AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional Ce-MOF@PdNPs with colorimetric fluorescent electrochemical activity for ultrasensitive and accurate detection of diethylstilbestrol

Mingyue Ye1,2Tingting Su1,2Jin Li1,2Xiaowan Chen1,2Dichen Ying1,2Shijia Wu1,2,3Zhouping Wang1,2,3Nuo Duan1,2,3( )
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
Show Author Information

Graphical Abstract

A novel nanocomposite Ce-MOF@PdNPs (MOF = metal-organic framework, PdNPs = Pd nanoparticles) with excellent catalytic activity, fluorescence properties, and conductivity was synthesized and applied to multimode (ultraviolet–visible, fluorescence, and electrochemical) detection of residue of veterinary drugs.

Abstract

The development of biosensors is gaining tremendous attention in various fields due to their extraordinary advantages, however, their sensitivity and accuracy are still challenging. Herein, we proposed a novel multifunctional nanocomposite Ce-MOF@PdNPs (MOF = metal-organic framework, PdNPs = Pd nanoparticles)-mediated triple-readout aptasensor for accurate and reliable detection of diethylstilbestrol (DES), in which Ce-MOF@PdNPs exhibited excellent peroxidase (POD)-like activity, fluormetric, and electro conductive properties. In addition, enzymes-assisted target recycling amplification was utilized to improve the sensitivity, that is the specific binding of aptamer and DES triggered an Exo III enzyme-assisted recycling reaction. The generated F-DNA was captured by the H3 strand linked to Ce-MOF@PdNPs immobilized on the electrode, exposing cleavage sites and activating the Nt.BbvCI enzyme-assisted recycling reaction, leading to the dissociation of Ce-MOF@PdNPs and a significant reduced electrochemical signal. The collected Ce-MOF@PdNPs solution also induced a proportional change in the color and fluorescence, achieving a colorimetric and fluormetric detection functionality. The detection limit under colorimetric mode was 0.16 and 0.76 ng/mL under fluorescence mode, and 0.87 pg/mL under electrochemical mode. This triple-readout aptasensor exhibits high sensitivity, selectivity and accuracy, providing a new idea for designing novel biosensing platforms for veterinary drug residue detection.

Electronic Supplementary Material

Download File(s)
6951_ESM.pdf (1.5 MB)

References

[1]

Cui, F. Y.; Yue, Y.; Zhang, Y.; Zhang, Z. M.; Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 2020, 5, 3346–3364.

[2]

Sang, S. B.; Wang, Y. J.; Feng, Q. L.; Wei, Y.; Ji, J. L.; Zhang, W. D. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 2016, 36, 465–481.

[3]

Nasu, Y.; Shen, Y.; Kramer, L.; Campbell, R. E. Structure-and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 2021, 17, 509–518.

[4]

Mandal, S.; Pal, J.; Subramanian, R.; Das, P. Amplified fluorescence of Mg2+ selective red-light emitting carbon dot in water and direct evaluation of creatine kinase activity. Nano Res. 2020, 13, 2770–2776.

[5]

Li, Q. Q.; Huo, H. Q.; Wu, Y.; Chen, L. L.; Su, L. C.; Zhang, X.; Song, J. B.; Yang, H. H. Design and synthesis of SERS materials for in vivo molecular imaging and biosensing. Adv. Sci. 2023, 10, 2202051.

[6]

Li, S.; Shi, B. D.; He, D. F.; Zhou, H. Y.; Gao, Z. X. DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol. J. Hazard. Mater. 2023, 458, 131874.

[7]

Solangi, N. H.; Mubarak, N. M.; Karri, R. R.; Mazari, S. A.; Jatoi, A. S. Advanced growth of 2D MXene for electrochemical sensors. Environ. Res. 2023, 222, 115279.

[8]

Umapathi, R.; Raju, C. V.; Ghoreishian, S. M.; Rani, G. M.; Kumar, K.; Oh, M. H.; Park, J. P.; Huh, Y. S. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev. 2022, 470, 214708.

[9]

Li, Q. F.; Sun, T. Q.; Salentijn, G. I.; Ning, B. A.; Han, D. P.; Bai, J. L.; Peng, Y.; Gao, Z. X.; Wang, Z. P. Bifunctional ligand-mediated amplification of polydiacetylene response to biorecognition of diethylstilbestrol for on-site smartphone detection. J. Hazard. Mater. 2022, 432, 128692.

[10]

Xia, Y.; Zhou, J. X.; Liu, Y. Y.; Liu, Y. T.; Huang, K.; Yu, H. M.; Jiang, X.; Xiong, X. L. Microplasma-assisted synthesis of a mixed-valence Ce-MOF with enhanced oxidase-like activity for colorimetric sensing of dopamine. Analyst 2022, 147, 5355–5362.

[11]

Fang, X. Y.; Gong, R.; Yang, D. C.; Li, C. X.; Zhang, Y. Y.; Wang, Y.; Nie, G. H.; Li, M. L.; Peng, X. J.; Zhang, B. NIR-II light-driven genetically engineered exosome nanocatalysts for efficient phototherapy against glioblastoma. J. Am. Chem. Soc. 2024, 146, 15251–15263.

[12]

Wang, D. J.; Wang, J.; Gao, X. J.; Ding, H.; Yang, M.; He, Z. H.; Xie, J. Y.; Zhang, Z. X.; Huang, H. B.; Nie, G. H. et al. Employing noble metal-porphyrins to engineer robust and highly active single-atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma. Adv. Mater. 2024, 36, 2310033.

[13]

Fang, X. Y.; Yang, D. C.; Wu, X. L.; Lui, K. H.; Li, X.; Lo, W. S.; Li, C. X.; Zhang, Y. Y.; Nie, G. H.; Jiang, L. J. et al. Theoretical calculation-guided engineering of Fe–Mn based dual-center single-atom catalysts for synergistic tumor therapy. Chem. Eng. J. 2023, 474, 145675.

[14]

Wei, Y. Y.; Liu, Y. Y.; Xu, Z. F.; Wang, S. J.; Chen, B.; Zhang, D.; Fang, Y. X. Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel electrochemical sensor based on palladium nanoparticles/reduced graphene oxide nanocomposite. Int. J. Anal. Chem. 2020, 2020, 8812443.

[15]

Pourreza, N.; Abdollahzadeh, R. Colorimetric sensing of palladium ions based on in situ generation of palladium nanoparticles as an activator for the thionine-hydrazine reaction. Talanta 2019, 196, 211–216.

[16]

Li, C. X.; Song, M. Q.; Wu, S. J.; Wang, Z. P.; Duan, N. Selection of aptamer targeting levamisole and development of a colorimetric and SERS dual-mode aptasensor based on AuNPs/Cu-TCPP(Fe) nanosheets. Talanta 2023, 251, 123739.

[17]

Qu, X. M.;Zhu, D.; Yao, G. B.; Su, S.; Chao, J.; Liu, H. J.; Zuo, X. L.; Wang, L. H.; Shi, J. Y.; Wang, L. H. et al. An exonuclease III-powered, on-particle stochastic DNA walker. Angew. Chem. 2017, 129, 1881–1884.

[18]

Yang, X. Y.; Wang, L. H.; Pang, L. D.; Fu, S. Q.; Qin, X.; Chen, Q.; Man, C. X.; Jiang, Y. J. A novel fluorescent platform of DNA-stabilized silver nanoclusters based on exonuclease III amplification-assisted detection of Salmonella typhimurium. Anal. Chim. Acta 2021, 1181, 338903.

[19]

Liang, L.; Jiang, Y. J.; Zhang, L. C.; Liu, H.; Li, Y. F.; Li, C. M.; Huang, C. Z. Rational fabrication of a DNA walking nanomachine on graphene oxide surface for fluorescent bioassay. Biosens. Bioelectron. 2022, 211, 114349.

[20]

Pu, Q. L.; Li, J. L.; Qiu, J. H.; Yang, X. H.; Li, Y.; Yin, D.; Zhang, X. Y.; Tao, Y. Y.; Sheng, S. C.; Xie, G. M. Universal ratiometric electrochemical biosensing platform based on mesoporous platinum nanocomposite and nicking endonuclease assisted DNA walking strategy. Biosens. Bioelectron. 2017, 94, 719–727.

[21]

Titus, L. Evidence of intergenerational transmission of diethylstilbestrol health effects: Hindsight and insight. Biol. Reprod. 2021, 105, 681–686.

[22]

Pang, L. H.; Li, L.; Zhu, L.; Lang, J. H.; Bi, Y. L. Malignant transformation of vaginal adenosis to clear cell carcinoma without prenatal diethylstilbestrol exposure: A case report and literature review. BMC Cancer. 2019, 19, 798.

[23]

Zhang, Y. F.; Wang, Q.; Xue, D. X.; Bai, J. F. Single-crystal synthesis and diverse topologies of hexanuclear CeIV-based metal-organic frameworks. Inorg. Chem. 2020, 59, 11233–11237.

[24]

Wang, Y.; Du, M. C.; Xu, J. K.; Yang, P.; Du, Y. K. Size-controlled synthesis of palladium nanoparticles. J. Disper. Sci. Technol. 2008, 29, 891–894.

[25]

Xie, S. L.; Wang, Z. L.; Cheng, F. L.; Zhang, P.; Mai, W. J.; Tong, Y. X. Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy 2017, 34, 313–337.

[26]

Othman, A.; Hayat, A.; Andreescu, S. Eu-doped ceria nanocrystals as nanoenzyme fluorescent probes for biosensing. ACS Appl. Nano Mater. 2018, 1, 5722–5735.

[27]

Zhou, J. J.; Liu, H.; Lin, Y. C.; Zhou, C.; Huang, A. S. Synthesis of well-shaped and high-crystalline Ce-based metal organic framework for CO2/CH4 separation. Micropor. Mesopor. Mater. 2020, 302, 110224.

[28]

Li, K.; Yang, J.; Huang, R.; Lin, S. L.; Gu, J. L. Ordered large-pore MesoMOFs based on synergistic effects of triblock polymer and hofmeister ion. Angew. Chem. 2020, 132, 14228–14232.

[29]

Lin, W. T.; Song, Y. P.; Wang, L.; Li, N.; Fu, Y. H.; Chen, D. L.; Zhu, W. D.; Zhang, F. M. Palladium nanoparticles supported on Ce-MOF-801 as highly efficient and stable heterogeneous catalysts for Suzuki-Miyaura coupling reactions. Catal. Lett. 2023, 153, 2368–2377.

[30]

Ye, J. R.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L. Metal-organic framework-derived CeO2 nanosheets confining ultrasmall Pd nanoclusters catalysts with high catalytic activity. Int. J. Hydrogen Energy 2021, 46, 39892–39902.

[31]

Maiti, S.; Dhawa, T.; Mallik, A. K.; Mahanty, S. CeO2@C derived from benzene carboxylate bridged metal-organic frameworks: Ligand induced morphology evolution and influence on the electrochemical properties as a lithium-ion battery anode. Sustain. Energy Fuels 2017, 1, 288–298.

[32]

Lammert, M.; Wharmby, M. T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K. A.; De Vos, D.; Stock, N. Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun. 2015, 51, 12578–12581.

[33]

Dong, X.; Lin, Y. C.; Ma, Y. Q.; Zhao, L. Ce-doped UiO-67 nanocrystals with improved adsorption property for removal of organic dyes. RSC Adv. 2019, 9, 27674–27683.

[34]

Zhang, H. F.; Qiu, J. J.; Yan, B. C.; Liu, L. D.; Chen, D. F.; Liu, X. Y. Regulation of Ce(III)/Ce(IV) ratio of cerium oxide for antibacterial application. iScience 2021, 24, 102226.

[35]

An, H. Y.; Liu, L. L.; Song, N.; Zhu, H. M.; Tang, Y. Rational design and synthesis of cerium dioxide-based nanocomposites. Nano Res. 2023, 16, 3622–3640.

[36]

Ma, Y. Y.; Tian, Z. M.; Zhai, W. F.; Qu, Y. Q. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res. 2022, 15, 10328–10342.

[37]

Ou, N. Q.; Li, H. J.; Lyu, B. W.; Gui, B. J.; Sun, X.; Qian, D. J.;Jia, Y. L.; Wang, X. Y.; Yang, J. H. Facet-dependent interfacial charge transfer in TiO2/nitrogen-doped graphene quantum dots heterojunctions for visible-light driven photocatalysis. Catalysts 2019, 9, 345.

[38]

Ri, S. H.; Bi, F. K.; Guan, A. L.; Zhang, X. D. Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation. J. Colloid Interface Sci. 2021, 586, 836–846.

[39]

Zhang, Q.; Zhao, X. R.; Duan, L. B.; Shen, H.; Liu, R. D. Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. J. Photochem. Photobiol. A: Chem. 2020, 392, 112156.

[40]

Liu, Y.; Zhang, L. Y.; Li, Q. G.; Dai, H.; Xiang, T.; Yang, G. Y.; Li, L. A reusable colorimetric assay based on mixed valence state Ce-MOF@Pt nanoparticles for highly sensitive detection of visfatin. Anal. Chim. Acta 2021, 1146, 24–32.

Nano Research
Pages 9990-9998
Cite this article:
Ye M, Su T, Li J, et al. Multifunctional Ce-MOF@PdNPs with colorimetric fluorescent electrochemical activity for ultrasensitive and accurate detection of diethylstilbestrol. Nano Research, 2024, 17(11): 9990-9998. https://doi.org/10.1007/s12274-024-6951-4
Topics:

485

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 June 2024
Revised: 30 July 2024
Accepted: 08 August 2024
Published: 06 September 2024
© Tsinghua University Press 2024
Return