AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Photosensitizer-assisted direct 2D patterning and 3D printing of colloidal quantum dots

Wenyue Qing1Yilong Si1Mingfeng Cai1Likuan Zhou2Longjia Wu2Zhengwei Hou3Dan Liu1Xiaoli Tian1Wangyu Liu1Linhan Lin4Hao Zhang1( )
Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
TCL Research, Shenzhen 518067, China
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

Direct photopatterning is a powerful strategy for patterning colloidal quantum dots (QDs) for their integration in various electronic and optoelectronic devices. However, ultraviolet (UV) exposure required for QD patterning, especially those with short wavelength (e.g., deep UV light), can degrade the photo-, and electroluminescence, and other properties of patterned QDs. Here we develop a photosensitizer-assisted approach for direct photopatterning of QDs with h-line (centered at 405 nm) UV light and better preservation of their luminescent properties. This approach uses a photosensitizer that can absorb the h-line UV light and transfer the energy to activate bisazide-based crosslinkers via Dexter energy transfer. Uniform, high-resolution (smallest feature size, 2 μm), and full-color patterns of red, green, and blue QD layers can be achieved. The patterned QD layers maintain up to ~ 90% of their original photoluminescent quantum yields, comparing favorably with those (< 60%) of QDs patterned without photosensitizers. We further extended the strategy to the direct three-dimensional (3D) printing of QDs. This photosensitizer-assisted approach offers a new way for direct two-dimensional (2D) photopatterning and 3D printing of colloidal QDs, with implications in building high-performance QD optoelectronic devices.

Electronic Supplementary Material

Download File(s)
6947_ESM.pdf (3.8 MB)

References

[1]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[2]

García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[3]

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

[4]

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

[5]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[6]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[7]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[8]

Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401.

[9]

Roh, J.; Park, Y. S.; Lim, J.; Klimov, V. I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 2020, 11, 271.

[10]

Xiang, C. Y.; Wu, L. J.; Lu, Z. Z.; Li, M. L.; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

[11]

Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.

[12]

Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

[13]

Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

[14]

Meng, T. T.; Zheng, Y. T.; Zhao, D. L.; Hu, H. L.; Zhu, Y. B.; Xu, Z. W.; Ju, S. M.; Jing, J. P.; Chen, X.; Gao, H. J. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photonics 2022, 16, 297–303.

[15]

Nam, T. W.; Kim, M.; Wang, Y. M.; Kim, G. Y.; Choi, W.; Lim, H.; Song, K. M.; Choi, M. J.; Jeon, D. Y.; Grossman, J. C. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 2020, 11, 3040.

[16]

Hu, C.; Aubert, T.; Justo, Y.; Flamee, S.; Cirillo, M.; Gassenq, A.; Drobchak, O.; Beunis, F.; Roelkens, G.; Hens, Z. The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching. Nanotechnology 2014, 25, 175302.

[17]

Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

[18]

Baek, S.; Son, J. S. Recent advances in direct optical patterning of inorganic materials and devices. Adv. Phys. Res. 2024, 3, 2300069.

[19]

Pan, J. A.; Cho, H.; Coropceanu, I.; Wu, H. Q.; Talapin, D. V. Stimuli-responsive surface ligands for direct lithography of functional inorganic nanomaterials. Acc. Chem. Res. 2023, 56, 2286–2297.

[20]

Park, S. Y.; Lee, S.; Yang, J.; Kang, M. S. Patterning quantum dots via photolithography: A review. Adv. Mater. 2023, 35, 2300546.

[21]

Wang, Y. Y.; Fedin, I.; Zhang, H.; Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 2017, 357, 385–388.

[22]

Hahm, D.; Lim, J.; Kim, H.; Shin, J. W.; Hwang, S.; Rhee, S.; Chang, J. H.; Yang, J.; Lim, C. H.; Jo, H. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 2022, 17, 952–958.

[23]

Li, F.; Chen, C. H.; Lu, S. Y.; Chen, X. G.; Liu, W. Y.; Weng, K. K.; Fu, Z.; Liu, D.; Zhang, L. P.; Abudukeremu, H. et al. Direct patterning of colloidal nanocrystals via thermally activated ligand chemistry. ACS Nano 2022, 16, 13674–13683.

[24]

Liu, D.; Weng, K. K.; Lu, S. Y.; Li, F.; Abudukeremu, H.; Zhang, L. P.; Yang, Y. C.; Hou, J. Y.; Qiu, H. W.; Fu, Z. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 2022, 8, eabm8433.

[25]

Lu, S. Y.; Fu, Z.; Li, F.; Weng, K. K.; Zhou, L. K.; Zhang, L. P.; Yang, Y. C.; Qiu, H. W.; Liu, D.; Qing, W. et al. Beyond a linker: The role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals. Angew. Chem., Int. Ed. 2022, 61, e202202633.

[26]

Wang, S.; Lu, S. Y.; Tian, X. L.; Liu, W. Y.; Si, Y. L.; Yang, Y. C.; Qiu, H. W.; Zhang, H.; Li, J. H. A general approach to stabilize nanocrystal superlattices by covalently bonded ligands. ACS Nano 2023, 17, 2792–2801.

[27]

Yang, J.; Hahm, D.; Kim, K.; Rhee, S.; Lee, M.; Kim, S.; Chang, J. H.; Park, H. W.; Lim, J.; Lee, M. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat. Commun. 2020, 11, 2874.

[28]

Pan, J. A.; Ondry, J. C.; Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett. 2021, 21, 7609–7616.

[29]

Wang, Y. Y.; Pan, J. A.; Wu, H. Q.; Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 2019, 13, 13917–13931.

[30]

Fu, Z.; Zhou, L. K.; Yin, Y.; Weng, K. K.; Li, F.; Lu, S. Y.; Liu, D.; Liu, W. Y.; Wu, L. J.; Yang, Y. X. et al. Direct photo-patterning of efficient and stable quantum dot light-emitting diodes via light-triggered, carbocation-enabled ligand stripping. Nano Lett. 2023, 23, 2000–2008.

[31]

Cho, H.; Pan, J. A.; Wu, H. Q.; Lan, X. Z.; Coropceanu, I.; Wang, Y. Y.; Cho, W.; Hill, E. A.; Anderson, J. S.; Talapin, D. V. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange. Adv. Mater. 2020, 32, 2003805.

[32]

Lee, J.; Ha, J.; Lee, H.; Cho, H.; Lee, D. C.; Talapin, D. V.; Cho, H. Direct optical lithography of colloidal InP-based quantum dots with ligand pair treatment. ACS Energy Lett. 2023, 8, 4210–4217.

[33]

Xiao, P. W.; Zhang, Z. F.; Ge, J. J.; Deng, Y. L.; Chen, X. F.; Zhang, J. R.; Deng, Z. T.; Kambe, Y.; Talapin, D. V.; Wang, Y. Y. Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nat. Commun. 2023, 14, 49.

[34]

Baek, H.; Kang, S.; Heo, J.; Choi, S.; Kim, R.; Kim, K.; Ahn, N.; Yoon, Y. G.; Lee, T.; Chang, J. B. et al. Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation. Nat. Commun. 2024, 15, 1671.

[35]

Li, J. K.; Chen, J. T.; Sang, R. C.; Ham, W. S.; Plutschack, M. B.; Berger, F.; Chabbra, S.; Schnegg, A.; Genicot, C.; Ritter, T. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nat. Chem. 2020, 12, 56–62.

[36]

Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363.

[37]

Li, J. K.; Zhang, M. Y.; Zeng, L.; Huang, L.; Wang, X. Y. NIR-absorbing B,N-heteroarene as photosensitizer for high-performance NIR-to-blue triplet-triplet annihilation upconversion. Angew. Chem., Int. Ed. 2023, 62, e202303093.

[38]

Zhao, J. Z.; Wu, W. H.; Sun, J. F.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351.

[39]

Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 2020, 367, 1091–1097.

[40]

Liu, D.; Weng, K. K.; Zhao, H. F.; Wang, S.; Qiu, H. W.; Luo, X. Y.; Lu, S. Y.; Duan, L.; Bai, S.; Zhang, H. et al. Nondestructive direct optical patterning of perovskite nanocrystals with carbene-based ligand cross-linkers. ACS Nano 2024, 18, 6896–6907.

[41]

Yang, J.; Lee, M.; Park, S. Y.; Park, M.; Kim, J.; Sitapure, N.; Hahm, D.; Rhee, S.; Lee, D.; Jo, H. et al. Nondestructive photopatterning of heavy-metal-free quantum dots. Adv. Mater. 2022, 34, 2205504.

[42]

Rolka, A. B.; Koenig, B. Dearomative cycloadditions utilizing an organic photosensitizer: An alternative to iridium catalysis. Org. Lett. 2020, 22, 5035–5040.

[43]

Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238.

[44]

Li, F.; Liu, S. F.; Liu, W. Y.; Hou, Z. W.; Jiang, J. X.; Fu, Z.; Wang, S.; Si, Y. L.; Lu, S. Y.; Zhou, H. W. et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science 2023, 381, 1468–1474.

Nano Research
Cite this article:
Qing W, Si Y, Cai M, et al. Photosensitizer-assisted direct 2D patterning and 3D printing of colloidal quantum dots. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6947-0
Topics:

185

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 July 2024
Revised: 06 August 2024
Accepted: 06 August 2024
Published: 30 August 2024
© Tsinghua University Press 2024
Return