AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Dry-gel synthesis of hierarchical Ni-La@S-1 catalysts with stabilized Ni-La bimetals nanoparticles for dry reforming of methane

Jin Lv1,§Youhe Wang1,§( )Junjie Liu1Zhichao Zhang1Yu Ma1Ziyi Zhou1Yuqing Ouyang1Jie Zhong1Xiang Rao1Hongman Sun1Xiaoyun Xiong2Qingxun Hu2Guofeng Zhao3( )Zifeng Yan1( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
Lanzhou Petrochemical Research Center, PetroChina, Lanzhou 730060, China
Anhui Basic Discipline Research Center for Clean Energy and Catalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

§ Jin Lv and Youhe Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Dry reforming of methane (DRM) can simultaneously convert two critical greenhouse gases CH4 and CO2 into high-value syngas. However, the catalyst deactivation caused by sintering and carbon deposition of Ni-based catalysts at high temperature is a significant problem to be solved for DRM industrialization. Herein, we represent a hierarchical Ni-La@S-1 catalyst for DRM reaction, showing high anti-sintering/coke capacity to improve DRM stability. The La and Ni nitrates were first grinded into the pores of SBA-15 followed by N2-treatment; the sample was then recrystallized by a unique template assisted-uniformly dispersed strategy to obtain the hierarchical Ni-La@S-1 catalyst. This strategy achieves uniform encapsulation of stabilized Ni-La bimetallic nanoparticles in S-1 with high loading, exhibiting high DRM activity and stability at 700 °C and 36,000 mL·g–1·h–1. Moreover, La addition promoted CO2 to form bidentate carbonate, a critical intermediate in DRM, which greatly ameliorated carbon deposition in Ni catalysts. This work offers promising clue for tailoring the industrial DRM catalysts.

Electronic Supplementary Material

Download File(s)
6948_ESM.pdf (1 MB)

References

[1]

Dama, S.; Ghodke, S. R.; Bobade, R.; Gurav, H. R.; Chilukuri, S. Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane. Appl. Catal. B: Environ. 2018, 224, 146–158.

[2]

Zhang, Z. L.; Verykios, X. E. Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts. Catal. Lett. 1996, 38, 175–179.

[3]

Parsapur, R. K.; Chatterjee, S.; Huang, K. W. The insignificant role of dry reforming of methane in CO2 emission relief. ACS Energy Lett. 2020, 5, 2881–2885.

[4]

Raghuvanshi, K.; Zhu, C.; Ramezani, M.; Menegatti, S.; Santiso, E. E.; Mason, D.; Rodgers, J.; Janka, M. E.; Abolhasani, M. Highly efficient 1-octene hydroformylation at low syngas pressure: From single-droplet screening to continuous flow synthesis. ACS Catal. 2020, 10, 7535–7542.

[5]

Zhang, M.; Zhang, J. F.; Wu, Y. Q.; Pan, J. X.; Zhang, Q. D.; Tan, Y. S.; Han, Y. Z. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide. Appl. Catal. B: Environ. 2019, 244, 427–437.

[6]

Li, D. L.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A: Gen. 2011, 408, 1–24.

[7]

Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.

[8]

Guharoy, U.; Reina, T. R.; Liu, J.; Sun, Q.; Gu, S.; Cai, Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. J CO2 Utilization 2021, 53, 101728.

[9]

Wang, S. B.; Lu, G. Q.; Millar, G. J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy Fuels 1996, 10, 896–904.

[10]

Shang, Z. Y.; Li, S. G.; Li, L.; Liu, G. Z.; Liang, X. H. Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. Appl. Catal. B: Environ. 2017, 201, 302–309.

[11]

Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Hamid, M. Y. S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193.

[12]

Arora, S.; Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 2016, 6, 108668–108688.

[13]

Han, B. L.; Zhao, L.; Wang, F. G.; Xu, L. L.; Yu, H.; Cui, Y.; Zhang, J. M.; Shi, W. D. Effect of calcination temperature on the performance of the Ni@SiO2 catalyst in methane dry reforming. Ind. Eng. Chem. Res. 2020, 59, 13370–13379.

[14]

Wang, F. G.; Han, B. L.; Zhang, L. J.; Xu, L. L.; Yu, H.; Shi, W. D. CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon. Appl. Catal. B: Environ. 2018, 235, 26–35.

[15]

Kosari, M.; Askari, S.; Seayad, A. M.; Xi, S. B.; Kawi, S.; Borgna, A.; Zeng, H. C. Strong coke-resistivity of spherical hollow Ni/SiO2 catalysts with shell-confined high-content Ni nanoparticles for methane dry reforming with CO2. Appl. Catal. B: Environ. 2022, 310, 121360.

[16]

Wang, C. Z.; Jie, X. Y.; Qiu, Y.; Zhao, Y. X.; Al-Megren, H. A.; Alshihri, S.; Edwards, P. P.; Xiao, T. C. The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane. Appl. Catal. B: Environ. 2019, 259, 118019.

[17]

Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. Enhanced carbon-resistant dry reforming Fe–Ni catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039.

[18]

Song, K.; Lu, M. M.; Xu, S. P.; Chen, C. Q.; Zhan, Y. Y.; Li, D. L.; Au, C.; Jiang, L. L.; Tomishige, K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni–Cu/Mg(Al)O catalysts for dry reforming of methane. Appl. Catal. B: Environ. 2018, 239, 324–333.

[19]

Xie, Z. H.; Yan, B. H.; Kattel, S.; Lee, J. H.; Yao, S. Y.; Wu, Q. Y.; Rui, N.; Gomez, E.; Liu, Z. Y.; Xu, W. Q. et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity. Appl. Catal. B: Environ. 2018, 236, 280–293.

[20]

Margossian, T.; Larmier, K.; Kim, S. M.; Krumeich, F.; Müller, C.; Copéret, C. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance. ACS Catal. 2017, 7, 6942–6948.

[21]

Zeng, F.; Zhang, J.; Xu, R.; Zhang, R. J.; Ge, J. P. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013.

[22]

Shi, L. Y.; Li, Y. X.; Xue, D. M.; Tan, P.; Jiang, Y.; Liu, X. Q.; Sun, L. B. Fabrication of highly dispersed nickel in nanoconfined spaces of as-made SBA-15 for dry reforming of methane with carbon dioxide. Chem. Eng. J. 2020, 390, 124491.

[23]

Li, Z. W.; Das, S.; Hongmanorom, P.; Dewangan, N.; Wai, M. H.; Kawi, S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catal. Sci. Technol. 2018, 8, 2763–2778.

[24]

Wang, H.; Wang, L.; Xiao, F. S. Metal@Zeolite hybrid materials for catalysis. ACS Cent. Sci. 2020, 6, 1685–1697.

[25]

Dai, C. Y.; Zhang, S. H.; Zhang, A. F.; Song, C. S.; Shi, C.; Guo, X. W. Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. J. Mater. Chem. A 2015, 3, 16461–16468.

[26]

Liu, Y.; Chen, Y.; Gao, Z. R.; Zhang, X.; Zhang, L. J.; Wang, M.; Chen, B. B.; Diao, Y. N.; Li, Y. L.; Xiao, D. Q. et al. Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane. Appl. Catal. B: Environ. Energy 2022, 307, 121202.

[27]

Zhang, H.; Fan, Y. F.; Huan, Y. H.; Yue, M. B. Dry-gel synthesis of shaped transition-metal-doped M-MFI (M = Ti, Fe, Cr, Ni) zeolites by using metal-occluded zeolite seed sol as a directing agent. Micropor. Mesopor. Mater. 2016, 231, 178–185.

[28]

Miyake, K.; Hirota, Y.; Ono, K.; Uchida, Y.; Miyamoto, M.; Nishiyama, N. Synthesis of MFI type ferrisilicate zeolite (Fe-MFI) nanocrystals by a dry gel conversion (DGC) method and their application to methanol to olefin (MTO) reactions. New J. Chem. 2017, 41, 2235–2240.

[29]

Tsipouriari, V. A.; Verykios, X. E. Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal. Today 2001, 64, 83–90.

[30]

Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B: Environ. 2017, 202, 683–694.

[31]

Niu, X. P.; Li, X. X.; Yuan, G.; Feng, F. X.; Wang, M.; Zhang, X. W.; Wang, Q. F. Hollow hierarchical silicalite-1 zeolite encapsulated PtNi bimetals for selective hydroconversion of methyl stearate into aviation fuel range alkanes. Ind. Eng. Chem. Res. 2020, 59, 8601–8611.

[32]

Wang, Y. X.; Song, J. J.; Baxter, N. C.; Kuo, G. T.; Wang, S. N. Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. J. Catal. 2017, 349, 53–65.

[33]

Lu, B. W.; Ju, Y. W.; Abe, T.; Kawamoto, K. Grafting Ni particles onto SBA-15, and their enhanced performance for CO2 methanation. RSC Adv. 2015, 5, 56444–56454.

[34]

Charisiou, N. D.; Tzounis, L.; Sebastian, V.; Hinder, S. J.; Baker, M. A.; Polychronopoulou, K.; Goula, M. A. Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction. Appl. Surf. Sci. 2019, 474, 42–56.

[35]

Li, B.; Yuan, X. Q.; Li, L. Y.; Li, B. T.; Wang, X. J.; Tomishige, K. Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 31608–31622.

[36]

Yao, L.; Zhu, J. Q.; Peng, X. X.; Tong, D. M.; Hu, C. W. Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. Int. J. Hydrogen Energy 2013, 38, 7268–7279.

[37]

Wang, H.; Cui, G. Q.; Lu, H.; Li, Z. Y.; Wang, L.; Meng, H.; Li, J.; Yan, H.; Yang, Y. S.; Wei, M. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2-x catalyst. Nat. Commun. 2024, 15, 3765.

[38]

Ballesteros-Plata, D.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Cauqui, M. A.; Yeste, M. P. Improving noble metal catalytic activity in the dry reforming of methane by adding niobium. Fuel 2022, 308, 121996.

[39]

Yu, H. R.; Wang, Y. H.; Tao, X. Y. N.; Yu, F. Y.; Zhao, T. T.; Li, M.; Wang, H. Q. Interfacial metal-support interaction and catalytic performance of perovskite LaCrO3-supported Ru catalyst. ACS Appl. Mater. Interfaces 2024, 16, 17483–17492.

[40]

Touahra, F.; Chebout, R.; Lerari, D.; Halliche, D.; Bachari, K. Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of methane. Energy 2019, 171, 465–474.

[41]

Chatla, A.; Abu-Rub, F.; Prakash, A. V.; Ibrahim, G.; Elbashir, N. O. Highly stable and coke-resistant Zn-modified Ni–Mg–Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn. Fuel 2022, 308, 122042.

[42]

Han, C. L.; Zhu, X. X.; Chen, B. B.; Wang, X. P. A strategy of constructing the Ni@silicalite-1 catalyst structure with high activity and resistance to sintering and carbon deposition for dry reforming of methane. Fuel 2024, 355, 129548.

[43]

Li, K.; Pei, C. L.; Li, X. Y.; Chen, S.; Zhang, X. H.; Liu, R.; Gong, J. L. Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl. Catal. B: Environ. 2020, 264, 118448.

[44]

Khoja, A. H.; Tahir, M.; Amin, N. A. S. Evaluating the performance of a Ni catalyst supported on La2O3-MgAl2O4 for dry reforming of methane in a packed bed dielectric barrier discharge plasma reactor. Energy Fuels 2019, 33, 11630–11647.

[45]

Wang, J.; Mao, Y. R.; Zhang, L. Z.; Li, Y. L.; Liu, W. M.; Ma, Q. X.; Wu, D. S.; Peng, H. G. Remarkable basic-metal oxides promoted confinement catalysts for CO2 reforming. Fuel 2022, 315, 123167.

[46]

Álvarez M, A.; Bobadilla, L. F.; Garcilaso, V.; Centeno, M. A.; Odriozola, J. A. CO2 reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study. J. CO2 Utilization 2018, 24, 509–515.

[47]

Wang, C. F.; Lu, Y. L.; Zhang, Y.; Fu, H.; Sun, S. Z.; Li, F.; Duan, Z. Y.; Liu, Z.; Wu, C. F.; Wang, Y. H. et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 2023, 16, 12153–12164.

[48]

Wang, S. H.; Wang, Y.; Yao, L.; Hu, C. W. Temperature hysteresis in dry reforming of methane on Ni/SBA-15 catalyst: Low temperature activity originated from the synergy of Ni0 and carbon nanotubes. Appl. Catal. B: Environ. Energy 2023, 333, 122756.

[49]

Xu, S. S.; Chansai, S.; Xu, S. J.; Stere, C. E.; Jiao, Y. L.; Yang, S. H.; Hardacre, H.; Fan, X. L. CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: A combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catal. 2020, 10, 12828–12840.

[50]

D’Angelo, A. M.; Wu, Z. L.; Overbury, S. H.; Chaffee, A. L. Cu-enhanced surface defects and lattice mobility of Pr-CeO2 mixed oxides. J. Phys. Chem. C 2016, 120, 27996–28008.

[51]

Mao, M. Y.; Zhang, Q.; Yang, Y.; Li, Y. Z.; Huang, H.; Jiang, Z. K.; Hu, Q. Q.; Zhao, X. J. Solar-light-driven CO2 reduction by methane on Pt nanocrystals partially embedded in mesoporous CeO2 nanorods with high light-to-fuel efficiency. Green Chem. 2018, 20, 2857–2869.

[52]

Tian, J. S.; Kong, R.; Wang, Z.; Fang, L.; He, T. Y.; Jiang, D.; Peng, H. G.; Sun, T. L.; Zhu, Y. H.; Wang, Y. Enhancing methane combustion activity by modulating the local environment of Pd single atoms in Pd1/CeO2 catalysts. ACS Catal. 2024, 14, 183–191.

[53]

Das, S.; Sengupta, M.; Bag, A.; Shah, M.; Bordoloi, A. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming. Nanoscale 2018, 10, 6409–6425.

[54]

Shen, D. Y.; Huo, M. M.; Li, L.; Lyu, S.; Wang, J. H.; Wang, X. Y.; Zhang, Y. H.; Li, J. L. Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts. Catal. Sci. Technol. 2020, 10, 510–516.

[55]

Li, K.; Chang, X.; Pei, C. L.; Li, X. Y.; Chen, S.; Zhang, X. H.; Assabumrungrat, S.; Zhao, Z. J.; Zeng, L.; Gong, J. L. Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane. Appl. Catal. B: Environ. 2019, 259, 118092.

[56]

Li, K.; He, F.; Yu, H. M.; Wang, Y.; Wu, Z. J. Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni(111) surface. J. Catal. 2018, 364, 248–261.

[57]

Cao, K.; Gong, M.; Yang, J. F.; Cai, J. M.; Chu, S. Q.; Chen, Z. P.; Shan, B.; Chen, R. Nickel catalyst with atomically-thin meshed cobalt coating for improved durability in dry reforming of methane. J. Catal. 2019, 373, 351–360.

[58]

Zhao, X. Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Design and synthesis of NiCe@m-SiO2 yolk–shell framework catalysts with improved coke- and sintering-resistance in dry reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2447–2456.

Nano Research
Cite this article:
Lv J, Wang Y, Liu J, et al. Dry-gel synthesis of hierarchical Ni-La@S-1 catalysts with stabilized Ni-La bimetals nanoparticles for dry reforming of methane. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6948-z
Topics:

160

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 May 2024
Revised: 07 August 2024
Accepted: 08 August 2024
Published: 07 September 2024
© Tsinghua University Press 2024
Return