AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cobalt-manganese bimetallic organic frameworks catalyzed solvent-free oxidation of benzyl C–H bonds with O2 as sole oxidant

Ke Cao1Yan Zhou1Shanshan Lv1Mengmeng Feng1Changjin Qian1Zheng Chen1,2( )
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

In this study, SiO2-TiO2 composite microspheres with bimodal pore were synthesized via spray pyrolysis as efficient Li metal hosts. SiO2-TiO2 effectively stored lithium within the structure and paired with cathode, showing excellent electrochemical properties.

Abstract

The selective oxidation of hydrocarbons can be used to produce oxygen-containing functional compounds such as alcohols, aldehydes or ketones and its efficient and green conversion lies in the development of efficient catalysts that activate C–H bonds and O2 simultaneously. In this work, the bimetallic organic framework (CoMnBDC) material with morphology of stacked nanosheets was synthesized using terephthalic acid as ligands to coordinate with Co2+ and Mn2+ cations under solvothermal conditions. As revealed by spectroscopic characterizations, the electron transfer from Mn to Co in the CoMnBDC resulted in the reduction of the Co average oxidation state and increase of the Mn average oxidation state. The CoMnBDC nanosheets were used as catalyst in catalytic oxidation of ethylbenzene, in which the redox effect promotes the effective electron transfer, the activation of O2 and benzyl C–H bond. The 96.2% conversion of ethylbenzene and 98.0% selectivity towards acetophenone could be obtained with oxygen as sole oxidant and solvent-free condition. The excellent catalytic performance is related to the structure of CoMnBDC and is also the best when compared with reported results. Various types of aromatic hydrocarbons containing benzyl C–H bonds can be effectively oxidized by CoMnBDC to produce corresponding ketone products. The density functional theory (DFT) calculation revealed that the redox effect leads to the relative enrichment of electrons on Co in CoMnBDC, which is conducive to the activation of O2; Mn with higher oxidation state is beneficial for the adsorption of ethylbenzene and activation of C–H bonds. The CoMnBDC has a lower energy barrier for transition state, making it easier for the ethylbenzene oxidation to produce acetophenone.

Electronic Supplementary Material

Download File(s)
6944_ESM.pdf (2.7 MB)

References

[1]

Ren, L. H.; Gao, S. Recent advances of the oxidation of C–H bonds to ketones. Chin. J. Org. Chem. 2017, 37, 1338–1351.

[2]

Wang, Q. H.; Zhang, Z. H.; Sang, K.; Chen, W. Y.; Qian, G.; Zhang, J.; Zhou, X. G.; Duan, X. Z. Kinetics and mechanistic insights into the active sites of Au catalysts for selective propylene oxidation. Nano Res. 2023, 16, 6220–6227.

[3]

Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 2010, 110, 1147–1169.

[4]

Chu, L. L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem., Int. Ed. 2015, 54, 7929–7933.

[5]

Lesieur, M.; Genicot, C.; Pasau, P. Development of a flow photochemical aerobic oxidation of benzylic C–H bonds. Org. Lett. 2018, 20, 1987–1990.

[6]

Pivsa-Art, S.; Okuro, K.; Miura, M.; Murata, S.; Nomura, M. Acylation of 2-methoxynaphthalene with acyl chlorides in the presence of a catalytic amount of Lewis acids. J. Chem. Soc., Perkin Trans. 1 1994, 1703–1707.

[7]

Guchhait, S. K.; Kashyap, M.; Kamble, H. ZrCl4-mediated regio- and chemoselective Friedel–Crafts acylation of indole. J. Org. Chem. 2011, 76, 4753–4758.

[8]

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeN x species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

[9]

Wang, L.; Zhu, Y. H.; Wang, J. Q.; Liu, F. D.; Huang, J. F.; Meng, X. J.; Basset, J. M.; Han, Y.; Xiao, F. S. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nat. Commun. 2015, 6, 6957.

[10]

Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.

[11]

Li, Z. J.; Di, M. H.; Wei, W.; Leng, L. P.; Li, Z. J.; He, C.; Tan, Q.; Xu, Q.; Horton, J. H.; Li, L. et al. Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation. Nano Res. 2022, 15, 5912–5921.

[12]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[13]

Li, H. Y.; Ma, H.; Wang, X. H.; Gao, J.; Chen, C.; Shi, S.; Qu, M. J.; Feng, N.; Xu, J. Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI. J. Energy Chem. 2014, 23, 742–746.

[14]

Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.

[15]

Liu, J. Y.; Meng, R.; Jian, P. M.; Jian, R. Q. CeO2 nanoparticle-decorated Co3O4 microspheres for selective oxidation of ethylbenzene with molecular oxygen under solvent- and additive-free conditions. ACS Sustain. Chem. Eng. 2020, 8, 16791–16802.

[16]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[17]

Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

[18]

Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.

[19]

Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706.

[20]

Zhao, W. S.; Shi, Y. N.; Jiang, Y. H.; Zhang, X. F.; Long, C.; An, P. F.; Zhu, Y. F.; Shao, S. X.; Yan, Z.; Li, G. D. et al. Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation. Angew. Chem., Int. Ed. 2021, 60, 5811–5815.

[21]

Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C–H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.

[22]

Peng, M. M.; Ganesh, M.; Vinodh, R.; Palanichamy, M.; Jang, H. T. Solvent free oxidation of ethylbenzene over Ce-BTC MOF. Arab. J. Chem. 2019, 12, 1358–1364.

[23]

Wang, Q. Y.; Li, Y. X.; Serrano-Lotina, A.; Han, W.; Portela, R.; Wang, R. X.; Bañares, M. A.; Yeung, K. L. Operando investigation of toluene oxidation over 1D Pt@CeO2 derived from Pt cluster-containing MOF. J. Am. Chem. Soc. 2021, 143, 196–205.

[24]

Li, J. W.; Liao, J. H.; Ren, Y. W.; Liu, C.; Yue, C. L.; Lu, J. M.; Jiang, H. F. Palladium catalysis for aerobic oxidation systems using robust metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 17148–17152.

[25]

Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat. Commun. 2020, 11, 1431.

[26]

Zhang, S. S.; Zhao, X. D.; Qiu, Y. J.; Xiong, Y.; Meng, G.; Chen, W.; Liu, Z. L.; Zhang, J. Electron deficient Ir–O bonds promote heterogeneous Ir-catalyzed anti-markovnikov hydroboration of alkenes under mild neat conditions. Nano Lett. 2024, 24, 5165–5173.

[27]

Wu, G. Y.; Liu, S. C.; Cheng, G. J.; Li, H.; Liu, Y. Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 545, 148975.

[28]

Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W. et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12097–12102.

[29]

Ye, J. R.; Wang, Z. B.; Lei, Q.; Sun, L.; Gu, J. F. Structural energy storage composites based on modified carbon fiber electrode with metal-organic frame enhancing layered double hydroxide. Nano Res. 2024, 17, 1552–1563.

[30]

Samuel, E.; Joshi, B.; Kim, Y. I.; Aldalbahi, A.; Rahaman, M.; Yoon, S. S. ZnO/MnO x nanoflowers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 2020, 8, 3697–3708.

[31]

Ren, X. Y.; Zhao, J.; Li, X. N.; Shao, J. M.; Pan, B. B.; Salamé, A.; Boutin, E.; Groizard, T.; Wang, S. F.; Ding, J. et al. In- situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 2023, 14, 3401.

[32]

Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.

[33]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[34]

Zhao, Y. F.; Lu, X. F.; Wu, Z. P.; Pei, Z. H.; Luan, D. Y.; Lou, X. W. Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution. Adv. Mater. 2023, 35, 2207888.

[35]

Goel, P.; Singh, S.; Kaur, H.; Mishra, S.; Deep, A. Low-cost inkjet printing of metal-organic frameworks patterns on different substrates and their applications in ammonia sensing. Sens Actuat. B: Chem. 2021, 329, 129157.

[36]

Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 660–667.

[37]

Sun, Q.; Liu, M.; Li, K. Y.; Han, Y. T.; Zuo, Y.; Chai, F. F.; Song, C. S.; Zhang, G. L.; Guo, X. W. Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorg. Chem. Front. 2017, 4, 144–153.

[38]

Yu, Y.; Zhang, Y. N.; Wang, Y.; Chen, W. X.; Guo, Z. J.; Song, N. N.; Liang, M. M. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Res. 2023, 16, 10763–10769.

[39]

Yuan, E. X.; Zhou, M. X.; Shi, G. J.; Jian, P. M.; Hou, X. Ultralow-loading single-atom cobalt on graphitic carbon nitrogen with robust Co–N pairs for aerobic cyclohexane oxidation. Nano Res. 2022, 15, 8791–8803.

Nano Research
Pages 9532-9539
Cite this article:
Cao K, Zhou Y, Lv S, et al. Cobalt-manganese bimetallic organic frameworks catalyzed solvent-free oxidation of benzyl C–H bonds with O2 as sole oxidant. Nano Research, 2024, 17(11): 9532-9539. https://doi.org/10.1007/s12274-024-6944-3
Topics:

628

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 July 2024
Revised: 05 August 2024
Accepted: 06 August 2024
Published: 31 August 2024
© Tsinghua University Press 2024
Return