AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-photoconductivity in monolayer PtSe2 ribbons

Zechen Li1,§Honglin Wang1,§Huaipeng Wang2Jing Li3Fangzhu Qing4Xuesong Li4Dan Xie2Hongwei Zhu1( )
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
School of Integrated Circuits, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
State Key Lab of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China

§ Zechen Li and Honglin Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Photodetectors utilizing monolayer PtSe2 ribbons demonstrated both positive and negative photoconductivity effects. Diverting from traditional multilayer PtSe2 films to monolayer PtSe2 ribbons, these devices offered a more fundamental insight into the intrinsic photoconductivity properties of PtSe2.

Abstract

Two-dimensional platinum diselenide (PtSe2) has been explored for applications in visible and infrared photodetectors, owing to its tunable electrical and optoelectronic properties governed by layer-dependent bandgaps. Studies have explored both positive photoconductivity (PPC) and negative photoconductivity (NPC) behaviors in few-layer PtSe2 thin films, proposing mechanisms related to gas molecule adsorption. However, these proposed mechanisms, typically based on models with ideal limit structures, often lacked consistency with the structure and scale of polycrystalline thin films employed in actual experiments. Here, photodetectors utilizing monolayer PtSe2 ribbons were designed, demonstrating a significant NPC effect upon exposure to visible light in atmospheric conditions, with device resistance increasing to over threefold the initial state. Under vacuum conditions, the device demonstrated PPC characteristics. Density functional theory calculations indicated that oxygen molecules physically adsorbed at the edges of PtSe2 ribbons were integral. Laser irradiation prompted the detachment of oxygen molecules from the ribbon’s edges, leading to a decreased carrier concentration in channel conductivity. The abundant edge sites of the ribbons endowed the photodetectors with a pronounced NPC response. This study diverted from traditional multilayer PtSe2 films to explore monolayer PtSe2 ribbons. These ribbons, as limit structures, offered a more fundamental insight into the intrinsic photoconductivity properties of PtSe2. Photodetectors employing PtSe2 ribbons presented novel application prospects in low-power photodetection, gas detection, and additional fields.

Electronic Supplementary Material

Download File(s)
6949_ESM.pdf (2.1 MB)

References

[1]

Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.

[2]

Yim, C.; McEvoy, N.; Riazimehr, S.; Schneider, D. S.; Gity, F.; Monaghan, S.; Hurley, P. K.; Lemme, M. C.; Duesberg, G. S. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 2018, 18, 1794–1800.

[3]

Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.

[4]

Cao, B. L.; Ye, Z. M.; Yang, L.; Gou, L.; Wang, Z. G. Recent progress in Van der Waals 2D PtSe2. Nanotechnology 2021, 32, 412001.

[5]

Wang, G. Z.; Wang, Z. Z.; McEvoy, N.; Fan, P.; Blau, W. J. Layered PtSe2 for sensing, photonic, and (opto-)electronic applications. Adv. Mater. 2021, 33, 2004070.

[6]

Gong, Y. N.; Lin, Z. T.; Chen, Y. X.; Khan, Q.; Wang, C.; Zhang, B.; Nie, G. H.; Xie, N.; Li, D. L. Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett. 2020, 12, 174.

[7]

Shi, J. P.; Huan, Y. H.; Hong, M.; Xu, R. Z.; Yang, P. F.; Zhang, Z. P.; Zou, X. L.; Zhang, Y. F. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 2019, 13, 8442–8451.

[8]

Ma, H. F.; Qian, Q.; Qin, B.; Wan, Z.; Wu, R. X.; Zhao, B.; Zhang, H. M.; Zhang, Z. C.; Li, J.; Zhang, Z. W. et al. Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. 2022, 9, 2103507.

[9]

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

[10]

Zhang, Z. X.; Zeng, L. H.; Tong, X. W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. Ultrafast, self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 2018, 9, 1185–1194.

[11]

Shawkat, M. S.; Gil, J.; Han, S. S.; Ko, T. J.; Wang, M. J.; Dev, D.; Kwon, J.; Lee, G. H.; Oh, K. H.; Chung, H. S. et al. Thickness-independent semiconducting-to-metallic conversion in wafer-scale two-dimensional PtSe2 layers by plasma-driven chalcogen defect engineering. ACS Appl. Mater. Interfaces 2020, 12, 14341–14351.

[12]

Tomar, D. S.; Ghosh, S.; Wu, C. T.; Quadir, S.; Chen, L. C.; Chen, K. H.; Chattopadhyay, S. Graphene-coated substrate-mediated photoresponse from MoS2/UCNP nanohybrid-based photodetectors. ACS Appl. Electron. Mater. 2022, 4, 5475–5486.

[13]

Tomar, D. S.; Ghosh, S.; Jhan, L. C.; Chattopadhyay, S. Gold nanorod-activated graphene/MoS2 nanosheet-based photodetectors for bidirectional photoconductance. ACS Appl. Nano Mater. 2023, 6, 1783–1795.

[14]

Ghosh, S.; Chiang, W. C.; Fakhri, M. Y.; Wu, C. T.; Chen, R. S.; Chattopadhyay, S. Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upconversion nanoparticle nanocomposite. Nano Energy 2020, 67, 104258.

[15]

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

[16]

Xu, J. P.; Luo, X. G.; Hu, S. Q.; Zhang, X.; Mei, D.; Liu, F.; Han, N. N.; Liu, D.; Gan, X. T.; Cheng, Y. C. et al. Tunable linearity of high-performance vertical dual-gate vdW phototransistors. Adv. Mater. 2021, 33, 2008080.

[17]

Cui, B. Y.; Xing, Y. H.; Han, J.; Lv, W. M.; Lv, W. X.; Lei, T.; Zhang, Y.; Ma, H. X.; Zeng, Z. M.; Zhang, B. S. Negative photoconductivity in low-dimensional materials. Chin. Phys B. 2021, 30, 028507.

[18]

Kim, G.; Kim, I. G.; Baek, J. H.; Kwon, O. K. Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector. Appl. Phys. Lett. 2003, 83, 1249–1251.

[19]

Han, Y. X.; Zheng, X.; Fu, M. Q.; Pan, D.; Li, X.; Guo, Y.; Zhao, J. H.; Chen, Q. Negative photoconductivity of InAs nanowires. Phys. Chem. Chem. Phys. 2016, 18, 818–826.

[20]

Liu, Y. H.; Fu, P.; Yin, Y. L.; Peng, Y. H.; Yang, W. J.; Zhao, G.; Wang, W. K.; Zhou, W. C.; Tang, D. S. Positive and negative photoconductivity conversion induced by H2O molecule adsorption in WO3 nanowire. Nanoscale Res. Lett. 2019, 14, 144.

[21]

Urban, F.; Gity, F.; Hurley, P. K.; McEvoy, N.; Di Bartolomeo, A. Isotropic conduction and negative photoconduction in ultrathin PtSe2 films. Appl. Phys. Lett. 2020, 117, 193102.

[22]

Xiao, X. L.; Li, J.; Wu, J.; Lu, D. L.; Tang, C. Negative photoconductivity observed in polycrystalline monolayer molybdenum disulfide prepared by chemical vapor deposition. Appl. Phys. A 2019, 125, 765.

[23]

Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107.

[24]

Cho, S. R.; Ahn, S.; Lee, S. H.; Ha, H.; Kim, T. S.; Jo, M. K.; Song, C.; Im, T. H.; Rani, P.; Gyeon, M. et al. Universal patterning for 2D van der Waals materials via direct optical lithography. Adv. Funct. Mater. 2021, 31, 2105302.

[25]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[26]

Gustafson, J. K.; Wines, D.; Gulian, E.; Ataca, C.; Hayden, L. M. Positive and negative photoconductivity in monolayer MoS2 as a function of physisorbed oxygen. J. Phys. Chem. C 2021, 125, 8712–8718.

[27]

Grillo, A.; Faella, E.; Pelella, A.; Giubileo, F.; Ansari, L.; Gity, F.; Hurley, P. K.; McEvoy, N.; Di Bartolomeo, A. Coexistence of negative and positive photoconductivity in few-layer PtSe2 field-effect transistors. Adv. Funct. Mater. 2021, 31, 2105722.

[28]

Zhang, H. T.; Li, H. W.; Wang, F. G.; Song, X. X.; Xu, Z.; Wei, D. D.; Zhang, J. J.; Dai, Z. J.; Ren, Y. P.; Ye, Y. X. et al. PtSe2 field-effect phototransistor with positive and negative photoconductivity. ACS Appl. Electron. Mater. 2022, 4, 5177–5183.

[29]

Li, Z. C.; Huang, M. R.; Li, J.; Zhu, H. W. Large-scale, controllable synthesis of ultrathin platinum diselenide ribbons for efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2300376.

[30]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[31]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[32]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[33]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[34]

Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697.

[35]

Sheng, Y. W.; Xu, W. S.; Wang, X. C.; He, Z. Y.; Rong, Y. M.; Warner, J. H. Mixed multilayered vertical heterostructures utilizing strained monolayer WS2. Nanoscale 2016, 8, 2639–2647.

[36]

Liang, Q. J.; Gou, J.; Arramel; Zhang, Q.; Zhang, W. J.; Wee, A. T. S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439–3444.

[37]

Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 2019, 3, 33.

[38]

Wang, Y. H.; He, Z. Q.; Zhang, J. B.; Liu, H.; Lai, X. B.; Liu, B. Y.; Chen, Y. B.; Wang, F. P.; Zhang, L. W. UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface. Nano Res. 2020, 13, 358–365.

[39]

Han, P. Z.; Adler, E. R.; Liu, Y. J.; St Marie, L.; El Fatimy, A.; Melis, S.; Van Keuren, E.; Barbara, P. Ambient effects on photogating in MoS2 photodetectors. Nanotechnology 2019, 30, 284004.

Nano Research
Pages 10189-10195
Cite this article:
Li Z, Wang H, Wang H, et al. Dual-photoconductivity in monolayer PtSe2 ribbons. Nano Research, 2024, 17(11): 10189-10195. https://doi.org/10.1007/s12274-024-6949-y
Topics:

217

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 May 2024
Revised: 27 July 2024
Accepted: 08 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return