Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional platinum diselenide (PtSe2) has been explored for applications in visible and infrared photodetectors, owing to its tunable electrical and optoelectronic properties governed by layer-dependent bandgaps. Studies have explored both positive photoconductivity (PPC) and negative photoconductivity (NPC) behaviors in few-layer PtSe2 thin films, proposing mechanisms related to gas molecule adsorption. However, these proposed mechanisms, typically based on models with ideal limit structures, often lacked consistency with the structure and scale of polycrystalline thin films employed in actual experiments. Here, photodetectors utilizing monolayer PtSe2 ribbons were designed, demonstrating a significant NPC effect upon exposure to visible light in atmospheric conditions, with device resistance increasing to over threefold the initial state. Under vacuum conditions, the device demonstrated PPC characteristics. Density functional theory calculations indicated that oxygen molecules physically adsorbed at the edges of PtSe2 ribbons were integral. Laser irradiation prompted the detachment of oxygen molecules from the ribbon’s edges, leading to a decreased carrier concentration in channel conductivity. The abundant edge sites of the ribbons endowed the photodetectors with a pronounced NPC response. This study diverted from traditional multilayer PtSe2 films to explore monolayer PtSe2 ribbons. These ribbons, as limit structures, offered a more fundamental insight into the intrinsic photoconductivity properties of PtSe2. Photodetectors employing PtSe2 ribbons presented novel application prospects in low-power photodetection, gas detection, and additional fields.
Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.
Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.
Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.
Cao, B. L.; Ye, Z. M.; Yang, L.; Gou, L.; Wang, Z. G. Recent progress in Van der Waals 2D PtSe2. Nanotechnology 2021, 32, 412001.
Wang, G. Z.; Wang, Z. Z.; McEvoy, N.; Fan, P.; Blau, W. J. Layered PtSe2 for sensing, photonic, and (opto-)electronic applications. Adv. Mater. 2021, 33, 2004070.
Gong, Y. N.; Lin, Z. T.; Chen, Y. X.; Khan, Q.; Wang, C.; Zhang, B.; Nie, G. H.; Xie, N.; Li, D. L. Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett. 2020, 12, 174.
Shi, J. P.; Huan, Y. H.; Hong, M.; Xu, R. Z.; Yang, P. F.; Zhang, Z. P.; Zou, X. L.; Zhang, Y. F. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 2019, 13, 8442–8451.
Ma, H. F.; Qian, Q.; Qin, B.; Wan, Z.; Wu, R. X.; Zhao, B.; Zhang, H. M.; Zhang, Z. C.; Li, J.; Zhang, Z. W. et al. Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. 2022, 9, 2103507.
Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.
Zhang, Z. X.; Zeng, L. H.; Tong, X. W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185–1194.
Shawkat, M. S.; Gil, J.; Han, S. S.; Ko, T. J.; Wang, M. J.; Dev, D.; Kwon, J.; Lee, G. H.; Oh, K. H.; Chung, H. S. et al. Thickness-independent semiconducting-to-metallic conversion in wafer-scale two-dimensional PtSe2 layers by plasma-driven chalcogen defect engineering. ACS Appl. Mater. Interfaces 2020, 12, 14341–14351.
Tomar, D. S.; Ghosh, S.; Wu, C. T.; Quadir, S.; Chen, L. C.; Chen, K. H.; Chattopadhyay, S. Graphene-coated substrate-mediated photoresponse from MoS2/UCNP nanohybrid-based photodetectors. ACS Appl. Electron. Mater. 2022, 4, 5475–5486.
Tomar, D. S.; Ghosh, S.; Jhan, L. C.; Chattopadhyay, S. Gold nanorod-activated graphene/MoS2 nanosheet-based photodetectors for bidirectional photoconductance. ACS Appl. Nano Mater. 2023, 6, 1783–1795.
Ghosh, S.; Chiang, W. C.; Fakhri, M. Y.; Wu, C. T.; Chen, R. S.; Chattopadhyay, S. Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upconversion nanoparticle nanocomposite. Nano Energy 2020, 67, 104258.
Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.
Xu, J. P.; Luo, X. G.; Hu, S. Q.; Zhang, X.; Mei, D.; Liu, F.; Han, N. N.; Liu, D.; Gan, X. T.; Cheng, Y. C. et al. Tunable linearity of high-performance vertical dual-gate vdW phototransistors. Adv. Mater. 2021, 33, 2008080.
Cui, B. Y.; Xing, Y. H.; Han, J.; Lv, W. M.; Lv, W. X.; Lei, T.; Zhang, Y.; Ma, H. X.; Zeng, Z. M.; Zhang, B. S. Negative photoconductivity in low-dimensional materials. Chin. Phys B. 2021, 30, 028507.
Kim, G.; Kim, I. G.; Baek, J. H.; Kwon, O. K. Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector. Appl. Phys. Lett. 2003, 83, 1249–1251.
Han, Y. X.; Zheng, X.; Fu, M. Q.; Pan, D.; Li, X.; Guo, Y.; Zhao, J. H.; Chen, Q. Negative photoconductivity of InAs nanowires. Phys. Chem. Chem. Phys. 2016, 18, 818–826.
Liu, Y. H.; Fu, P.; Yin, Y. L.; Peng, Y. H.; Yang, W. J.; Zhao, G.; Wang, W. K.; Zhou, W. C.; Tang, D. S. Positive and negative photoconductivity conversion induced by H2O molecule adsorption in WO3 nanowire. Nanoscale Res. Lett. 2019, 14, 144.
Urban, F.; Gity, F.; Hurley, P. K.; McEvoy, N.; Di Bartolomeo, A. Isotropic conduction and negative photoconduction in ultrathin PtSe2 films. Appl. Phys. Lett. 2020, 117, 193102.
Xiao, X. L.; Li, J.; Wu, J.; Lu, D. L.; Tang, C. Negative photoconductivity observed in polycrystalline monolayer molybdenum disulfide prepared by chemical vapor deposition. Appl. Phys. A 2019, 125, 765.
Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107.
Cho, S. R.; Ahn, S.; Lee, S. H.; Ha, H.; Kim, T. S.; Jo, M. K.; Song, C.; Im, T. H.; Rani, P.; Gyeon, M. et al. Universal patterning for 2D van der Waals materials via direct optical lithography. Adv. Funct. Mater. 2021, 31, 2105302.
Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.
Gustafson, J. K.; Wines, D.; Gulian, E.; Ataca, C.; Hayden, L. M. Positive and negative photoconductivity in monolayer MoS2 as a function of physisorbed oxygen. J. Phys. Chem. C 2021, 125, 8712–8718.
Grillo, A.; Faella, E.; Pelella, A.; Giubileo, F.; Ansari, L.; Gity, F.; Hurley, P. K.; McEvoy, N.; Di Bartolomeo, A. Coexistence of negative and positive photoconductivity in few-layer PtSe2 field-effect transistors. Adv. Funct. Mater. 2021, 31, 2105722.
Zhang, H. T.; Li, H. W.; Wang, F. G.; Song, X. X.; Xu, Z.; Wei, D. D.; Zhang, J. J.; Dai, Z. J.; Ren, Y. P.; Ye, Y. X. et al. PtSe2 field-effect phototransistor with positive and negative photoconductivity. ACS Appl. Electron. Mater. 2022, 4, 5177–5183.
Li, Z. C.; Huang, M. R.; Li, J.; Zhu, H. W. Large-scale, controllable synthesis of ultrathin platinum diselenide ribbons for efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2300376.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697.
Sheng, Y. W.; Xu, W. S.; Wang, X. C.; He, Z. Y.; Rong, Y. M.; Warner, J. H. Mixed multilayered vertical heterostructures utilizing strained monolayer WS2. Nanoscale 2016, 8, 2639–2647.
Liang, Q. J.; Gou, J.; Arramel; Zhang, Q.; Zhang, W. J.; Wee, A. T. S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439–3444.
Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 2019, 3, 33.
Wang, Y. H.; He, Z. Q.; Zhang, J. B.; Liu, H.; Lai, X. B.; Liu, B. Y.; Chen, Y. B.; Wang, F. P.; Zhang, L. W. UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface. Nano Res. 2020, 13, 358–365.
Han, P. Z.; Adler, E. R.; Liu, Y. J.; St Marie, L.; El Fatimy, A.; Melis, S.; Van Keuren, E.; Barbara, P. Ambient effects on photogating in MoS2 photodetectors. Nanotechnology 2019, 30, 284004.