AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Kinetics of hydrogen constrained graphene growth on Cu substrate

Xiucai Sun1,§( )Shuang Lou1,2,§Weizhi Wang1,3Xuqin Liu1,2Xiaoli Sun1Yuqing Song1Weimin Yang2Zhongfan Liu1,4( )
Beijing Graphene Institute (BGI), Beijing 100095, China
College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
School of Instrument and Electronics, North University of China, Taiyuan 030051, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

§ Xiucai Sun and Shuang Lou contributed equally to this work.

Show Author Information

Graphical Abstract

Graphene growth involves complicated hydrocarbon transitions rather than only carbon atomic activity. The dominant species of CH decomposed by CH4 leads to a localized sp3 hybridized carbon at the connecting site when attachment, and the excess H must be transferred and overcome the dehydrogenation process with high-energy barriers to achieve the sp2 reconstruction of the newly grown edge. Therefore, the growth of graphene is kinetically hydrogen-constrained and exhibits experimentally quantified growth rates.

Abstract

Chemical vapor deposition (CVD) has shown great promise for the large-scale production of high-quality graphene films for industrial applications. Atomic-scale theoretical studies can help experiments to deeply understand the graphene growth mechanism, and serve as theoretical guides for further experimental designs. Here, by using density functional theory calculations, ab-initio molecular dynamics simulations, and microkinetic analysis, we systematically investigated the kinetics of hydrogen constrained graphene growth on Cu substrate. The results reveal that the actual hydrogen-rich environment of CVD results in CH as the dominating carbon species and graphene H-terminated edges. CH participated island sp2 nucleation avoids chain cyclization process, thereby improving the nucleation and preventing the formation of non-hexameric ring defects. The graphene growth is not simply C-atomic activity, rather, involves three main processes: CH species attachment at the growth edge, leading to a localized sp3 hybridized carbon at the connecting site; excess H transfer from the sp3 carbon to the newly attached CH; and finally dehydrogenation to achieve the sp2 reconstruction of the newly grown edge. The threshold reaction barriers for the growth of graphene zigzag (ZZ) and armchair (AC) edges were calculated as 2.46 and 2.16 eV, respectively, thus the AC edge grows faster than the ZZ one. Our theory successfully explained why the circumference of a graphene island grown on Cu substrates is generally dominated by ZZ edges, which is a commonly observed phenomenon in experiments. In addition, the growth rate of graphene on Cu substrates is calculated and matches well with existing experimental observations.

Electronic Supplementary Material

Download File(s)
6945_ESM.pdf (2.2 MB)

References

[1]

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[2]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[3]

Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

[4]

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

[5]

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial cu foil. Sci. Bull. 2017, 62, 1074–1080.

[6]

Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. New growth frontier: Superclean graphene. ACS Nano 2020, 14, 10796–10803.

[7]

Li, X. S.; Colombo, L.; Ruoff, R. S. Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 2016, 28, 6247–6252.

[8]

Zhang, L. N.; Dong, J. C.; Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 2021, 121, 6321–6372.

[9]

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

[10]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[11]

Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Controlled growth of single-crystal graphene films. Adv. Mater. 2020, 32, 1903266.

[12]

Qiu, Z. Y.; Li, P.; Li, Z. Y.; Yang, J. L. Atomistic simulations of graphene growth: From kinetics to mechanism. Acc. Chem. Res. 2018, 51, 728–735.

[13]

Shu, H. B.; Tao, X. M.; Ding, F. What are the active carbon species during graphene chemical vapor deposition growth. Nanoscale 2015, 7, 1627–1634.

[14]

Sun, X. C.; Luo, X. Y.; Su, Z.; Yu, F. P.; Li, Y. L.; Cheng, X. F.; Zhao, X. Effect of BN seeds on locating and promoting the initial nucleation of graphene on cu substrate and its mechanism: A theoretical study. Appl. Surf. Sci. 2020, 523, 146469.

[15]

Zhang, Y. H.; Zhang, H. R.; Li, F.; Shu, H. B.; Chen, Z. Y.; Sui, Y. P.; Zhang, Y. Q.; Ge, X. M.; Yu, G. H.; Jin, Z. et al. Invisible growth of microstructural defects in graphene chemical vapor deposition on copper foil. Carbon 2016, 96, 237–242.

[16]

Li, P.; Li, Z. Y. Theoretical insights into the thermodynamics and kinetics of graphene growth on copper surfaces. J. Phys. Chem. C 2020, 124, 16233–16247.

[17]

Dong, J. C.; Zhang, L. N.; Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 2019, 31, 1801583.

[18]

Shu, H. B.; Chen, X. S.; Ding, F. The edge termination controlled kinetics in graphene chemical vapor deposition growth. Chem. Sci. 2014, 5, 4639–4645.

[19]

Sun, X. C.; Su, Z.; Zhang, J.; Liu, X. Z.; Li, Y. L.; Yu, F. P.; Cheng, X. F.; Zhao, X. Graphene nucleation preference at CuO defects rather than Cu2O on Cu(111): A combination of DFT calculation and experiment. ACS Appl. Mater. Interfaces 2018, 10, 43156–43165.

[20]

Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014, 136, 3040–3047.

[21]

Luo, D.; Wang, X.; Li, B. W.; Zhu, C. Y.; Huang, M.; Qiu, L.; Wang, M. H.; Jin, S.; Kim, M.; Ding, F. et al. The wet-oxidation of a Cu(111) foil coated by single crystal graphene. Adv. Mater. 2021, 33, 2102697.

[22]

Murdock, A. T.; Koos, A.; Britton, T. B.; Houben, L.; Batten, T.; Zhang, T.; Wilkinson, A. J.; Dunin-Borkowski, R. E.; Lekka, C. E.; Grobert, N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013, 7, 1351–1359.

[23]

Sun, L. Z.; Chen, B. H.; Wang, W. D.; Li, Y. L. Z.; Zeng, X. Z.; Liu, H. Y.; Liang, Y.; Zhao, Z. Y.; Cai, A. L.; Zhang, R. et al. Toward epitaxial growth of misorientation-free graphene on Cu(111) foils. ACS Nano 2022, 16, 285–294.

[24]

Li, B. W.; Luo, D.; Zhu, L. Y.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu(111) foil. Adv. Mater. 2018, 30, 1706504.

[25]

Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 2015, 114, 216102.

[26]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[27]

Li, Z. C.; Zhang, W. H.; Fan, X. D.; Wu, P.; Zeng, C. G.; Li, Z. Y.; Zhai, X. F.; Yang, J. L.; Hou, J. G. Graphene thickness control via gas-phase dynamics in chemical vapor deposition. J. Phys. Chem. C 2012, 116, 10557–10562.

[28]

Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832–22836.

[29]

Zhang, W. H.; Wu, P.; Li, Z. Y.; Yang, J. L. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 2011, 115, 17782–17787.

[30]

Zeng, X. Z.; Qiu, Z. Y.; Li, P.; Li, Z. Y.; Yang, J. L. Steric hindrance effect in high-temperature reactions. CCS Chem. 2020, 2, 460–467.

[31]

Zhang, X.; Liu, J. X.; Zijlstra, B.; Filot, I. A. W.; Zhou, Z. Y.; Sun, S. G.; Hensen, E. J. M. Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 2018, 43, 200–209.

[32]

Zhang, H. R.; Zhang, Y. H.; Zhang, Y. Q.; Chen, Z. Y.; Sui, Y. P.; Ge, X. M.; Yu, G. H.; Jin, Z.; Liu, X. Y. Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching. Nanoscale 2016, 8, 4145–4150.

[33]

Van de Walle, C. G.; Neugebauer, J. First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 2002, 88, 066103.

[34]

Xu, S.; Wu, L. L.; Fan, Y. F.; Liu, Y. F.; Zeng, X. Z.; Li, Z. Y. Hydrocarbon species on the Cu(111) surface studied with a neural network potential. J. Phys. Chem. C 2024, 128, 5697–5707.

[35]

Li, P.; Li, Z. Y.; Yang, J. L. Dominant kinetic pathways of graphene growth in chemical vapor deposition: The role of hydrogen. J. Phys. Chem. C 2017, 121, 25949–25955.

[36]

Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

[37]

Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.

[38]

Tian, J. F.; Cao, H. L.; Wu, W.; Yu, Q. K.; Chen, Y. P. Direct imaging of graphene edges: Atomic structure and electronic scattering. Nano Lett. 2011, 11, 3663–3668.

[39]

Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

[40]

Chen, H.; Sun, X. C.; Song, X. F.; Chen, B. H.; Ma, Z. T.; Yin, W. J.; Sun, L. Z.; Liu, Z. F. Fast scanning growth of high-quality graphene films on Cu foils fueled by dimeric carbon precursor. Nano Res. 2023, 16, 12246–12252.

[41]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[42]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[43]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[44]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[45]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[46]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[47]

Mills, G.; Jónsson, H.; Schenter, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337.

[48]

Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schiffmann, F. et al. CP2K: An electronic structure and molecular dynamics software package-quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.

[49]

Filot, I. A. W.; van Santen, R. A.; Hensen, E. J. M. The optimally performing Fischer-tropsch catalyst. Angew. Chem., Int. Ed. 2014, 53, 12746–12750.

[50]

Li, J. Y.; Yao, Z. H.; Zhao, J. Y.; Deng, S. W.; Wang, S. B.; Wang, J. G. Microkinetic simulations of acetylene(acetylene-d2) hydrogenation(deuteration) on Ag nanoparticles. Mol. Catal. 2023, 535, 112845.

Nano Research
Pages 9284-9292
Cite this article:
Sun X, Lou S, Wang W, et al. Kinetics of hydrogen constrained graphene growth on Cu substrate. Nano Research, 2024, 17(11): 9284-9292. https://doi.org/10.1007/s12274-024-6945-2
Topics:

356

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 June 2024
Revised: 02 August 2024
Accepted: 05 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return