AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Stabilizing lithium deposition within bimodal porous SiO2-TiO2 microspheres as 3D host structure

Noeul Kim1,§Jae Hun Choi1,§Min Kim1Dae Soo Jung2( )Yun Chan Kang1( )
Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
Energy Storage Materials Center, Korea Institute of Ceramic Engineering and Technology, Soho-ro, Jinju-si, Gyeongnam-do 52851, Republic of Korea

§ Noeul Kim and Jae Hun Choi contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendritic growth of lithium. Recent research on 3D host materials has focused on conductive materials; however, the benefits of 3D host materials cannot be fully utilized because lithium deposition begins at the top of the structure. Herein, we fabricate SiO2-TiO2 composite microspheres with bimodal pore structures (bi-SiTiO) by simple spray pyrolysis. These microspheres effectively store lithium within the structure from the bottom of the electrode while preventing lithium dendrite formation. Focused ion beam-scanning transmission electron microscopy (FIB-STEM) analysis reveals that the lithiophilic properties of composite microspheres enhanced their effectiveness in storing lithium, with small pores acting as “lithium-ion sieves” for a uniform lithium-ion flux and large pores that provide sufficient volume for lithium deposition. The bi-SiTiO composite microspheres exhibit a high Coulombic efficiency of 98.5% over 200 cycles at 2.0 mA·cm² when operated in a lithium half-cell. With a high lithium loading of 5.0 mAh·cm−2, the symmetrical cell of the bi-SiTiO electrode sustains more than 900 h. A full cell coupled with an LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode also exhibits enhanced electrochemical properties in terms of cycling stability and rate capability.

Electronic Supplementary Material

Download File(s)
6934_ESM.pdf (2 MB)

References

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Wang, S. E.; Kim, M. J.; Park, J. S.; Lee, J. W.; Yoon, D. W.; Kim, Y.; Kim, J. H.; Kang, Y. C.; Jung, D. S. Silicon oxycarbide-derived hierarchical porous carbon nanoparticles with tunable pore structure for lithium-sulfur batteries. Chem. Eng. J. 2023, 465, 143035.

[3]

Li, J. Q.; Ouyang, T.; Liu, L.; Jiang, S.; Huang, Y. C.; Balogun, M. S. A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting. J. Energy Chem. 2024, 93, 368–376.

[4]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[5]

Jeong, S. M.; Wu, M.; Kim, T. Y.; Kim, D. H.; Kim, S. H.; Choi, H. K.; Kang, Y. C.; Kim, D. Y. A 3D porous inverse opal Ni structure on a Cu current collector for stable lithium-metal batteries. Batteries Supercaps 2022, 5, e202100257.

[6]

Yoo, J. Y.; Kim, T. Y.; Shin, D. M.; Kang, Y. K.; Wu, M. H.; Kang, Y. C.; Kim, D. Y. Stabilizing Li growth using Li/LLZO composites for high-performance Li-metal-based batteries. Adv. Funct. Mater. 2024, 34, 2308103.

[7]

Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679.

[8]

Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 1999, 81–82, 925–929.

[9]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[10]

Lee, S. H.; Hwang, J. Y.; Ming, J.; Cao, Z.; Nguyen, H. A.; Jung, H. G.; Kim, J.; Sun, Y. K. Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry. Adv. Energy Mater. 2020, 10, 2000567.

[11]

Zhang, C. H.; Jin, T.; Cheng, G.; Yuan, S.; Sun, Z. J.; Li, N. W.; Yu, L.; Ding, S. J. Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. J. Mater. Chem. A 2021, 9, 13388–13401.

[12]

Hao, Z. D.; Zhao, Q.; Tang, J. D.; Zhang, Q. Q.; Liu, J. B.; Jin, Y. H.; Wang, H. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Mater. Horiz. 2021, 8, 12–32.

[13]

Pan, R. J.; Xu, X. X.; Sun, R.; Wang, Z. H.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose modified polyethylene separators for lithium metal batteries. Small 2018, 14, 1704371.

[14]

Chen, H.; Pei, A.; Lin, D. C.; Xie, J.; Yang, A. K.; Xu, J. W.; Lin, K. X.; Wang, J. Y.; Wang, H. S.; Shi, F. F. et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 2019, 9, 1900858.

[15]

Lee, H.; Lee, D. J.; Kim, Y. J.; Park, J. K.; Kim, H. T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 2015, 284, 103–108.

[16]

Zhang, Y.; Luo, W.; Wang, C. W.; Li, Y. J.; Chen, C. J.; Song, J. W.; Dai, J. Q.; Hitz, E. M.; Xu, S. M.; Yang, C. P. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. USA 2017, 114, 3584–3589.

[17]

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

[18]

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

[19]

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

[20]

Horstmann, B.; Shi, J. Y.; Amine, R.; Werres, M.; He, X.; Jia, H.; Hausen, F.; Cekic-Laskovic, I.; Wiemers-Meyer, S.; Lopez, J. et al. Strategies towards enabling lithium metal in batteries: Interphases and electrodes. Energy Environ. Sci. 2021, 14, 5289–5314.

[21]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[22]

Pathak, R.; Chen, K.; Wu, F.; Mane, A. U.; Bugga, R. V.; Elam, J. W.; Qiao, Q.; Zhou, Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater. 2021, 41, 448–465.

[23]

He, Q.; Li, Z. H.; Wu, M. W.; Xie, M.; Bu, F. X.; Zhang, H. Z.; Yu, R. H.; Mai, L.; Zhao, Y. Ultra-uniform and functionalized nano-ion divider for regulating ion distribution toward dendrite-free lithium-metal batteries. Adv. Mater. 2023, 35, 2302418.

[24]

Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J. M.; Bouchet, R.; Lascaud, S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 2006, 51, 5334–5340.

[25]

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

[26]

Akolkar, R. Mathematical model of the dendritic growth during lithium electrodeposition. J. Power Sources 2013, 232, 23–28.

[27]

Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G. Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 2017, 4, 1600445.

[28]

Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M. Li dendrite growth and Li+ ionic mass transfer phenomenon. J. Electroanal. Chem. 2011, 661, 84–89.

[29]

Monroe, C.; Newman, J. Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 2003, 150, A1377–A1384.

[30]

Deng, K. R.; Han, D. M.; Ren, S.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A 2019, 7, 13113–13119.

[31]

Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

[32]

Shim, J.; Kim, H. J.; Kim, B. G.; Kim, Y. S.; Kim, D. G.; Lee, J. C. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 2017, 10, 1911–1916.

[33]

Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. 2020, 132, 12245–12251.

[34]

Jin, C.; Sheng, O.; Chen, M.; Ju, Z.; Lu, G.; Liu, T.; Nai, J.; Liu, Y.; Wang, Y.; Tao, X. Armed lithium metal anodes with functional skeletons. Mater. Today Nano 2021, 13, 100103.

[35]

Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

[36]

Eom, G. H.; Han, S. A.; Suh, J. H.; Kim, J. H.; Park, M. S. Enriched cavities to ZIF-8-derived porous carbon for reversible metallic lithium storage. ACS Appl. Energy Mater. 2021, 4, 14520–14525.

[37]

Zheng, Z. J.; Su, Q.; Zhang, Q.; Hu, X. C.; Yin, Y. X.; Wen, R.; Ye, H.; Wang, Z. B.; Guo, Y. G. Low volume change composite lithium metal anodes. Nano Energy 2019, 64, 103910.

[38]

Kim, K. B.; Moon, Y. K.; Kim, T. H.; Yu, B. H.; Li, H. Y.; Kang, Y. C.; Yoon, J. W. Highly selective and sensitive detection of carcinogenic benzene using a raisin bread-structured film comprising catalytic Pd-Co3O4 and gas-sensing SnO2 hollow spheres. Sens. Actuators B: Chem. 2023, 386, 133750.

[39]

Lee, J. S.; Ka, H. S.; Saroha, R.; Kang, Y. C.; Kang, D. W.; Cho, J. S. Three-dimensional hierarchically porous micro sponge-ball comprising anatase TiO2 nanodots and nitrogen-doped graphitic carbon as anodes for ultra-stable lithium-ion batteries. J. Energy Storage 2023, 66, 107396.

[40]

Choi, J. H.; Park, S. K.; Kang, Y. C. A salt-templated strategy toward hollow iron selenides-graphitic carbon composite microspheres with interconnected multicavities as high-performance anode materials for sodium-ion batteries. Small 2019, 15, 1803043.

[41]

Kim, J. K.; Yoo, Y.; Kang, Y. C. Scalable green synthesis of hierarchically porous carbon microspheres by spray pyrolysis for high-performance supercapacitors. Chem. Eng. J. 2020, 382, 122805.

[42]

Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J. (Nat. Sci.) 2008, 42, 357–361.

[43]

Uguina, M. A.; Serrano, D. P.; Ovejero, G.; Van Grieken, R.; Camacho, M. Preparation of TS-1 by wetness impregnation of amorphous SiO2-TiO2 solids: Influence of the synthesis variables. Appl. Catal. A: Gen. 1995, 124, 391–408.

[44]

Huang, F.; Motealleh, B.; Zheng, W. J.; Janish, M. T.; Carter, C. B.; Cornelius, C. J. Electrospinning amorphous SiO2-TiO2 and TiO2 nanofibers using sol–gel chemistry and its thermal conversion into anatase and rutile. Ceram. Int. 2018, 44, 4577–4585.

[45]

Kim, Y. B.; Seo, H. Y.; Kim, S. H.; Kim, T. H.; Choi, J. H.; Cho, J. S.; Kang, Y. C.; Park, G. D. Controllable synthesis of carbon yolk–shell microsphere and application of metal compound-carbon yolk–shell as effective anode material for alkali-ion batteries. Small Methods 2023, 7, 2201370.

[46]

Choi, J. H.; Park, J. S.; Kang, Y. C. Macroporous vanadium dioxide-reduced graphene oxide microspheres: Cathode material with enhanced electrochemical kinetics for aqueous zinc-ion batteries. Appl. Surf. Sci. 2022, 599, 153890.

[47]

Khanam, Z.; Xiong, T. Z.; Yang, F.; Su, H. L.; Luo, L.; Li, J. Q.; Koroma, M.; Zhou, B. W.; Mushtaq, M.; Huang, Y. C. et al. Endogenous interfacial Mo-C/N-Mo-S bonding regulates the active Mo sites for maximized Li+ storage areal capacity. Small 2024, 20, 2311773.

[48]

Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.

[49]

Bardestani, R.; Patience, G. S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791.

[50]

Zhang, P.; Sun, Y.; Lu, M. H.; Zhu, J.; Li, M. S.; Shan, Y. H.; Shen, J. Y.; Song, C. S. High-loading nickel phosphide catalysts supported on SiO2-TiO2 for hydrodeoxygenation of guaiacol. Energy Fuels 2019, 33, 7696–7704.

[51]

Gongalsky, M. B.; Kargina, J. V.; Cruz, J. F.; Sánchez-Royo, J. F.; Chirvony, V. S.; Osminkina, L. A.; Sailor, M. J. Formation of Si/SiO2 luminescent quantum dots from mesoporous silicon by sodium tetraborate/citric acid oxidation treatment. Front. Chem. 2019, 7, 165.

[52]

Zhu, Y. J.; Li, H. W.; Gu, D.; Wang, H. Y.; Bao, N. Z. Honeycomb hybrid crystal TiO2 film electrode for efficient benzoic acid synthesis. J. Mater. Sci. 2017, 52, 6623–6634.

[53]

He, C. X.; Tian, B. Z.; Zhang, J. L. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J. Colloid Interface Sci. 2010, 344, 382–389.

[54]

Su, L. S.; Manthiram, A. Lithium-metal batteries via suppressing Li dendrite growth and improving Coulombic efficiency. Small Struct. 2022, 3, 2200114.

[55]

Zhang, S. M.; Yang, G. J.; Liu, Z. P.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 2021, 6, 4118–4126.

[56]

Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 2017, 32, 271–279.

[57]

Yang, H.; Xiong, T. Z.; Zhu, Z. X.; Xiao, R.; Yao, X. C.; Huang, Y. C.; Balogun, M. S. Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes. Carbon Energy 2022, 4, 820–832.

[58]

Park, J.; Ha, S.; Jung, J. Y.; Hyun, J. H.; Yu, S. H.; Lim, H. K.; Kim, N. D.; Yun, Y. S. Understanding the effects of interfacial lithium ion concentration on lithium metal anode. Adv. Sci. 2022, 9, 2104145.

[59]

Ren, F. H.; Lu, Z. Y.; Zhang, H.; Huai, L. Y.; Chen, X. C.; Wu, S. D.; Peng, Z.; Wang, D. Y.; Ye, J. C. Pseudocapacitance induced uniform plating/stripping of Li metal anode in vertical graphene nanowalls. Adv. Funct. Mater. 2018, 28, 1805638.

[60]

Gladyshevskii, E. I.; Oleksiv, G. I.; Kripyakevich, P. I. New examples of the structural type Li22Pb5. Sov. Phys. Crystallogr. 1964, 9, 269.

[61]

Chevrier, V. L.; Zwanziger, J. W.; Dahn, J. R. First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations. J. Alloys Compd. 2010, 496, 25–36.

[62]

Weaver, J. F.; Hoflund, G. B. Surface characterization study of the thermal decomposition of Ag2O. Chem. Mater. 1994, 6, 1693–1699.

[63]

Lee, J. I.; Shin, M.; Hong, D.; Park, S. Efficient Li-ion-conductive layer for the realization of highly stable high-voltage and high-capacity lithium metal batteries. Adv. Energy Mater. 2019, 9, 1803722.

[64]

Wang, X. Y.; Li, S. Y.; Zhang, W. D.; Wang, D.; Shen, Z. Y.; Zheng, J. P.; Zhuang, H. L.; He, Y.; Lu, Y. Y. Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy 2021, 89, 106353.

[65]

Park, J. B.; Choi, C.; Yu, S.; Chung, K. Y.; Kim, D. W. Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 2021, 11, 2101544.

[66]

Sun, J.; Zeng, Q. C.; Lv, R. T.; Lv, W.; Yang, Q. H.; Amal, R.; Wang, D. W. A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Mater. 2018, 15, 209–217.

[67]

Yang, J.; Hou, M. Y.; Haller, S.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. Improving the cycling performance of the layered Ni-rich oxide cathode by introducing low-content Li2MnO3. Electrochim. Acta 2016, 189, 101–110.

Nano Research
Cite this article:
Kim N, Choi JH, Kim M, et al. Stabilizing lithium deposition within bimodal porous SiO2-TiO2 microspheres as 3D host structure. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6934-5
Topics:

196

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 June 2024
Revised: 17 July 2024
Accepted: 29 August 2024
Published: 29 August 2024
© Tsinghua University Press 2024
Return