AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solar-blind ultraviolet photodetector derived from direct carrier transition beyond the bandgap of CdPS3 single crystals

Xinyun ZhouShuo LiuJiacheng YangJunda YangFen ZhangLe YuanRuiying MaJiaqi ShiQinglin Xia( )Mianzeng Zhong( )
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

The as-prepared CdPS3 nanosheets were employed as channels in photodetectors, demonstrating outstanding photoelectric performance in the solar-blind ultraviolet range (at 254 and 275 nm) with high responsivity (0.3 A/W), high specific detectivity (5.5 × 109 Jones), rapid response speed (2.6 ms/3.4 ms), and exceptionally low dark current (2 pA).

Abstract

Wide-bandgap semiconductors have demonstrated considerable potential for fabricating solar-blind ultraviolet (SBUV) photodetectors, which are extensively used in both civilian and military applications. Despite this promise, the limited variety of semiconductors with suitable bandgaps hampers the advancement of high-performance SBUV detectors. In this study, we synthesized CdPS3 transparent single crystals using the chemical vapor transport (CVT) method. Density functional theory (DFT) calculations suggest that the bandgap of CdPS3 decreases as the material’s thickness increases, a finding corroborated by subsequent absorption spectra and photoelectric response measurements. The as-prepared CdPS3 nanosheets were employed as channels in photodetectors, demonstrating outstanding photoelectric performance in the solar-blind ultraviolet range (at 254 and 275 nm) with high responsivity (0.3 A/W), high specific detectivity (5.5 × 109 Jones), rapid response speed (2.6 ms/3.4 ms), and exceptionally low dark current (2 pA). It is noteworthy that these nanosheets exhibit almost no sensitivity to 365 nm and visible light irradiation, attributable to the direct carrier transition beyond the broad bandgap in CdPS3. Furthermore, high-quality imaging was achieved under different gate voltages using 275 nm ultraviolet light, underscoring the potential of CdPS3 as a new material for high-performance SBUV optoelectronic detection.

Electronic Supplementary Material

Download File(s)
6941_ESM.pdf (676 KB)

References

[1]

Qin, Y.; Li, L. H.; Yu, Z. A.; Wu, F. H.; Dong, D. N.; Guo, W.; Zhang, Z. F.; Yuan, J. H.; Xue, K. H.; Miao, X. S. et al. Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging. Adv. Sci. 2021, 8, 2101106.

[2]

Choi, W.; Ahn, J.; Kim, K. T.; Jin, H. J.; Hong, S.; Hwang, D. K.; Im, S. Ambipolar channel p-TMD/n-Ga2O3 junction field effect transistors and high speed photo-sensing in TMD channel. Adv. Mater. 2021, 33, 2103079.

[3]
Dai, Y.; Ge, X.; Shi, B.; Wang, P. Y.; Zhao, Y.; Zhang, X. D. Enhancing ultraviolet stability and performance of wide bandgap perovskite solar cells through ultraviolet light‐absorbing passivator. Small Methods, in press, https://doi.org/10.1002/smtd.202301793.
[4]

Dong, S. H.; Hu, Z. Y.; Wei, P.; Han, J. R.; Wang, Z.; Liu, J.; Su, B. L.; Zhao, D. Y.; Liu, Y. All-inorganic perovskite single-crystal photoelectric anisotropy. Adv. Mater. 2022, 34, 2204342.

[5]

Ra, H. S.; Lee, S. H.; Jeong, S. J.; Cho, S.; Lee, J. S. Advances in heterostructures for optoelectronic devices: Materials, properties, conduction mechanisms, device applications. Small Methods 2024, 8, 2300245.

[6]

Jiang, Y. R.; Xing, W. Q.; Li, H. Z.; Zhang, L. L.; Zhang, S. C.; Li, X. P.; Su, J.; Song, X. H.; Xia, C. X. Controllable carrier concentration of two-dimensional TMDs by forming transition-metal suboxide layer for photoelectric devices. Appl. Phys. Lett. 2022, 121, 022101.

[7]

Yu, Y. L.; Xiong, T.; Liu, Y. Y.; Yang, J. H.; Xia, J. B.; Wei, Z. M. Polarization reversal of group IV-VI semiconductors with pucker-like structure: Mechanism dissecting and function demonstration. Adv. Mater. 2024, 36, 2307769.

[8]

Xie, R.; Luo, W. C.; Zou, L. W.; Fan, X. L.; Li, C.; Lv, T. Z.; Jiang, J. M.; Chen, Z. H.; Zhou, Y. Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. Discov. Nano. 2023, 18, 44.

[9]

Yang, S. X.; Chen, Y. J.; Jiang, C. B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420.

[10]

Zhou, Z. Q.; Shen, T.; Wang, P.; Guo, Q. L.; Wang, Q. H.; Ma, C. J.; Xin, K. Y.; Zhao, K.; Yu, Y. L.; Qin, B. et al. Low symmetric sub-wavelength array enhanced lensless polarization-sensitivity photodetector of germanium selenium. Sci. Bull. 2023, 68, 173–179.

[11]

Yu, Y. L.; Xiong, T.; Kang, J.; Zhou, Z. Q.; Long, H. R.; Liu, D. Y.; Liu, L. Y.; Liu, Y. Y.; Yang, J. H.; Wei, Z. M. Dual-band real-time object identification via polarization reversal based on 2D GeSe image sensor. Sci. Bull. 2023, 68, 1867–1870.

[12]

Zhang, F.; Mo, Z. X.; Wang, D. Y.; Cui, B. C.; Xia, Q. L.; Li, B.; He, J.; Zhong, M. Z. Ultrasensitive and broad-spectrum polarization sensitive photodetector based on individual Bi2Te0.6S2.4 nanobelt. Appl. Phys. Lett. 2022, 121, 191102.

[13]

Zhou, Z. M.; Liu, K. X.; Wu, D.; Jiang, Y. R.; Zhuo, R. R.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Han, W.; Zeng, L. H. et al. On-chip integrated GeSe2/Si vdW heterojunction for ultraviolet-enhanced broadband photodetection, imaging, and secure optical communication. Nano Res. 2024, 17, 6544–6549.

[14]

Li, Z. L.; Li, Q. J.; Li, H. Y.; Tian, F. Y.; Du, M. Y.; Fang, S. X.; Liu, R.; Zhang, L. J.; Liu, B. B. Pressure-tailored self-driven and broadband photoresponse in PbI2. Small Methods 2022, 6, 2201044.

[15]

He, J.; Li, C. Y.; Qi, D. X.; Cai, Q.; Liu, Y.; Fan, R. H.; Su, J.; Huo, P. C.; Xu, T.; Peng, R. W. Improving photoelectric conversion with broadband perovskite metasurface. Nano Lett. 2022, 22, 6655–6663.

[16]

Chen, H. Y.; Liu, K. W.; Hu, L. F.; Al-Ghamdi, A. A.; Fang, X. S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502.

[17]

Razeghi, M.; Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 1996, 79, 7433–7473.

[18]

Lei, J. P.; Zheng, T.; Wu, W. L.; Zheng, Z. Q.; Zheng, Q. S.; Wang, X. Z.; Xiao, W. B.; Li, J. B.; Yang, M. M. Super-high responsivity and harsh environment-resistant ultraviolet photodetector enabled by Ta2NiSe5/GaN van der Waals heterojunction. Sci. China Mater. 2024, 67, 863–870.

[19]

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

[20]

Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.

[21]

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[22]

Jha, P. K.; Shitrit, N.; Ren, X. X.; Wang, Y.; Zhang, X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys. Rev. Lett. 2018, 121, 116102.

[23]

Wang, D. Y.; Zhao, F. P.; Zhang, F.; Mo, Z. X.; Cui, B. C.; Xia, Q. L.; Li, B.; He, J.; Zhong, M. Z. Ultrasensitive and broadband polarization-sensitive topological insulator photodetector induced by element substitution. Appl. Phys. Lett. 2022, 121, 061104.

[24]

Zhou, Y.; Li, C.; Zhang, Y.; Wang, L.; Fan, X. L.; Zou, L. W.; Cai, Z.; Jiang, J. M.; Zhou, S.; Zhang, B. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2304302.

[25]

Fan, X. L.; Chen, Z. H.; Xu, D. F.; Zou, L. W.; Ouyang, F. P.; Deng, S. B.; Wang, X.; Zhao, J.; Zhou, Y. Phase-controlled synthesis of large-area trigonal 2D Cr2S3 thin films via ultralow gas-flow governed dynamic transport. Adv. Funct. Mater. 2024, 21, 2404750.

[26]

Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

[27]

Zhang, T. L.; Zhang, Y. J.; Huang, M. Y.; Li, B.; Sun, Y. H.; Qu, Z.; Duan, X. D.; Jiang, C. B.; Yang, S. X. Tuning the exchange bias effect in 2D van der Waals ferro-/antiferromagnetic Fe3GeTe2/CrOCl heterostructures. Adv. Sci. 2022, 9, 2105483.

[28]

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

[29]

Zhong, M. Z.; Xia, Q. L.; Pan, L. F.; Liu, Y. Q.; Chen, Y. B.; Deng, H. X.; Li, J. B.; Wei, Z. M. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater. 2018, 28, 1802581.

[30]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[31]

Anasori, B.; Naguib, M.; Editors, G. Two-dimensional MXenes. MRS Bull. 2023, 48, 238–244.

[32]

Latiff, N. M.; Mayorga-Martinez, C. C.; Khezri, B.; Szokolova, K.; Sofer, Z.; Fisher, A. C.; Pumera, M. Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem 2018, 12, 1–9.

[33]

Mayorga-Martinez, C. C.; Sofer, Z.; Sedmidubsky, D.; Huber, S.; Eng, A. Y. S.; Pumera, M. Layered metal thiophosphite materials: Magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces 2017, 9, 12563–12573.

[34]

Rahman, S.; Ngyuen, H.; Macdonald, D.; Lu, Y. R. Temperature-dependent phase variations in van der Waals CdPS3 revealed by Raman spectroscopy. Symmetry 2024, 16, 140.

[35]

Niu, M. M.; Cheng, H. W.; Li, X. L.; Yu, J.; Yang, X. W.; Gao, Y. Q.; Liu, R. G.; Cao, Y.; He, K. Y.; Xie, X. J. et al. Pressure-induced phase transitions in weak interlayer coupling CdPS3. Appl. Phys. Lett. 2022, 120, 233104.

[36]

Qian, X. T.; Chen, L.; Yin, L. C.; Liu, Z. B.; Pei, S. F.; Li, F.; Hou, G. J.; Chen, S. M.; Song, L.; Thebo, K. H. et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370, 596–600.

[37]

Li, H.; Wells, N.; Chong, B.; Xu, B. R.; Wei, J. J.; Yang, B. L.; Yang, G. D. The layered cadmium phosphorus trichalcogenides nanosheet with anion mono-doping: A new candidate for solar-driven water splitting. Chem. Eng. Sci. 2021, 229, 116069.

[38]

Yang, X. B.; Luo, Y. H.; Li, J. D.; Wang, H. Q.; Song, Y. Y.; Li, J.; Guo, Z. P. Tuning mixed electronic/ionic conductivity of 2D CdPS3 nanosheets as an anode material by synergistic intercalation and vacancy engineering. Adv. Funct. Mater. 2022, 32, 2112169.

[39]

Sun, F.; Yan, X. X.; Zhang, Z. J.; Guo, Z. N.; Yuan, W. X. Narrowing the optical gap of CdPS3 single crystal via chemical intercalation using liquid ammonia method. Solid State Commun. 2023, 363, 115116.

[40]

Ouvrard, G.; Brec, R.; Rouxel, J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater. Res. Bull. 1985, 20, 1181–1189.

[41]

Li, B. D.; Song, J. M.; Li, Y. T.; Meng, C. Y.; Wang, S. X.; Zong, L. H.; Ye, H. G.; Jing, Y. S.; Teng, F.; Hu, P. et al. High-efficient photocatalytic degradation of multiple pollutants by CdPS3 nanosheets. Process Saf. Environ. Protect. 2024, 181, 96–102.

[42]

Zhang, F.; Shi, H.; Yu, Y. L.; Liu, S.; Liu, D. Y.; Zhou, X. Y.; Yuan, L.; Shi, J. Q.; Xia, Q. L.; Wei, Z. M. et al. Dynamic band-alignment modulation in MoTe2/SnSe2 heterostructure for high performance photodetector. Adv. Opt. Mater. 2024, 12, 2303088.

[43]

Meng, W. W.; Wang, X. M.; Xiao, Z. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007.

[44]

Santander-Syro, A. F.; Dai, J.; Rödel, T. C.; Frantzeskakis, E.; Fortuna, F.; Weht, R.; Rozenberg, M. J. Quantum interference effects of out-of-plane confinement on two-dimensional electron systems in oxides. Phys. Rev. B 2020, 102, 075101.

[45]

Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater Appl. 2019, 3, 33.

[46]

Mo, Z. X.; Zhang, F.; Wang, D. Y.; Cui, B. C.; Xia, Q. L.; Li, B.; He, J.; Zhong, M. Z. Ultrafast-response and broad-spectrum polarization sensitive photodetector based on Bi1.85In0.15S3 nanowire. Appl. Phys. Lett. 2022, 120, 201105.

[47]

Geng, Y.; Zhao, Y. J.; Zhao, J. J.; Zhai, Y.; Yuan, M.; Wang, X. D.; Gao, H. F.; Feng, J. G.; Wu, Y. C.; Jiang, L. Optical and electrical modulation in ultraviolet photodetectors based on organic one-dimensional photochromic arrays. SmartMat 2021, 2, 388–397.

[48]

Zhong, M. Z.; Cui, B. C.; Mo, Z. X.; Yu, Y. L.; Xia, Q. L.; Zhang, F.; Zhou, Z. Q.; Huang, L.; Li, B.; Yang, J. H. et al. Gate controllable band alignment transition in 2D black-arsenic/WSe2 heterostructure. Appl. Phys. Rev. 2023, 10, 021416.

[49]

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

[50]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[51]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

Nano Research
Pages 10042-10048
Cite this article:
Zhou X, Liu S, Yang J, et al. Solar-blind ultraviolet photodetector derived from direct carrier transition beyond the bandgap of CdPS3 single crystals. Nano Research, 2024, 17(11): 10042-10048. https://doi.org/10.1007/s12274-024-6941-6
Topics:

329

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 July 2024
Revised: 04 August 2024
Accepted: 06 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return