AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional hydrogel combined with electrical stimulation therapy for promoting diabetic wound healing

Xiaoyan Zheng1,§Jiaxin Yao1,2,§Jialing Yao2,3Pan Wang2Wan Liu1,2( )Daidi Fan1,2,3( )Junfeng Hui1,2,3
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China

§ Xiaoyan Zheng and Jiaxin Yao contributed equally to this work.

Show Author Information

Graphical Abstract

The construction mechanism of PPTZ hydrogel, and their application in the treatment of infected diabetic wound were reported.

Abstract

Diabetic wounds, as a complication of diabetes, are slow to heal and seriously affect the quality of life of patients. Functional hydrogel dressing is an effective approach to improve diabetic wound healing. Electrical stimulation (ES) therapy is conducive to promoting cell migration and wound healing. In this work, a multifunctional PPTZ hydrogel wound dressing was developed by freeze-thaw method with polyvinyl alcohol (PVA), phytic acid (PA), tannic acid (TA), and Zinc chloride. The obtained PPTZ hydrogel has good mechanical properties (stress and strain of 700.03 kPa and 575.08%), light transmittance (close to 100%) and antibacterial rate (over 75%). With good biocompatibility, antioxidant abilities and conductivity, the PPTZ hydrogel could effectively promote the healing of diabetic wounds with two weeks under the action of electric field, which provides an auxiliary treatment strategy for diabetic patients.

Electronic Supplementary Material

Download File(s)
6943_ESM.pdf (409.7 KB)

References

[1]

Kharaziha, M.; Baidya, A.; Annabi, N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 2021, 33, 2100176.

[2]

Liu, X. G.; Wang, M.; Cao, L.; Zhuang, J. H.; Wang, D. D.; Wu, M.; Liu, B. Living artificial skin: Photosensitizer and cell sandwiched bacterial cellulose for chronic wound healing. Adv. Mater. 2024, 36, 2403355.

[3]
Zhang, X. Y.; Wu, Y.; Gong, H.; Xiong, Y.; Chen, Y.; Li, L.; Zhi, B.; Lv, S. Q.; Peng, T.; Zhang, H. A multifunctional herb-derived glycopeptide hydrogel for chronic wound healing. Small, in press, DOI: 10.1002/smll.202400516.
[4]

Zhao, C. Y.; Wu, Z. Q.; Pan, B. Y.; Zhang, R. H.; Golestani, A.; Feng, Z. Y.; Ge, Y.; Yang, H. Z. Functional biomacromolecules-based microneedle patch for the treatment of diabetic wound. Int. J. Biol. Macromol. 2024, 267, 131650.

[5]

Wang, H. Z.; Zhang, L. M. Intelligent biobased hydrogels for diabetic wound healing: A review. Chem. Eng. J. 2024, 484, 149493.

[6]

Falanga, V.; Isseroff, R. R.; Soulika, A. M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic wounds. Nat. Rev. Dis. Primers 2022, 8, 50.

[7]

Ma, J. H.; Fang, Y. M.; Yu, H. Y.; Yi, J.; Ma, Y. L.; Lei, P. Y.; Yang, Q. S.; Jin, L. B.; Wu, W.; Li, H. et al. Recent advances in living algae seeding wound dressing: Focusing on diabetic chronic wound healing. Adv. Funct. Mater. 2024, 34, 2308387.

[8]

Theocharidis, G.; Yuk, H.; Roh, H.; Wang, L.; Mezghani, I.; Wu, J. J.; Kafanas, A.; Contreras, M.; Sumpio, B.; Li, Z. Q. et al. A strain-programmed patch for the healing of diabetic wounds. Nat. Biomed. Eng. 2022, 6, 1118–1133.

[9]

Matoori, S.; Veves, A.; Mooney, D. J. Advanced bandages for diabetic wound healing. Sci. Transl. Med. 2021, 13, eabe4839.

[10]

Chen, Y.; Wang, X.; Tao, S.; Wang, Q.; Ma, P. Q.; Li, Z. B.; Wu, Y. L.; Li, D. W. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil. Med. Res. 2023, 10, 37.

[11]

Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res. 2022, 15, 5305–5315.

[12]

Wang, X.; Yang, Y. H.; Zhao, W. F.; Zhu, Z.; Pei, X. Recent advances of hydrogels as smart dressings for diabetic wounds. J. Mater. Chem. B 2024, 12, 1126–1148.

[13]

Tang, Y. X.; Xu, H. Q.; Wang, X.; Dong, S. H.; Guo, L.; Zhang, S. C.; Yang, X.; Liu, C.; Jiang, X.; Kan, M. J. et al. Advances in preparation and application of antibacterial hydrogels. J. Nanobiotechnol. 2023, 21, 300.

[14]

Li, Y. N.; Han, Y. J.; Li, H. X.; Niu, X. H.; Zhang, D. Y.; Wang, K. J. Antimicrobial hydrogels: Potential materials for medical application. Small 2024, 20, 2304047.

[15]

Li, N.; Liu, W.; Zheng, X. Y.; Wang, Q.; Shen, L. X.; Hui, J. F.; Fan, D. D. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Res. 2023, 16, 11139–11148.

[16]

Zhao, H.; Huang, J.; Li, Y.; Lv, X. J.; Zhou, H. T.; Wang, H. R.; Xu, Y. Y.; Wang, C.; Wang, J.; Liu, Z. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 2020, 258, 120286.

[17]

Ninan, N.; Forget, A.; Shastri, V. P.; Voelcker, N. H.; Blencowe, A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521.

[18]

Yao, J. X.; Huang, C. J.; Yao, J. L.; Hui, J. F.; Shen, S. H.; Zheng, X. Y.; Shen, L. X.; Fan, D. D. A moldable hydrogel based on sericin and Zn2+/F- dual-doped hydroxyapatite promotes skull defect repair through the synergistic effects of immunoregulation, enhanced angiogenesis and osteogenesis. Chem. Eng. J. 2024, 491, 151789.

[19]

Cao, H. K.; Xiang, D.; Zhou, X.; Yue, P. P.; Zou, Y. K.; Zhong, Z. B.; Ma, Y. S.; Wang, L. Z.; Wu, S. Q.; Ye, Q. F. High-strength, antibacterial, antioxidant, hemostatic, and biocompatible chitin/PEGDE-tannic acid hydrogels for wound healing. Carbohydr. Polym. 2023, 307, 120609.

[20]

Yao, J. L.; Hui, J. F.; Yang, J.; Yao, J. X.; Hu, C. Q.; Fan, D. D. Sprayable nanodrug-loaded hydrogels with enzyme-catalyzed semi-inter penetrating polymer network (semi-IPN) for solar dermatitis. Nano Res. 2022, 15, 6266–6277.

[21]

Qian, Y. N.; Zheng, Y. J.; Jin, J.; Wu, X.; Xu, K. J.; Dai, M. L.; Niu, Q.; Zheng, H.; He, X. J.; Shen, J. L. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv. Mater. 2022, 34, 2200521.

[22]

Zhong, S.; Lu, C. H.; Liu, H. Y.; Zhang, J.; Wang, J. Q.; Liu, Y.; Chen, Y. S.; Zhang, X. Electrical and immune stimulation-based hydrogels synergistically realize scarless wound healing via amplifying endogenous electrophysiological function and promoting macrophage phenotype-switching. Chem. Eng. J. 2024, 491, 152048.

[23]

Chen, K. B.; Li, X. L.; Su, P. P.; Liu, J. H.; Lin, Z.; Wang, Y. Q.; Zou, Y.; Ye, T. T.; Wang, W. Multiple-dynamic-bond crosslinked ion-elastomers achieve a combination of photothermal antibacterial and self-powered electrical stimulation for infected wound healing. Nano Energy 2024, 121, 109260.

[24]

Rajendran, S. B.; Challen, K.; Wright, K. L.; Hardy, J. G. Electrical stimulation to enhance wound healing. J. Funct. Biomater. 2021, 12, 40.

[25]

Zheng, M. H.; Wang, X. C.; Yue, O. Y.; Hou, M. D.; Zhang, H. J.; Beyer, S.; Blocki, A. M.; Wang, Q.; Gong, G. D.; Liu, X. H. et al. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials 2021, 276, 121026.

[26]

Wang, M. M.; Yao, J. X.; Shen, S. H.; Heng, C. N.; Zhang, Y. Y.; Yang, T.; Zheng, X. Y. A scaffold with zinc-whitlockite nanoparticles accelerates bone reconstruction by promoting bone differentiation and angiogenesis. Nano Res. 2023, 16, 757–770.

[27]

Xu, Q.; Dai, W. F.; Li, P. Z.; Li, Q. L.; Gao, Z.; Wu, X. L.; Liu, W.; Wang, W. B. Piezoelectric film promotes skin wound healing with enhanced collagen deposition and vessels regeneration via upregulation of PI3K/AKT. Nano Res. 2024, 17, 7461–7478.

[28]

Lei, H.; Fan, D. D. A combination therapy using electrical stimulation and adaptive, conductive hydrogels loaded with self-assembled nanogels incorporating short interfering RNA promotes the repair of diabetic chronic wounds. Adv. Sci. 2022, 9, 2201425.

[29]

Xiao, J. F.; Wang, Y.; Zhang, T. C.; Ouyang, L. K.; Yuan, S. J. Phytic acid-induced self-assembled chitosan gel-derived N, P-co-doped porous carbon for high-performance CO2 capture and supercapacitor. J. Power Sources 2022, 517, 230727.

[30]

Meng, W. H.; Dong, Y. L.; Li, J. H.; Cheng, L. Y.; Zhang, H. J.; Wang, C. Z.; Jiao, Y. H.; Xu, J. Z.; Hao, J. W.; Qu, H. Q. Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC. Compos. B: Eng. 2020, 188, 107854.

[31]

Hu, R. F.; Zhao, J.; Wang, Y. H.; Li, Z. X.; Zheng, J. P. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334–341.

[32]

Zhang, Y.; Peng, C.; Zeng, Z.; Zhang, X. N.; Zhang, L. L.; Ma, Y.; Wang, Z. H. Sustainable phytic acid-zinc anticorrosion interface for highly reversible zinc metal anodes. ACS Appl. Mater. Interfaces 2022, 14, 10419–10427.

[33]

Gupta, S.; Pramanik, A. K.; Kailath, A.; Mishra, T.; Guha, A.; Nayar, S.; Sinha, A. Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels. Colloids Surf. B: Biointerfaces 2009, 74, 186–190.

[34]

Sau, S.; Pandit, S.; Kundu, S. Crosslinked poly (vinyl alcohol): Structural, optical and mechanical properties. Surf. Interfaces 2021, 25, 101198.

[35]

Zhang, K. L.; Li, R. A.; Chen, G. X.; Yang, J. M.; Tian, J. F.; He, M. H. Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions. J. Mater. Chem. A 2021, 9, 4890–4897.

[36]

Liu, W.; Xie, R. J.; Zhu, J. Y.; Wu, J. S.; Hui, J. F.; Zheng, X. Y.; Huo, F. W.; Fan, D. D. A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. npj Flex. Electron. 2022, 6, 68.

[37]

Mo, J. Y.; Dai, Y. H.; Zhang, C.; Zhou, Y. S.; Li, W. B.; Song, Y. X.; Wu, C. Y.; Wang, Z. K. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions. Mater. Horiz. 2021, 8, 3409–3416.

[38]

Zhang, Q.; Liu, X.; Zhang, J. W.; Duan, L. J.; Gao, G. H. A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. J. Mater. Chem. A 2021, 9, 22615–22625.

[39]

Ji, Z. X.; Wei, T.; Zhu, J. F.; Hu, J. Y.; Xiao, Z. S.; Bai, B. X.; Lv, X. Y.; Miao, Y.; Chen, M. C.; Wang, C. et al. Actively contractible and antibacterial hydrogel for accelerated wound healing. Nano Res. 2024, 17, 7394–7403.

[40]

Lei, H.; Fan, D. D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.

[41]

Kim, Y. E.; Kim, J. ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl. Mater. Interfaces 2022, 14, 23002–23021.

[42]

Xu, Z. J.; Han, S. Y.; Gu, Z. P.; Wu, J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv. Healthc. Mater. 2020, 9, 1901502.

[43]

Thi, P. L.; Lee, Y.; Tran, D. L.; Thi, T. T. H.; Kang, J. I.; Park, K. M.; Park, K. D. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater. 2020, 103, 142–152.

[44]

Liu, X. Q.; Sun, Y. M.; Wang, J.; Kang, Y. Y.; Wang, Z. L.; Cao, W. B.; Ye, J.; Gao, C. Y. A tough, antibacterial and antioxidant hydrogel dressing accelerates wound healing and suppresses hypertrophic scar formation in infected wounds. Bioact. Mater. 2024, 34, 269–281.

Nano Research
Pages 9942-9953
Cite this article:
Zheng X, Yao J, Yao J, et al. Multifunctional hydrogel combined with electrical stimulation therapy for promoting diabetic wound healing. Nano Research, 2024, 17(11): 9942-9953. https://doi.org/10.1007/s12274-024-6943-4
Topics:

333

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 July 2024
Revised: 06 August 2024
Accepted: 06 August 2024
Published: 24 August 2024
© Tsinghua University Press 2024
Return