport in GaN/AlGaN resonant tunneling diodes. J. Appl. Phys. 2011, 109, 023717.

[61]

Dakhlaoui, H.; Almansour, S. Piezoelectric polarization and quantum size effects on the vertical transport in AlGaN/GaN resonant tunneling diodes. Chin. Phys. B 2016, 25, 067304.

[62]

Grier, A.; Valavanis, A.; Edmunds, C.; Shao, J.; Cooper, J. D.; Gardner, G.; Manfra, M. J.; Malis, O.; Indjin, D.; Ikonić, Z. et al. Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices. J. Appl. Phys. 2015, 118, 224308.

[63]

Song, A. Y.; Bhat, R.; Bouzi, P.; Zah, C. E.; Gmachl, C. F. Three-dimensional interface roughness in layered semiconductor structures and its effect on intersubband transitions. Phys. Rev. B 2016, 94, 165307.

[64]

Luryi, S. Frequency limit of double-barrier resonant-tunneling oscillators. Appl. Phys. Lett. 1985, 47, 490–492.

[65]

Buttiker, M. Coherent and sequential tunneling in series barriers. IBM J. Res. Dev. 1988, 32, 63–75.

[66]

Hu, G. W.; Huang, F. B.; Huang, W. Layer engineering piezotronic effect in two-dimensional homojunction transistors. Nano Energy 2023, 117, 108880.

[67]

Pan, C. F.; Zhai, J. Y.; Wang, Z. L. Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 2019, 119, 9303–9359.

[68]

Tsu, R.; Esaki, L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973, 22, 562–564.

[69]

Jonson, M.; Grincwajg, A. Effect of inelastic scattering on resonant and sequential tunneling in double barrier heterostructures. Appl. Phys. Lett. 1987, 51, 1729–1731.

[70]

Wang, D.; Chen, Z. Y.; Wang, T.; Yang, L. Y.; Sheng, B. W.; Liu, H. P.; Su, J.; Wang, P.; Rong, X.; Cheng, J. Y. et al. Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Appl. Phys. Lett. 2019, 114, 073503.

[71]

Liu, N.; Hu, G. W.; Dan, M. J.; Liu, R. H.; Zhang, Y. M.; Li, L. J.; Zhang, Y. Piezo-phototronic effect on quantum well terahertz photodetector for continuously modulating wavelength. Nano Energy 2019, 65, 104091.

[72]

Dan, M. J.; Hu, G. W.; Nie, J. H.; Li, L. J.; Zhang, Y. High-performance piezo-phototronic devices based on intersubband transition of wurtzite quantum well. Small 2021, 17, 2008106.

[73]

Ren, Z. B.; Venugopal, R.; Goasguen, S.; Datta, S.; Lundstrom, M. S. nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron. Devices 2003, 50, 1914–1925.

[74]
Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Cengage Learning: New York, 1976.
[75]

Hu, G. W.; Li, L. J.; Zhang, Y. Two-dimensional electron gas in piezotronic devices. Nano Energy 2019, 59, 667–673.

[76]

Hu, G. W.; Zhang, Y. Quantum piezotronic devices based on ZnO/CdO quantum well topological insulator. Nano Energy 2020, 77, 105154.

[77]

Yan, Q. M.; Rinke, P.; Winkelnkemper, M.; Qteish, A.; Bimberg, D.; Scheffler, M.; Van de Walle, C. G. Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 2011, 26, 014037.

[78]

Lu, H. L.; Yang, M.; Xie, Z. Y.; Geng, Y.; Zhang, Y.; Wang, P. F.; Sun, Q. Q.; Ding, S. J.; Wei Zhang, D. Band alignment and interfacial structure of ZnO/Si heterojunction with Al2O3 and HfO2 as interlayers. Appl. Phys. Lett. 2014, 104, 161602.

[79]

Li, Q.; Meng, J. P.; Huang, J.; Li, Z. Plasmon-induced pyro-phototronic effect enhancement in self-powered UV-vis detection with a ZnO/CuO p–n junction device. Adv. Funct. Mater. 2022, 32, 2108903.

[80]

Meng, J. P.; Li, Q.; Huang, J.; Pan, C. F.; Li, Z. Self-powered photodetector for ultralow power density UV sensing. Nano Today 2022, 43, 101399.

[81]

Li, Q.; Meng, J. P.; Li, Z. Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides. J. Mater. Chem. A 2022, 10, 8107–8128.

[82]

Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

[83]

An, C. H.; Qi, H.; Wang, L. F.; Fu, X.; Wang, A. C.; Wang, Z. L.; Liu, J. Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets. Nano Energy 2021, 82, 105653.

[84]

Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 2002, 81, 4458–4460.

[85]

Songmuang, R.; Katsaros, G.; Monroy, E.; Spathis, P.; Bougerol, C.; Mongillo, M.; De Franceschi, S. Quantum transport in GaN/AlN double-barrier heterostructure nanowires. Nano Lett. 2010, 10, 3545–3550.

[86]

Yu, Q. H.; Ge, R.; Wen, J.; Xu, Q.; Lu, Z. G.; Liu, S. H.; Qin, Y. Electric pulse-tuned piezotronic effect for interface engineering. Nat. Commun. 2024, 15, 4245.

[87]

Tan, I. H.; Snider, G. L.; Chang, L. D.; Hu, E. L. A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. J. Appl. Phys. 1990, 68, 4071–4076.

[88]

Xie, C. M.; Dan, M. J.; Hu, G. W.; Liu, N.; Zhang, Y. Piezo-phototronic spin laser based on wurtzite quantum wells. Nano Energy 2022, 96, 107100.

[89]

Fu, M. D.; Dan, M. J.; Hu, G. W.; Li, L. J.; Zhang, Y. Polarization-induced ultrahigh Rashba spin-orbit interaction in ZnO/CdO quantum well. Nano Energy 2021, 88, 106310.

[90]

Desai, A. V.; Haque, M. A. Mechanical properties of ZnO nanowires. Sens. Actuators A: Phys. 2007, 134, 169–176.

[91]

Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J. Size dependence of Young's modulus in ZnO nanowires. Phys. Rev. Lett. 2006, 96, 075505.

[92]

Lake, R.; Datta, S. Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 1992, 45, 6670–6685.

[93]

Tchernycheva, M.; Nevou, L.; Doyennette, L.; Julien, F. H.; Warde, E.; Guillot, F.; Monroy, E.; Bellet-Amalric, E.; Remmele, T.; Albrecht, M. Systematic experimental and theoretical investigation of intersubband absorption in GaN/AlN quantum wells. Phys. Rev. B 2006, 73, 125347.

[94]

Fadjie-Djomkam, A. B.; Ababou-Girard, S.; Hiremath, R.; Herrier, C.; Fabre, B.; Solal, F.; Godet, C. Temperature dependence of current density and admittance in metal-insulator-semiconductor junctions with molecular insulator. J. Appl. Phys. 2011, 110, 083708.

[95]

Green, M. A.; King, F. D.; Shewchun, J. Minority carrier MIS tunnel diodes and their application to electron-and photo-voltaic energy conversion-I. Theory. Solid-State Electron. 1974, 17, 551–561.

[96]

Zhu, R.; Yang, R. S. Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 2014, 25, 345702.

[97]

Lee, I.; Kang, W. T.; Shin, Y. S.; Kim, Y. R.; Won, U. Y.; Kim, K.; Duong, D. L.; Lee, K.; Heo, J.; Lee, Y. H. et al. Ultrahigh gauge factor in graphene/MoS2 heterojunction field effect transistor with variable Schottky barrier. ACS Nano 2019, 13, 8392–8400.

[98]

Kanda, Y. Piezoresistance effect of silicon. Sens. Actuators A: Phys. 1991, 28, 83–91.

[99]

Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 1954, 94, 42–49.

[100]

Hu, G. W.; Huang, F. B.; Liu, J. F. Piezoelectric manipulation of spin-orbit coupling in a Wurtzite heterostructure. Phys. Chem. Chem. Phys. 2023, 25, 23001–23011.

Nano Research
Cite this article:
Hu G, Zeng L, Huang F, et al. A switchable high-sensitivity strain sensor based on piezotronic resonant tunneling junctions. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6932-7
Topics:

183

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 May 2024
Revised: 06 July 2024
Accepted: 05 August 2024
Published: 05 September 2024
© Tsinghua University Press 2024
Return