Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Plasmonic nanostructures stand at the forefront of nanophotonics research, particularly in sensing and energy conversion applications. Their unique ability to confine light energy at the nanoscale makes them indispensable for a wide array of technological advancements. The study of these structures often makes use of different materials and, even more extensively, explores new shapes and configurations to extend our common repertoire of useful nanophotonics tools. Exploring the creation of bimetallic plasmonic nanostructures combines these two dimensions determining the space of possible plasmonic resonators and opens the possibility of tailoring systems with behavior unavailable to single-metal plasmonic structures. In this paper, we delve into the exploration of bimetallic systems employing plasmonic nanostars. These structures have demonstrated remarkable capabilities for surface-enhanced Raman scattering (SERS) spectroscopy and photochemistry, due to the strong plasmonic response of their peaks, whose disposition following a spherical symmetry makes them largely polarization- and orientation-insensitive. Herein, we report the colloidal synthesis of two different water-stable Au@Ag nanostars, explore their performance as photocatalysts and SERS substrates, and provide an in-depth account of their non-trivial physical response.
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.
Sytwu, K.; Vadai, M.; Dionne, J. A. Bimetallic nanostructures: Combining plasmonic and catalytic metals for photocatalysis. Adv. Phys.: X 2019, 4, 1619480.
Li, Z. D.; Ehtesabi, S.; Gojare, S.; Richter, M.; Kupfer, S.; Gräfe, S.; Kurouski, D. Plasmon-determined selectivity in photocatalytic transformations on gold and gold-palladium nanostructures. ACS Photonics 2023, 10, 3390–3400.
Creel, E. B.; Corson, E. R.; Eichhorn, J.; Kostecki, R.; Urban, J. J.; McCloskey, B. D. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 2019, 4, 1098–1105.
Anjugam Vandarkuzhali, S. A.; Pugazhenthiran, N.; Mangalaraja, R. V.; Sathishkumar, P.; Viswanathan, B.; Anandan, S. Ultrasmall plasmonic nanoparticles decorated hierarchical mesoporous TiO2 as an efficient photocatalyst for photocatalytic degradation of textile dyes. ACS Omega 2018, 3, 9834–9845.
Zada, A.; Qu, Y.; Ali, S.; Sun, N.; Lu, H. W.; Yan, R.; Zhang, X. L.; Jing, L. Q. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2, 4-dichlorophenol decomposition path. J. Hazard. Mater. 2018, 342, 715–723.
Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 1111–1116.
Chen, J. J.; Wu, J. C. S.; Wu, P. C.; Tsai, D. P. Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J. Phys. Chem. C 2011, 115, 210–216.
J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497–8508.
Hou, W. B.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929–936.
Hartland, G. V.; Besteiro, L. V.; Johns, P.; Govorov, A. O. What’s so hot about electrons in metal nanoparticles. ACS Energy Lett. 2017, 2, 1641–1653.
Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.
Sousa-Castillo, A.; Comesaña-Hermo, M.; Rodríguez-González, B.; Pérez-Lorenzo, M.; Wang, Z. M.; Kong, X. T.; Govorov, A. O.; Correa-Duarte, M. A. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO2 nanoarchitectures. J. Phys. Chem. C 2016, 120, 11690–11699.
Gosciniak, J.; Atar, F. B.; Corbett, B.; Rasras, M. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Sci. Rep. 2019, 9, 6048.
Negrín-Montecelo, Y.; Brissaud, C.; Piquemal, J. Y.; Govorov, A. O.; Correa-Duarte, M. A.; Besteiro, L. V.; Comesaña-Hermo, M. Plasmonic photocatalysis in aqueous solution: Assessing the contribution of thermal effects and evaluating the role of photogenerated ROS. Nanoscale 2022, 14, 11612–11618.
Sousa-Castillo, A.; Couceiro, J. R.; Tomás-Gamasa, M.; Mariño-López, A.; López, F.; Baaziz, W.; Ersen, O.; Comesaña-Hermo, M.; Mascareñas, J. L.; Correa-Duarte, M. A. Remote activation of hollow nanoreactors for heterogeneous photocatalysis in biorelevant media. Nano Lett. 2020, 20, 7068–7076.
Asapu, R.; Claes, N.; Ciocarlan, R. G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S. W. Electron transfer and near-field mechanisms in plasmonic gold-nanoparticle-modified TiO2 photocatalytic systems. ACS Appl. Nano Mater. 2019, 2, 4067–4074.
Hayashido, Y.; Naya, S. I.; Tada, H. Local electric field-enhanced plasmonic photocatalyst: Formation of Ag cluster-incorporated AgBr nanoparticles on TiO2. J. Phys. Chem. C 2016, 120, 19663–19669.
T.; Horibe, H.; Kameyama, T.; Okazaki, K. I.; Ikeda, S.; Matsumura, M.; Ishikawa, A.; Ishihara, H. Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J. Phys. Chem. Lett. 2011, 2, 2057–2062.
Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett. 2017, 17, 3710–3717.
Govorov, A. O.; Zhang, H.; Demir, H. V.; Gun’ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 2014, 9, 85–101.
Baffou, G.; Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 2013, 7, 171–187.
Chang, L.; Besteiro, L. V.; Sun, J. C.; Santiago, E. Y.; Gray, S. K.; Wang, Z. M.; Govorov, A. O. Electronic structure of the plasmons in metal nanocrystals: Fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Lett. 2019, 4, 2552–2568.
C.; Martínez, R.; Navarro Poupard, M. F.; Pelaz, B.; Polo, E.; Arenas-Vivo, A.; Olgiati, A.; Taboada, P.; Soliman, M. G.; Catalán, Ú. et al. Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angew. Chem., Int. Ed. 2019, 58, 7078–7082.
Alvarez-Puebla, R. A.; Liz-Marzán, L. M. SERS-based diagnosis and biodetection. Small 2010, 6, 604–610.
Guerrini, L.; Alvarez-Puebla, R. A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials 2018, 11, 1154.
Zhao, J.; Pinchuk, A. O.; McMahon, J. M.; Li, S. Z.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C. Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc. Chem. Res. 2008, 41, 1710–1720.
J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.
Negrín-Montecelo, Y.; Comesaña-Hermo, M.; Khorashad, L. K.; Sousa-Castillo, A.; Wang, Z. M.; Pérez-Lorenzo, M.; Liedl, T.; Govorov, A. O.; Correa-Duarte, M. A. Photophysical effects behind the efficiency of hot electron injection in plasmon-assisted catalysis: The joint role of morphology and composition. ACS Energy Lett. 2020, 5, 395–402.
Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.
Becerril-Castro, I. B.; Calderon, I.; Pazos-Perez, N.; Guerrini, L.; Schulz, F.; Feliu, N.; Chakraborty, I.; Giannini, V.; Parak, W. J.; Alvarez-Puebla, R. A. Gold Nanostars: Synthesis, optical and SERS analytical properties. Anal. Sens. 2022, 2, e202200005.
L.; Álvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; García de Abajo, F. J. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.
Muravitskaya, A.; Movsesyan, A.; Ávalos-Ovando, O.; Bahamondes Lorca, V. A.; Correa-Duarte, M. A.; Besteiro, L. V.; Liedl, T.; Yu, P.; Wang, Z. M.; Markovich, G. et al. Hot electrons and electromagnetic effects in the broadband Au, Ag, and Ag–Au nanocrystals: The UV, visible, and NIR plasmons. ACS Photonics 2024, 11, 68–84.
Rodríguez-Lorenzo, L.; de la Rica, R.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Stevens, M. M. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 2012, 11, 604–607.
Fales, A. M.; Yuan, H.; Vo-Dinh, T. Development of hybrid silver-coated gold nanostars for nonaggregated surface-enhanced Raman scattering. J. Phys. Chem. C 2014, 118, 3708–3715.
Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.
Haynes, C. L.; Van Duyne, R. P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2003, 107, 7426–7433.
Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
Juodėnas, M.; Peckus, D.; Tamulevičius, T.; Yamauchi, Y.; Tamulevičius, S.; Henzie, J. Effect of Ag nanocube optomechanical modes on plasmonic surface lattice resonances. ACS Photonics 2020, 7, 3130–3140.
Santiago, E. Y.; Besteiro, L. V.; Kong, X. T.; Correa-Duarte, M. A.; Wang, Z. M.; Govorov, A. O. Efficiency of hot-electron generation in plasmonic nanocrystals with complex shapes: Surface-induced scattering, hot spots, and interband transitions. ACS Photonics 2020, 7, 2807–2824.