AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Progress and prospects of Moiré superlattices in twisted TMD heterostructures

Syed Jamal Shah1,2Junying Chen1,2Xing Xie1,2Xinyu Oyang2Fangping Ouyang1,3Zongwen Liu4,5Jian-Tao Wang6,7,8Jun He1Yanping Liu1,2 ( )
Institute of Quantum Physics, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
School of Physics and Technology, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830046, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006 Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

This review highlights the recent advancements in Moiré superlattices formed from twisted transition metal dichalcogenide (TMD) heterostructures, emphasizing their unique electronic properties, experimental and theoretical progress, and potential applications in optoelectronics, quantum computing, and energy harvesting. It also addresses key challenges in the field and outlines future research directions

Abstract

Moiré superlattices based on twisted transition metal dichalcogenide (TMD) heterostructures have recently emerged as a promising platform for probing novel and distinctive electronic phenomena in two-dimensional (2D) materials. By stacking TMD monolayers with a small twist angle, these superlattices create a periodic modulation of the electronic density of states, leading to the formation of mini bands. These mini bands can exhibit intriguing properties such as flat bands, correlated electron behavior, and unconventional superconductivity. This review provides a comprehensive overview of recent progress in Moiré superlattices formed from twisted TMD heterostructures. It covers the theoretical principles and experimental techniques for creating and studying these superlattices, and explores their potential applications in optoelectronics, quantum computing, and energy harvesting. The review also addresses key challenges, such as improving the scalability and reproducibility of the fabrication process, emphasizing the exciting opportunities and ongoing hurdles in this rapidly evolving field.

References

[1]

Stansbury, C. H.; Utama, M. I. B.; Fatuzzo, C. G.; Regan, E. C.; Wang, D. Q.; Xiang, Z. Y.; Ding, M. C.; Watanabe, K.; Taniguchi, T.; Blei, M. et al. Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space. Sci. Adv. 2021, 7, eabf4387.

[2]

Wang, T. G.; Yuan, N. F. Q.; Fu, L. Moiré surface states and enhanced superconductivity in topological insulators. Phys. Rev. X 2021, 11, 021024.

[3]

Ye, Y. S.; Qian, J. M.; Zhang, X. W.; Wang, C.; Xiao, D.; Cao, T. Kekulé moiré superlattices. Nano Lett. 2023, 23, 6536–6543.

[4]

Yang, H.; Liu, L. W.; Yang, H. X.; Zhang, Y.; Wu, X.; Huang, Y.; Gao, H. J.; Wang, Y. L. Advance in two-dimensional twisted moiré materials: Fabrication, properties, and applications. Nano Res. 2023, 16, 2579–2596.

[5]

Shi, B. B.; Qi, P. F.; Jiang, M. L.; Dai, Y. C.; Lin, F.; Zhang, H.; Fang, Z. Y. Exotic physical properties of 2D materials modulated by moiré superlattices. Mater. Adv. 2021, 2, 5542–5559.

[6]

Xiao, Y.; Liu, J. L.; Fu, L. Moiré is more: Access to new properties of two-dimensional layered materials. Matter 2020, 3, 1142–1161.

[7]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[8]

Behura, S. K.; Miranda, A.; Nayak, S.; Johnson, K.; Das, P.; Pradhan, N. R. Moiré physics in twisted van der Waals heterostructures of 2D materials. Emergent Mater. 2021, 4, 813–826.

[9]

Götting, N.; Lohof, F.; Gies, C. Moiré-Bose-Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures. Phys. Rev. B 2022, 105, 165419.

[10]

Brem, S.; Linderälv, C.; Erhart, P.; Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 2020, 20, 8534–8540.

[11]

Kundu, S.; Amit, T.; Krishnamurthy, H. R.; Jain, M.; Refaely-Abramson, S. Exciton fine structure in twisted transition metal dichalcogenide heterostructures. npj Comput. Mater. 2023, 9, 186.

[12]

Han, S. A.; Bhatia, R.; Kim, S. W. Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg. 2015, 2, 17.

[13]

Upadhyay, S. N.; Satrughna, J. A. K.; Pakhira, S. Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Mater. 2021, 4, 951–970.

[14]

Wang, L.; Yin, S. S.; Yang, J. P.; Dou, S. X. Moiré superlattice structure in two‐dimensional catalysts: Synthesis, property and activity. Small 2023, 19, 2300165.

[15]

Novoselov, K. S.; Castro Neto, A. H. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Phys. Scr. 2012, 2012, 014006.

[16]

Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223.

[17]

Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

[18]

Kennes, D. M.; Claassen, M.; Xian, L. D.; Georges, A.; Millis, A. J.; Hone, J.; Dean, C. R.; Basov, D. N.; Pasupathy, A. N.; Rubio, A. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 2021, 17, 155–163.

[19]

Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.

[20]

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Utama, M. I. B.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

[21]
Yamada, S.; Imamura, T.; Machida, M. High performance LOBPCG method for solving multiple eigenvalues of Hubbard model: Efficiency of communication avoiding Neumann expansion preconditioner. In Proceedings of the 4th Asian Conference on Supercomputing Frontiers, Singapore, 2018, pp 243–256.
[22]

Cai, X. B.; Gao, W. B. Moiré synergy: An emerging playground by coupled moirés. ACS Nano 2023, 17, 9673–9680.

[23]

Liu, S.; Yu, G. Fabrication, energy band engineering, and strong correlations of two-dimensional van der Waals moiré superlattices. Nano Today 2023, 50, 101829.

[24]

Zhang, L. F.; Ni, R. H.; Zhou, Y. Controlling quantum phases of electrons and excitons in moiré superlattices. J. Appl. Phys. 2023, 133, 080901.

[25]

Liu, Y. P.; Zeng, C.; Yu, J.; Zhong, J. H.; Li, B.; Zhang, Z. W.; Liu, Z. W.; Wang, Z. M.; Pan, A. L.; Duan, X. D. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 2021, 50, 6401–6422.

[26]
Weston, A. Introduction to 2-dimensional materials and moiré superlattices. In Atomic and Electronic Properties of 2D Moiré Interfaces. Weston, A., Ed.; Springer: Cham, 2022; pp 5–28.
[27]

Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

[28]

Suárez Morell, E.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B 2010, 82, 121407(R).

[29]

Lopes Dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 2012, 86, 155449.

[30]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[31]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[32]

Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

[33]

Shi, J. T.; Zhu, J. H.; Macdonald, A. H. Moiré commensurability and the quantum anomalous hall effect in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 2021, 103, 075122.

[34]

Liu, J. P.; Dai, X. Theories for the correlated insulating states and quantum anomalous hall effect phenomena in twisted bilayer graphene. Phys. Rev. B 2021, 103, 035427.

[35]

Arora, H. S.; Polski, R.; Zhang, Y. R.; Thomson, A.; Choi, Y.; Kim, H.; Lin, Z.; Wilson, I. Z.; Xu, X. D.; Chu, J. H. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 2020, 583, 379–384.

[36]

Kwan, Y. H.; Hu, Y. C.; Simon, S. H.; Parameswaran, S. A. Exciton band topology in spontaneous quantum anomalous hall insulators: Applications to twisted bilayer graphene. Phys. Rev. Lett. 2021, 126, 137601.

[37]

Wu, F. C.; Das Sarma, S. Collective excitations of quantum anomalous hall ferromagnets in twisted bilayer graphene. Phys. Rev. Lett. 2020, 124, 046403.

[38]

Shavit, G.; Berg, E.; Stern, A.; Oreg, Y. Theory of correlated insulators and superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 2021, 127, 247703.

[39]

Oh, M.; Nuckolls, K. P.; Wong, D.; Lee, R. L.; Liu, X. M.; Watanabe, K.; Taniguchi, T.; Yazdani, A. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 2021, 600, 240–245.

[40]

Codecido, E.; Wang, Q. Y.; Koester, R.; Che, S.; Tian, H. D.; Lv, R.; Tran, S.; Watanabe, K.; Taniguchi, T.; Zhang, F. et al. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv. 2019, 5, eaaw9770.

[41]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[42]

Wu, F. C.; Lovorn, T.; Tutuc, E.; Macdonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 2018, 121, 026402.

[43]

Naik, M. H.; Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018, 121, 266401.

[44]

Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

[45]

Ghiotto, A.; Shih, E. M.; Pereira, G. S. S. G.; Rhodes, D. A.; Kim, B.; Zang, J. W.; Millis, A. J.; Watanabe, K.; Taniguchi, T.; Hone, J. C. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 2021, 597, 345–349.

[46]

Wu, F. C.; Lovorn, T.; Tutuc, E.; Martin, I.; Macdonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 2019, 122, 086402.

[47]

Ruiz-Tijerina, D. A.; Fal’Ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 2019, 99, 125424.

[48]

Schrade, C.; Fu, L. Spin-valley density wave in moiré materials. Phys. Rev. B 2019, 100, 035413.

[49]

Andrei, E. Y.; Efetov, D. K.; Jarillo-Herrero, P.; MacDonald, A. H.; Mak, K. F.; Senthil, T.; Tutuc, E.; Yazdani, A.; Young, A. F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206.

[50]

Jiang, N.; Wang, L. A novel strategy for quantum image steganography based on moiré pattern. Int. J. Theor. Phys. 2015, 54, 1021–1032.

[51]

Chen, M. Y.; Chen, F. Q.; Cheng, B.; Liang, S. J.; Miao, F. Moiré heterostructures: Highly tunable platforms for quantum simulation and future computing. J. Semicond. 2023, 44, 010301.

[52]

Du, L. J.; Molas, M. R.; Huang, Z. H.; Zhang, G. Y.; Wang, F.; Sun, Z. P. Moiré photonics and optoelectronics. Science 2023, 379, eadg0014.

[53]

Hamer, M. J.; Giampietri, A.; Kandyba, V.; Genuzio, F.; Menteş, T. O.; Locatelli, A.; Gorbachev, R. V.; Barinov, A.; Mucha-Kruczyński, M. Moiré superlattice effects and band structure evolution in near-30-degree twisted bilayer graphene. ACS Nano 2022, 16, 1954–1962.

[54]

Yi, C. H.; Park, H. C.; Park, M. J. Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic moiré superlattices. Light Sci. Appl. 2022, 11, 289.

[55]
Lin, Q. L.; Fang, H. L.; Liu, Y. D.; Zhang, Y.; Fischer, M.; Li, J. T.; Hagel, J.; Brem, S.; Malic, E.; Stenger, N. et al. A room-temperature moiré interlayer exciton laser [Online]. https://arxiv.org/abs/2302.01266 (accessed Feb, 2023).
[56]

Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, C. T.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Localization-enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light Sci. Appl. 2023, 12, 117.

[57]

Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725–733.

[58]

Uri, A.; De La Barrera, S. C.; Randeria, M. T.; Rodan-Legrain, D.; Devakul, T.; Crowley, P. J. D.; Paul, N.; Watanabe, K.; Taniguchi, T.; Lifshitz, R. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 2023, 620, 762–767.

[59]

Kezilebieke, S.; Vaňo, V.; Huda, M. N.; Aapro, M.; Ganguli, S. C.; Liljeroth, P.; Lado, J. L. Moiré-enabled topological superconductivity. Nano Lett. 2022, 22, 328–333.

[60]

Lau, C. N.; Bockrath, M. W.; Mak, K. F.; Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 2022, 602, 41–50.

[61]

He, H. R.; Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; Liu, Z. W.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 2024, 17, 3245–3252.

[62]

Carr, S.; Massatt, D.; Fang, S. A.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 2017, 95, 075420.

[63]

Yang, Y. P.; Li, J. D.; Yin, J.; Xu, S. G.; Mullan, C.; Taniguchi, T.; Watanabe, K.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 2020, 6, eabd3655.

[64]

Jorio, A. Twistronics and the small-angle magic. Nat. Mater. 2022, 21, 844–845.

[65]
Jha, G.; Li, W.; Brumme, T.; Heine, T. Spin orbit coupling effects on the excitonic properties of twisted moiré transition metal dichalcogenides. September 8, 2023.
[66]

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

[67]

Huang, X. Y.; Han, X.; Dai, Y. Y.; Xu, X. L.; Yan, J. H.; Huang, M. T.; Ding, P. F.; Zhang, D. C.; Chen, H.; Laxmi, V. et al. Recent progress on fabrication and flat-band physics in 2D transition metal dichalcogenides moiré superlattices. J. Semicond. 2023, 44, 011901.

[68]

Zhang, Z. M.; Wang, Y. M.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 2020, 16, 1093–1096.

[69]

Li, E.; Hu, J. X.; Feng, X. M.; Zhou, Z. S.; An, L. H.; Law, K. T.; Wang, N.; Lin, N. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 2021, 12, 5601.

[70]

Waters, D.; Nie, Y. F.; Lüpke, F.; Pan, Y.; Fölsch, S.; Lin, Y. C.; Jariwala, B.; Zhang, K. H.; Wang, C.; Lv, H. Y. et al. Flat bands and mechanical deformation effects in the moiré superlattice of MoS2-WSe2 heterobilayers. ACS Nano 2020, 14, 7564–7573.

[71]

Scherer, M. M.; Kennes, D. M.; Classen, L. Chiral superconductivity with enhanced quantized hall responses in moiré transition metal dichalcogenides. npj Quantum Mater. 2022, 7, 100.

[72]

Jin, C. H.; Tao, Z.; Li, T. X.; Xu, Y.; Tang, Y. H.; Zhu, J. C.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J. C. et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat. Mater. 2021, 20, 940–944.

[73]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[74]

Magda, G. Z.; Petõ, J.; Dobrik, G.; Hwang, C.; Biró, L. P.; Tapasztó, L. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 2015, 5, 14714.

[75]

Desai, S. B.; Madhvapathy, S. R.; Amani, M.; Kiriya, D.; Hettick, M.; Tosun, M.; Zhou, Y. Z.; Dubey, M.; Ager, J. W.; Chrzan, D. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 2016, 28, 4053–4058.

[76]

Velický, M.; Donnelly, G. E.; Hendren, W. R.; McFarland, S.; Scullion, D.; DeBenedetti, W. J. I.; Correa, G. C.; Han, Y. M.; Wain, A. J.; Hines, M. A. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 2018, 12, 10463–10472.

[77]

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

[78]

Heyl, M.; Burmeister, D.; Schultz, T.; Pallasch, S.; Ligorio, G.; Koch, N.; List-Kratochvil, E. J. W. Thermally activated gold‐mediated transition metal dichalcogenide exfoliation and a unique gold-mediated transfer. Phys. Status Solidi RRL - Rapid Res. Lett. 2020, 14, 2000408.

[79]

Heyl, M.; List-Kratochvil, E. J. W. Only gold can pull this off: Mechanical exfoliations of transition metal dichalcogenides beyond scotch tape. Appl. Phys. A 2023, 129, 16.

[80]

Li, Z. W.; Ren, L. W.; Wang, S. Y.; Huang, X. X.; Li, Q. Y.; Lu, Z. Y.; Ding, S. M.; Deng, H. J.; Chen, P. G.; Lin, J. et al. Dry exfoliation of large-area 2D monolayer and heterostructure arrays. ACS Nano 2021, 15, 13839–13846.

[81]

Fu, Q.; Dai, J. Q.; Huang, X. Y.; Dai, Y. Y.; Pan, Y. H.; Yang, L. L.; Sun, Z. Y.; Miao, T. M.; Zhou, M. F.; Zhao, L. et al. One-step exfoliation method for plasmonic activation of large-area 2D crystals. Adv. Sci. 2022, 9, 2204247.

[82]

Ding, S. M.; Liu, C.; Li, Z. W.; Lu, Z. Y.; Tao, Q. Y.; Lu, D. L.; Chen, Y.; Tong, W.; Liu, L. T.; Li, W. Y. et al. Ag-assisted dry exfoliation of large-scale and continuous 2D monolayers. ACS Nano 2024, 18, 1195–1203.

[83]

Li, Y. G.; Kuang, G. Z.; Jiao, Z. J.; Yao, L.; Duan, R. H. Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides. Mater. Res. Express 2022, 9, 122001.

[84]

Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; Pérez De Lara, D.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.

[85]

Zhao, Q. H.; Wang, T.; Ryu, Y. K.; Frisenda, R.; Castellanos-Gomez, A. An inexpensive system for the deterministic transfer of 2D materials. J. Phys. Mater. 2020, 3, 016001.

[86]

Gant, P.; Carrascoso, F.; Zhao, Q. H.; Ryu, Y. K.; Seitz, M.; Prins, F.; Frisenda, R.; Castellanos-Gomez, A. A system for the deterministic transfer of 2D materials under inert environmental conditions. 2D Mater. 2020, 7, 025034.

[87]

Castellanos-Gomez, A.; Duan, X. F.; Fei, Z.; Gutierrez, H. R.; Huang, Y.; Huang, X. Y.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Van der Waals heterostructures. Nat. Rev. Methods Primers 2022, 2, 58.

[88]

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

[89]

Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Quantum hall effect and landau-level crossing of Dirac fermions in trilayer graphene. Nat. Phys. 2011, 7, 621–625.

[90]

Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2D crystals. Mater. Today 2012, 15, 564–589.

[91]

Uwanno, T.; Hattori, Y.; Taniguchi, T.; Watanabe, K.; Nagashio, K. Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system. 2D Mater. 2015, 2, 041002.

[92]

Tien, D. H.; Park, J. Y.; Kim, K. B.; Lee, N.; Seo, Y. Characterization of graphene-based FET fabricated using a shadow mask. Sci. Rep. 2016, 6, 25050.

[93]

Wang, X. T.; Kang, K.; Chen, S. W.; Du, R. Z.; Yang, E. H. Location-specific growth and transfer of arrayed MoS2 monolayers with controllable size. 2D Mater. 2017, 4, 025093.

[94]

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

[95]

Li, H.; Wu, J.; Huang, X.; Yin, Z. Y.; Liu, J. Q.; Zhang, H. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 2014, 8, 6563–6570.

[96]

Ye, F.; Lee, J.; Feng, P. X. L. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators. Nanoscale 2017, 9, 18208–18215.

[97]

Kinoshita, K.; Moriya, R.; Onodera, M.; Wakafuji, Y.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 2019, 3, 22.

[98]

Pizzocchero, F.; Gammelgaard, L.; Jessen, B. S.; Caridad, J. M.; Wang, L.; Hone, J.; Bøggild, P.; Booth, T. J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894.

[99]

Dai, Y. C.; Qi, P. F.; Tao, G. Y.; Yao, G. J.; Shi, B. B.; Liu, Z. X.; Liu, Z. C.; He, X.; Peng, P.; Dang, Z. B. et al. Phonon-assisted upconversion in twisted two-dimensional semiconductors. Light Sci. Appl. 2023, 12, 6.

[100]

Xu, H. Y.; Akbari, M. K.; Zhuiykov, S. 2D semiconductor nanomaterials and heterostructures: Controlled synthesis and functional applications. Nanoscale Res. Lett. 2021, 16, 94.

[101]

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

[102]

Sahoo, P. K.; Memaran, S.; Xin, Y.; Balicas, L.; Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63–67.

[103]

Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

[104]

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

[105]

Lin, Y. C.; Ghosh, R. K.; Addou, R.; Lu, N.; Eichfeld, S. M.; Zhu, H.; Li, M. Y.; Peng, X.; Kim, M. J.; Li, L. J. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 2015, 6, 7311.

[106]

Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

[107]

Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

[108]

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

[109]

Xie, S. E.; Tu, L. J.; Han, Y. M.; Huang, L. J.; Kang, K.; Lao, K. U.; Poddar, P.; Park, C.; Muller, D. A.; DiStasio, R. A. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 2018, 359, 1131–1136.

[110]

Jin, G.; Lee, C. S.; Okello, O. F. N.; Lee, S. H.; Park, M. Y.; Cha, S.; Seo, S. Y.; Moon, G.; Min, S. Y.; Yang, D. H. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 2021, 16, 1092–1098.

[111]

Zhou, X. W.; Zhang, Z. N.; Zeng, X. L.; Wu, Y. P.; Xu, F. Y.; Zhang, C. M.; Li, X.; Wu, Z. M.; Kang, J. Y. Direct synthesis of moiré superlattice through chemical vapor deposition growth of monolayer WS2 on plasma-treated HOPG. Nano Res. 2022, 15, 8587–8594.

[112]

Zheng, H. H.; Guo, H. L.; Chen, S. L.; Wu, B.; Li, S. F.; He, J.; Liu, Z. W.; Lu, G.; Duan, X. D.; Pan, A. L. et al. Strong interlayer coupling in twisted transition metal dichalcogenide moiré superlattices. Adv. Mater. 2023, 35, 2210909.

[113]

Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

[114]

K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

[115]

Andersen, T. I.; Scuri, G.; Sushko, A.; De Greve, K.; Sung, J.; Zhou, Y.; Wild, D. S.; Gelly, R. J.; Heo, H.; Bérubé, D. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487.

[116]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Enhanced homogeneity of moiré superlattices in double-bilayer WSe2 homostructure. ACS Appl. Mater. Interfaces 2023, 15, 48475–48484.

[117]

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

[118]

Xu, Y.; Liu, S.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Elser, V.; Mak, K. F.; Shan, J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 2020, 587, 214–218.

[119]

Shao, G. L.; Xue, X. X.; Liu, X.; Zhang, D. L.; Jin, Y. Y.; Wu, Y. W.; You, B. Y.; Lin, Y. C.; Li, S. S.; Suenaga, K. et al. Twist angle-dependent optical responses in controllably grown WS2 vertical homojunctions. Chem. Mater. 2020, 32, 9721–9729.

[120]

Xu, M. Z.; Ji, H. J.; Zheng, L.; Li, W. W.; Wang, J.; Wang, H. X.; Luo, L.; Lu, Q. B.; Gan, X. T.; Liu, Z. et al. Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles. Nat. Commun. 2024, 15, 562.

[121]

Xu, M. Z.; Ji, H. J.; Zhang, M. W.; Zheng, L.; Li, W. W.; Luo, L.; Chen, M. D.; Liu, Z.; Gan, X. T.; Wang, X. W. et al. CVD synthesis of twisted bilayer WS2 with tunable second harmonic generation. Adv. Mater. 2024, 36, 2313638.

[122]

Chang, S. J.; Wang, S. Y.; Huang, Y. C.; Chih, J. H.; Lai, Y. T.; Tsai, Y. W.; Lin, J. M.; Chien, C. H.; Tang, Y. T.; Hu, C. M. van der Waals epitaxy of 2D h-AlN on TMDs by atomic layer deposition at 250 °C. Appl. Phys. Lett. 2022, 120, 162102.

[123]

Zhang, X.; Lai, J. W.; Gray, T. Recent progress in low-temperature CVD growth of 2D materials. Oxf. Open Mater. Sci. 2023, 3, itad010.

[124]

Yang, H. T.; Hu, R. Q.; Wu, H.; He, X. L.; Zhou, Y.; Xue, Y. Z.; He, K. X.; Hu, W. S.; Chen, H. S.; Gong, M. M. et al. Identification and structural characterization of twisted atomically thin bilayer materials by deep learning. Nano Lett. 2024, 24, 2789–2797.

[125]

Lu, M. Y.; Ji, H. N.; Chen, Y. X.; Gao, F. L.; Liu, B.; Long, P.; Deng, C.; Wang, Y.; Tao, J. D. Machine learning assisted layer-controlled synthesis of MoS2. J. Mater. Chem. C 2024, 12, 8893–8900.

[126]

Xu, M. Z.; Tang, B. J.; Lu, Y. H.; Zhu, C.; Lu, Q. B.; Zhu, C.; Zheng, L.; Zhang, J. Y.; Han, N. N.; Fang, W. D. et al. Machine learning driven synthesis of few-layered WTe2 with geometrical control. J. Am. Chem. Soc. 2021, 143, 18103–18113.

[127]

Tang, B. J.; Lu, Y. H.; Zhou, J. D.; Chouhan, T.; Wang, H.; Golani, P.; Xu, M. Z.; Xu, Q.; Guan, C. T.; Liu, Z. Machine learning-guided synthesis of advanced inorganic materials. Mater. Today 2020, 41, 72–80.

[128]

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

[129]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[130]

Wu, F. C.; Lovorn, T.; Macdonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

[131]

Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

[132]

Pan, H. N.; Wu, F. C.; Das Sarma, S. Quantum phase diagram of a moiré-Hubbard model. Phys. Rev. B 2020, 102, 201104(R).

[133]

Morales-Durán, N.; Hu, N. C.; Potasz, P.; Macdonald, A. H. Nonlocal interactions in moiré Hubbard systems. Phys. Rev. Lett. 2022, 128, 217202.

[134]

Pan, H. N.; Wu, F. C.; Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and dzyaloshinskii-Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2020, 2, 033087.

[135]

Devakul, T.; Crépel, V.; Zhang, Y.; Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 2021, 12, 6730.

[136]

Kumar, A.; Hu, N. C.; MacDonald, A. H.; Potter, A. C. Gate-tunable heavy fermion quantum criticality in a moiré Kondo lattice. Phys. Rev. B 2022, 106, L041116.

[137]

Angeli, M.; MacDonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proc. Natl. Acad. Sci. USA 2021, 118, e2021826118.

[138]

Des Cloizeaux, J. Energy bands and projection operators in a crystal: Analytic and asymptotic properties. Phys. Rev. 1964, 135, A685–A697.

[139]

Des Cloizeaux, J. Analytical properties of n-dimensional energy bands and wannier functions. Phys. Rev. 1964, 135, A698–A707.

[140]

Marzari, N.; Vanderbilt, D. Maximally localized generalized wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865.

[141]

Kaushal, N.; Dagotto, E. Moiré kanamori-Hubbard model for transition metal dichalcogenide homobilayers. Phys. Rev. B 2023, 107, L201118.

[142]

Guo, H. L.; Zhang, X.; Lu, G. Shedding light on moiré excitons: A first-principles perspective. Sci. Adv. 2020, 6, eabc5638.

[143]

Gross, E. K. U.; Kohn, W. Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 1985, 55, 2850–2852.

[144]
Marques, M. A. L.; Maitra, N. T.; Nogueira, F. M. S.; Gross, E. K. U.; Rubio, A. Fundamentals of Time-Dependent Density Functional Theory; Springer: Berlin, 2012.
[145]

Refaely-Abramson, S.; Sharifzadeh, S.; Govind, N.; Autschbach, J.; Neaton, J. B.; Baer, R.; Kronik, L. Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. Phys. Rev. Lett. 2012, 109, 226405.

[146]

Refaely-Abramson, S.; Sharifzadeh, S.; Jain, M.; Baer, R.; Neaton, J. B.; Kronik, L. Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 2013, 88, 081204(R).

[147]

Refaely-Abramson, S.; Jain, M.; Sharifzadeh, S.; Neaton, J. B.; Kronik, L. Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory. Phys. Rev. B 2015, 92, 081204.

[148]

Wing, D.; Haber, J. B.; Noff, R.; Barker, B.; Egger, D. A.; Ramasubramaniam, A.; Louie, S. G.; Neaton, J. B.; Kronik, L. Comparing time-dependent density functional theory with many-body perturbation theory for semiconductors: Screened range-separated hybrids and the GW plus Bethe-salpeter approach. Phys. Rev. Mater. 2019, 3, 064603.

[149]

Gupta, N.; Sachin, S.; Kumari, P.; Rani, S.; Ray, S. J. Twistronics in two-dimensional transition metal dichalcogenide (TMD)-based van der Waals interface. RSC Adv. 2024, 14, 2878–2888.

[150]

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

[151]

Zhao, X. G.; Shi, Z. M.; Wang, X. J.; Zou, H. S.; Fu, Y. H.; Zhang, L. J. Band structure engineering through van der Waals heterostructing superlattices of two-dimensional transition metal dichalcogenides. InfoMat 2021, 3, 201–211.

[152]

T. X.; Jiang, S. W.; Li, L. Z.; Zhang, Y.; Kang, K. F.; Zhu, J. C.; Watanabe, K.; Taniguchi, T.; Chowdhury, D.; Fu, L. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 2021, 597, 350–354.

[153]

Tong, Q. J.; Yu, H. Y.; Zhu, Q. Z.; Wang, Y.; Xu, X. D.; Yao, W. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 2017, 13, 356–362.

[154]

Li, T. X.; Jiang, S. W.; Shen, B. W.; Zhang, Y.; Li, L. Z.; Tao, Z.; Devakul, T.; Watanabe, K.; Taniguchi, T.; Fu, L. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 2021, 600, 641–646.

[155]

Förg, M.; Baimuratov, A. S.; Kruchinin, S. Y.; Vovk, I. A.; Scherzer, J.; Förste, J.; Funk, V.; Watanabe, K.; Taniguchi, T.; Högele, A. Moiré excitons in MoSe2-WSe2 heterobilayers and heterotrilayers. Nat. Commun. 2021, 12, 1656.

[156]

Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.

[157]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A.; Liu, Y. P. Moiré enhanced potentials in twisted transition metal dichalcogenide trilayers homostructures. Small 2023, 19, 2207988.

[158]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A.; Liu, Y. P. Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res. 2023, 16, 10573–10579.

[159]

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

[160]

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[161]

Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 2018, 18, 7651–7657.

[162]

Lin, B. H.; Chao, Y. C.; Hsieh, I.; Chuu, C. P.; Lee, C. J.; Chu, F. H.; Lu, L. S.; Hsu, W. T.; Pao, C. W.; Shih, C. K. et al. Remarkably deep moiré potential for intralayer excitons in MoSe2/MoS2 twisted heterobilayers. Nano Lett. 2023, 23, 1306–1312.

[163]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. et al. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl. 2022, 11, 166.

[164]

E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

[165]

Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Mak, K. F.; Shan, J. Tuning layer-hybridized moiré excitons by the quantum-confined stark effect. Nat. Nanotechnol. 2021, 16, 52–57.

[166]

Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503–506.

[167]

Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 2015, 10, 491–496.

[168]

Chakraborty, C.; Kinnischtzke, L.; Goodfellow, K. M.; Beams, R.; Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 2015, 10, 507–511.

[169]

He, Y. M.; Clark, G.; Schaibley, J. R.; He, Y.; Chen, M. C.; Wei, Y. J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X. D. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497–502.

[170]

Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

[171]

Schmitt, D.; Bange, J. P.; Bennecke, W.; AlMutairi, A.; Meneghini, G.; Watanabe, K.; Taniguchi, T.; Steil, D.; Luke, D. R.; Weitz, R. T. et al. Formation of moiré interlayer excitons in space and time. Nature 2022, 608, 499–503.

[172]

Liu, E. F.; Barré, E.; Van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

[173]

Kim, H.; Dong, D. F.; Okamura, Y.; Shinokita, K.; Watanabe, K.; Taniguchi, T.; Matsuda, K. Dynamics of moiré trion and its valley polarization in a microfabricated WSe2/MoSe2 heterobilayer. ACS Nano 2023, 17, 13715–13723.

[174]

Sung, J.; Zhou, Y.; Scuri, G.; Zólyomi, V.; Andersen, T. I.; Yoo, H.; Wild, D. S.; Joe, A. Y.; Gelly, R. J.; Heo, H. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 2020, 15, 750–754.

[175]

Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103–153107.

[176]

Scuri, G.; Andersen, T. I.; Zhou, Y.; Wild, D. S.; Sung, J.; Gelly, R. J.; Bérubé, D.; Heo, H.; Shao, L. B.; Joe, A. Y. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 2020, 124, 217403.

[177]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[178]

Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

[179]

Plochocka, P. Excitons in a twisted world. Nat. Nanotechnol. 2020, 15, 727–729.

[180]

Huang, D.; Choi, J.; Shih, C. K.; Li, X. Q. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 2022, 17, 227–238.

[181]

Guo, H. L.; Zhang, X.; Lu, G. Moiré excitons in defective van der Waals heterostructures. Proc. Natl. Acad. Sci. USA 2021, 118, e2105468118.

[182]

Villafañe, V.; Kremser, M.; Hübner, R.; Petrić, M. M.; Wilson, N. P.; Stier, A. V.; Müller, K.; Florian, M.; Steinhoff, A.; Finley, J. J. Twist-dependent intra- and interlayer excitons in moiré MoSe2 homobilayers. Phys. Rev. Lett. 2023, 130, 026901.

[183]

Naik, M. H.; Regan, E. C.; Zhang, Z. C.; Chan, Y. H.; Li, Z. L.; Wang, D. Q.; Yoon, Y.; Ong, C. S.; Zhao, W. Y.; Zhao, S. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 2022, 609, 52–57.

[184]

Wu, F. C.; Xue, F.; MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 2015, 92, 165121.

[185]

Wang, Z. F.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76–80.

[186]

Fang, H. L.; Lin, Q. L.; Zhang, Y.; Thompson, J. Xiao, S. S.; Sun, Z. P.; Malic, E.; Dash, S. P.; Wieczorek, W. Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers. Nat. Commun. 2023, 14, 6910.

[187]

Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

[188]
Palekar, C. C.; Hagel, J.; Rosa, B.; Brem, S.; Shih, C. W.; Limame, I.; Von Helversen, M.; Tongay, S.; Malic, E.; Reitzenstein, S. Twist angle dependence of exciton resonances in WSe2/MoSe2 Moiré heterostructures. arXiv September 28, 2023.
[189]

Cai, H. B.; Rasmita, A.; Tan, Q. H.; Lai, J.-M.; He, R. H.; Cai, X. B.; Zhao, Y.; Chen, D. S.; Wang, N. Z.; Mu, Z. et al. Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer. Nat. Nanotechnol. 2023, 14, 5766.

[190]

Remez, B.; Cooper, N. R. Leaky exciton condensates in transition metal dichalcogenide moiré bilayers. Phys. Rev. Res. 2022, 4, L022042.

[191]

Guo, H. L.; Zhang, X.; Lu G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose-Einstein condensation. Sci. Adv. 2022, 8, eabp9757.

[192]

Deng, S.; Chu, Y. C.; Zhu, Q. Z. Moiré exciton condensate: Nonlinear Dirac point, broken-symmetry Bloch waves, and unusual optical selection rules. Phys. Rev. B 2022, 106, 155410.

[193]

Baek, H.; Brotons-Gisbert, M.; Koong, Z. X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B. D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 2020, 6, eaba8526.

[194]

Zhang, L.; Wu, F. C.; Hou, S. C.; Zhang, Z.; Chou, Y. H.; Watanabe, K.; Taniguchi, T.; Forrest, S. R.; Deng, H. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 2021, 591, 61–65.

[195]

Yu, H. Y.; Yao, W. Electrically tunable topological transport of moiré polaritons. Sci. Bull. 2020, 65, 1555–1562.

[196]

Fitzgerald, J. M.; Thompson, J. J. P.; Malic, E. Twist angle tuning of moiré exciton polaritons in van der Waals heterostructures. Nano Lett. 2022, 22, 4468–4474.

[197]

Chu, Z. D.; Regan, E. C.; Ma, X. J.; Wang, D. Q.; Xu, Z. F.; Utama, M. I. B.; Yumigeta, K.; Blei, M.; Watanabe, K.; Taniguchi, T. et al. Nanoscale conductivity imaging of correlated electronic states in WSe2/WS2 moiré superlattices. Phys. Rev. Lett. 2020, 125, 186803.

[198]

H. Y.; Li, S. W.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Kahn, S.; Yumigeta, K.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Imaging two-dimensional generalized Wigner crystals. Nature 2021, 597, 650–654.

[199]

Huang, X.; Wang, T. M.; Miao, S. N.; Wang, C.; Li, Z. P.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Okamoto, S.; Xiao, D. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 2021, 17, 715–719.

[200]

Li, T. X.; Zhu, J. C.; Tang, Y. H.; Watanabe, K.; Taniguchi, T.; Elser, V.; Shan, J.; Mak, K. F. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 2021, 16, 1068–1072.

[201]

Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020, 580, 472–477.

[202]

Liu, E. F.; Taniguchi, T.; Watanabe, K.; Gabor, N. M.; Cui, Y. T.; Lui, C. H. Excitonic and valley-polarization signatures of fractional correlated electronic phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 2021, 127, 037402.

[203]

Gu, J.; Ma, L. G.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 2022, 18, 395–400.

[204]

Wang, X.; Xiao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Xiao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in moiré superlattices. Nature 2022, 604, 468–473.

[205]

Shabani, S.; Halbertal, D.; Wu, W. J.; Chen, M. X.; Liu, S.; Hone, J.; Yao, W.; Basov, D. N.; Zhu, X. Y.; Pasupathy, A. N. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 2021, 17, 720–725.

[206]

Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

[207]

Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Yumigeta, K.; Blei, M. et al. Imaging local discharge cascades for correlated electrons in WS2/WSe2 moiré superlattices. Nat. Phys. 2021, 17, 1114–1119.

[208]

Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263.

[209]

Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 2008, 78, 045109.

[210]

Szasz, A.; Motruk, J.; Zaletel, M. P.; Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: A density matrix renormalization group study. Phys. Rev. X 2020, 10, 021042.

[211]

Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208.

[212]

Georges, A.; Kotliar, G.; Krauth, W.; Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 1996, 68, 13–125.

[213]

Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of schottky barrier. Sci. Adv. 2016, 2, e1600069.

[214]

Zhang, M. J.; Zhao, X.; Watanabe, K.; Taniguchi, T.; Zhu, Z.; Wu, F. C.; Li, Y. Q.; Xu, Y. Tuning quantum phase transitions at half filling in 3L-MoTe2/WSe2 moiré superlattices. Phys. Rev. X 2022, 12, 041015.

[215]

Tang, Y. H.; Su, K. X.; Li, L. Z.; Xu, Y.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Jian, C. M.; Xu, C. K. et al. Evidence of frustrated magnetic interactions in a Wigner-Mott insulator. Nat. Nanotechnol. 2023, 18, 233–237.

Nano Research
Pages 10134-10161
Cite this article:
Shah SJ, Chen J, Xie X, et al. Progress and prospects of Moiré superlattices in twisted TMD heterostructures. Nano Research, 2024, 17(11): 10134-10161. https://doi.org/10.1007/s12274-024-6936-3
Topics:

466

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 June 2024
Revised: 31 July 2024
Accepted: 02 August 2024
Published: 06 September 2024
© Tsinghua University Press 2024
Return