AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective Review

Recent advances in photocatalytic CO2 cycloaddition reaction

Xing ChenYe LiuGuoqiang WangYubo KuangXiaoqian XiangGuangran DiXiaojing YinLei ZhangKaixin WangQianqian CaiXiaojun Lv( )
New Energy, North China Electric Power University, Beijing 102206, China
Show Author Information

Graphical Abstract

This review focuses on recent advances in photocatalytic cycloaddition reactions of carbon dioxide with epoxides. It emphasizes the reaction mechanism, key influencing factors, photocatalytic materials and novel photocatalytic devices, providing an in-depth analysis of these aspects.

Abstract

Carbon dioxide (CO2) is a principal greenhouse gas with a substantial impact on global climate change. The photocatalytic reduction of CO2 represents an economically viable and environmentally benign approach. This technique involves the catalysis of the reaction between CO2 and epoxides under photocatalytic conditions to yield cyclic carbonates. Notably, this process has garnered significant attention due to its high atomic efficiency and alignment with green chemistry principles. Increasingly, photocatalysts are employed to facilitate the synthesis of cyclic carbonates, demonstrating outstanding performance even under natural light. This review evaluates the current state of research on the photocatalytic cycloaddition of CO2 with epoxides, analyzes the reaction mechanism and key influencing factors, and provides a comparative summary of the photocatalysts developed in this domain. Additionally, this paper underscores the significance of the reaction devices. The paper explores reaction devices with potential applications for photocatalytic CO2 and epoxides and envisions future integrations of CO2 photocatalytic cycloaddition reactions with advanced reaction devices for practical applications in this area.

References

[1]

Smith, M. R.; Myers, S. S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Change 2018, 8, 834–839.

[2]

Cai, W. J.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M. J.; Wu, L. X. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change 2014, 4, 111–116.

[3]

Lee, D. S.; Fahey, D. W.; Skowron, A.; Allen, M. R.; Burkhardt, U.; Chen, Q.; Doherty, S. J.; Freeman, S.; Forster, P. M.; Fuglestvedt, J. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834.

[4]

Jiang, K.; Ashworth, P.; Zhang, S. Y.; Liang, X.; Sun, Y.; Angus, D. China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew. Sust. Energ. Rev. 2020, 119, 109601.

[5]

de Kleijne, K.; Hanssen, S. V.; van Dinteren, L.; Huijbregts, M. A. J.; van Zelm, R.; de Coninck, H. Limits to Paris compatibility of CO2 capture and utilization. One Earth 2022, 5, 168–185.

[6]

Song, C. S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32.

[7]

Mustafa, A.; Lougou, B. G.; Shuai, Y.; Wang, Z. J.; Tan, H. P. Current technology development for CO2 utilization into solar fuels and chemicals: A review. J. Energy Chem. 2020, 49, 96–123.

[8]

Lopes, E. J. C.; Ribeiro, A. P. C.; Martins, L. M. D. R. S. New trends in the conversion of CO2 to cyclic carbonates. Catalysts 2020, 10, 479.

[9]

Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.

[10]

Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed. 2017, 56, 3645–3649.

[11]

Fu, S. F.; Angelidaki, I.; Zhang, Y. F. In situ biogas upgrading by CO2-to-CH4 bioconversion. Trends Biotechnol. 2021, 39, 336–347.

[12]

Zhang, Y. Y.; Yang, G. W.; Xie, R.; Yang, L.; Li, B.; Wu, G. P. Scalable, durable, and recyclable metal-free catalysts for highly efficient conversion of CO2 to cyclic carbonates. Angew. Chem., Int. Ed. 2020, 132, 23491–23498.

[13]

Wan, Y. L.; Zhang, J.; Wang, L.; Lei, Y. Z.; Wen, L. L. Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition. J. Colloid Interface Sci. 2024, 653, 844–856.

[14]

Ma, F. X.; Mi, F. Q.; Sun, M. J.; Huang, T.; Wang, Z. A.; Zhang, T.; Cao, R. A highly stable Zn9-pyrazolate metal-organic framework with metallosalen ligands as a carbon dioxide cycloaddition catalyst. Inorg. Chem. Front. 2022, 9, 1812–1818.

[15]

Zhang, Y.; Hu, H.; Ju, J.; Yan, Q. Q.; Arumugam, V.; Jing, X. C.; Cai, H. Q.; Gao, Y. N. Ionization of a covalent organic framework for catalyzing the cycloaddition reaction between epoxides and carbon dioxide. Chin. J. Catal. 2020, 41, 485–493.

[16]

Ullah, N.; Ramiere, A.; Raza, W.; Ye, P. F.; Liu, W.; Cai, X. K.; Peng, Z. C.; Kim, K. H. Cobalt-based MOF nanoribbons with abundant O/N species for cycloaddition of carbon dioxide to epoxides. J. Colloid Interface Sci. 2022, 623, 752–761.

[17]

Ding, M. L.; Jiang, H. L. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catal. 2018, 8, 3194–3201.

[18]

Subramanian, S.; Park, J.; Byun, J.; Jung, Y.; Yavuz, C. T. Highly efficient catalytic cyclic carbonate formation by pyridyl salicylimines. ACS Appl. Mater. Interfaces 2018, 10, 9478–9484.

[19]

Yun, R. R.; Li, T. H.; He, L.; Shi, C. S.; Xu, R. M. Atomically dispersed iron sites on the hollow nitrogen-doped carbon framework with a highly efficient performance on carbon dioxide cycloaddition. Inorg. Chem. 2022, 61, 15817–15821.

[20]

Nguyen, Q. T.; Do, X. H.; Cho, K. Y.; Lee, Y. R.; Baek, K. Y. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions. J. CO2 Util. 2022, 61, 102061.

[21]

Hu, J. W.; Qiao, W. Z.; Sun, J. J.; Xu, J.; Dong, X. Y.; Zhang, C.; Zang, S. Q. Alkynyl-anchored silver nanoclusters in lanthanide metal-organic framework for luminescent thermometer and CO2 cycloaddition. Nano Res. 2023, 16, 7452–7458.

[22]

Prajapati, P. K.; Kumar, A.; Jain, S. L. First photocatalytic synthesis of cyclic carbonates from CO2 and epoxides using CoPc/TiO2 hybrid under mild conditions. ACS Sustain. Chem. Eng. 2018, 6, 7799–7809.

[23]

Aresta, M.; Quaranta, E. Carbon dioxide: A substitute for phosgene. Chemtech 1997, 27, 32–40.

[24]

Selva, M.; Caretto, A.; Noè, M.; Perosa, A. Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. The competition between cyclic carbonates and linear dicarbonate products. Org. Biomol. Chem. 2014, 12, 4143–4155.

[25]

Kuznetsov, V. A.; Pervova, M. G.; Pestov, A. V. Synthesis of alkylene carbonates in ionic liquid. Russ. J. Org. Chem. 2013, 49, 1859–1860.

[26]

Gabriele, B.; Mancuso, R.; Salerno, G.; Veltri, L.; Costa, M.; Dibenedetto, A. A general and expedient synthesis of 5- and 6-membered cyclic carbonates by palladium-catalyzed oxidative carbonylation of 1,2-and 1,3-diols. ChemSusChem 2011, 4, 1778–1786.

[27]

North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539.

[28]

Rehman, A.; Saleem, F.; Javed, F.; Ikhlaq, A.; Ahmad, S. W.; Harvey, A. Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. J. Environ. Chem. Eng. 2021, 9, 105113.

[29]

Zhai, G. Y.; Liu, Y. Y.; Mao, Y. Y.; Zhang, H. G.; Lin, L. T.; Li, Y. J.; Wang, Z. Y.; Cheng, H. F.; Wang, P.; Zheng, Z. K. et al. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Appl. Catal. B: Environ 2022, 301, 120793.

[30]

Shi, Q.; Chen, M. H.; Xiong, J.; Li, T.; Feng, Y. Q.; Zhang, B. Porphyrin-based two-dimensional metal-organic framework nanosheets for efficient photocatalytic CO2 transformation. Chem. Eng. J. 2024, 481, 148301.

[31]

Li, Y. J.; Zhai, G. Y.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides. Chem. Eng. J. 2022, 437, 135363.

[32]

Zhai, G. Y.; Liu, Y. Y.; Lei, L. F.; Wang, J. J.; Wang, Z. Y.; Zheng, Z. K.; Wang, P.; Cheng, H. F.; Dai, Y.; Huang, B. B. Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a Bi-based metal-organic framework. ACS Catal. 2021, 11, 1988–1994.

[33]

Paul, R.; Boruah, A.; Das, R.; Chakraborty, S.; Chahal, K.; Deka, D. J.; Peter, S. C.; Mai, B. K.; Mondal, J. Pyrolysis free out-of-plane Co-single atomic sites in porous organic photopolymer stimulates solar-powered CO2 fixation. Small 2024, 20, 2305307.

[34]

Yang, Q. H.; Peng, H. T.; Zhang, Q. J.; Qian, X.; Chen, X.; Tang, X.; Dai, S.; Zhao, J. J.; Jiang, K.; Yang, Q. et al. Atomically dispersed high-density Al-N4 sites in porous carbon for efficient photodriven CO2 cycloaddition. Adv. Mater. 2021, 33, 2103186.

[35]

Wang, T. T.; Du, L. C.; Liu, K. L. Metal cluster/ruthenium photosensitizer/cobalt phthalocyanine synergistic photocatalytic cycloaddition of carbon dioxide and propylene oxide. Mol. Catal. 2024, 553, 113764.

[36]

Gong, X. Q.; Zhang, Y. J.; Xu, Y. Y.; Zhai, G. Y.; Liu, X. L.; Bao, X. L.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Cheng, H. F. et al. Synergistic effect between CO2 chemisorption using amino-modified carbon nitride and epoxide activation by high-energy electrons for plasmon-assisted synthesis of cyclic carbonates. ACS Appl. Mater. Interfaces 2022, 14, 51029–51040.

[37]

Liu, K. L.; Du, L. C.; Wang, T. T. Coordination synergy between iridium photosensitizers and metal nanoclusters leading to enhanced CO2 cycloaddition under mild conditions. Inorg. Chem. 2024, 63, 4614–4627.

[38]
Li, L.; Liu, W. X.; Ying, H. H.; He, X.; Shang, S.; Zhang, P.; Zhang, X. D.; Liu, S. H.; Wang, H.; Xie, Y. Artificial chlorophyll-like structure for photocatalytic CO2 chemical fixation. CCS Chem., in press, DOI: 10.31635/ccschem.024.202404189.
[39]

Li, L.; Liu, W. X.; Shi, T.; Shang, S.; Zhang, X. D.; Wang, H.; Tian, Z. Q.; Chen, L.; Xie, Y. Photoexcited single-electron transfer for efficient green synthesis of cyclic carbonate from CO2. ACS Mater. Lett. 2023, 5, 1219–1226.

[40]

Jiang, B.; Zhang, C. C.; Yang, N.; Zhou, Q.; Zhang, L. F.; Li, J. S.; Yang, W.; Yang, X. D.; Zhang, L. H. 2D/2D ZIF-L-derived Zn δ + (0 ≤ δ ≤ 2) and N codoped carbon skeleton@ZnIn2S4 S-scheme heterojunction for solar-driven CO2 cycloaddition. ACS Sustain. Chem. Eng. 2024, 12, 6584–6595.

[41]

Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2021, 133, 21320–21342.

[42]

Fang, Z.; Deng, Z.; Wan, X. Y.; Li, Z. Y.; Ma, X.; Hussain, S.; Ye, Z. Z.; Peng, X. S. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition. Appl. Catal. B: Environ. 2021, 296, 120329.

[43]

Ding, L. G.; Yao, B. J.; Wu, W. X.; Yu, Z. G.; Wang, X. Y.; Kan, J. L.; Dong, Y. B. Metalloporphyrin and ionic liquid-functionalized covalent organic frameworks for catalytic CO2 cycloaddition via visible-light-induced photothermal conversion. Inorg. Chem. 2021, 60, 12591–12601.

[44]

Zhang, L. P.; Tu, X. W.; Chen, Y. T.; Han, W. H.; Chen, L. C.; Sun, C.; Zhu, S. X.; Song, Y. J.; Zheng, H. Photothermal catalysis without solvent for fixing CO2 to cyclic carbonate. Mol. Catal. 2023, 538, 112971.

[45]

Darensbourg, D. J.; Holtcamp, M. W. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev. 1996, 153, 155–174.

[46]

Liu, D.; Li, G.; Liu, J. X.; Yi, Y. H. Organic–inorganic hybrid mesoporous titanium silica material as bi-functional heterogeneous catalyst for the CO2 cycloaddition. Fuel 2019, 244, 196–206.

[47]

Nayak, P.; Murali, A. C.; Pal, P. K.; Priyakumar, U. D.; Chandrasekhar, V.; Venkatasubbaiah, K. Tetra-coordinated boron-functionalized phenanthroimidazole-based zinc salen as a photocatalyst for the cycloaddition of CO2 and epoxides. Inorg. Chem. 2022, 61, 14511–14516.

[48]

Said, A.; Liu, C. Y.; Gao, C.; Wang, D. X.; Niu, H. H.; Liu, Y. S.; Wang, G.; Tung, C. H.; Wang, Y. F. Lead-decorated titanium oxide compound with a high performance in catalytic CO2 insertion to epoxides. Inorg. Chem. 2023, 62, 1901–1910.

[49]

Fang, X.; Yang, L.; Dai, Z. B.; Cong, D.; Zheng, D. Y.; Yu, T.; Tu, R.; Zhai, S. L.; Yang, J. X.; Song, F. L. et al. Poly(ionic liquid)s for photo-driven CO2 cycloaddition: Electron donor–acceptor segments matter. Adv. Sci. 2023, 10, 2206687.

[50]

Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985.

[51]

Cui, W. G.; Zhang, G. Y.; Hu, T. L.; Bu, X. H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coord. Chem. Rev. 2019, 387, 79–120.

[52]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[53]

Chuhadiya, S.; Himanshu.; Suthar, D.; Patel, S. L.; Dhaka, M. S. Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord. Chem. Rev. 2021, 446, 214115.

[54]

Bakiro, M.; Ahmed, S. H.; Alzamly, A. Cycloaddition of CO2 to propylene oxide using BiNbO4/NH2-MIL-125(Ti) composites as visible-light photocatalysts. J. Environ. Chem. Eng. 2020, 8, 104461.

[55]

Payra, S.; Roy, S. From trash to treasure: Probing cycloaddition and photocatalytic reduction of CO2 over cerium-based metal-organic frameworks. J. Phys. Chem. C 2021, 125, 8497–8507.

[56]

Gong, Y. N.; Liu, J. W.; Mei, J. H.; Lin, X. L.; Deng, J. H.; Li, X. K.; Zhong, D. C.; Lu, T. B. Incorporation of chromophores into metal-organic frameworks for boosting CO2 conversion. Inorg. Chem. 2021, 60, 14924–14931.

[57]

Fan, S. C.; Chen, S. Q.; Wang, J. W.; Li, Y. P.; Zhang, P.; Wang, Y.; Yuan, W. Y.; Zhai, Q. G. Precise introduction of single vanadium site into indium-organic framework for CO2 capture and photocatalytic fixation. Inorg. Chem. 2022, 61, 14131–14139.

[58]

Wu, D.; Lu, X. M.; Tang, Y.; Gao, F.; Yang, G. P.; Wang, Y. Y. Light-assisted CO2 cycloaddition over a nanochannel cadmium-organic framework loaded with silver nanoparticles. ACS Appl. Nano Mater. 2023, 6, 6197–6207.

[59]

He, Y. Z.; Xu, M. S.; Xia, J. H.; Zhang, C. H.; Song, X. T.; Zhao, X. F.; Fu, M.; Li, S. Q.; Liu, X. Y. Effect of exposed active sites of semi-amorphous Fe-BTC on photocatalytic CO2 cycloaddition reaction under ambient conditions. Mol. Catal. 2023, 542, 113134.

[60]

Zhu, H. Y.; Shen, Q. Y.; Yuan, Y. Y.; Gao, H.; Zhou, S.; Yang, F. L.; Sun, L. M.; Wang, X. J.; Yi, J. J.; Han, X. G. Engineering the sulfide semiconductor/photoinactive-MOF heterostructure with a hollow cuboctahedral structure to enhance photocatalytic CO2-epoxide-cycloaddition efficiency. Inorg. Chem. 2024, 63, 4078–4085.

[61]

Fan, S. C.; Wang, J. W.; Yuan, W. Y.; Zhang, P.; Wang, Y.; Zhai, Q. G. Rational structure transformation triggered by titanium modulation in metal-organic frameworks for efficient flue gas utilization. Chem 2024, 10, 1804–1820.

[62]

Zhang, H. G.; Zhai, G. Y.; Lei, L. F.; Zhang, C. Y.; Liu, Y. Y.; Wang, Z. Y.; Cheng, H. F.; Zheng, Z. K.; Wang, P.; Dai, Y. et al. Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. J. Colloid Interface Sci. 2022, 625, 33–40.

[63]

Zhang, H. G.; Si, S. H.; Zhai, G. Y.; Li, Y. J.; Liu, Y. Y.; Cheng, H. F.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y. et al. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Appl. Catal. B: Environ. 2023, 337, 122909.

[64]

Zhou, X. L.; Zhang, H. G.; Cheng, H. F.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Xing, D. N.; Liu, Y. Y.; Huang, B. B. Enhanced cycloaddition between CO2 and epoxide over a bismuth-based metal organic framework due to a synergistic photocatalytic and photothermal effect. J. Colloid Interface Sci. 2024, 658, 805–814.

[65]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[66]

Xiang, Z. H.; Cao, D. P. Porous covalent-organic materials: Synthesis, clean energy application and design. J. Mater. Chem. A 2013, 1, 2691–2718.

[67]

Li, C. Y.; Yu, G. Controllable synthesis and performance modulation of 2D covalent-organic frameworks. Small 2021, 17, 2100918.

[68]

Bian, G.; Yin, J.; Zhu, J. Recent advances on conductive 2D covalent organic frameworks. Small 2021, 17, 2006043.

[69]

Das, A.; Mondal, R. K.; Chakrabortty, P.; Riyajuddin, S.; Chowdhury, A. H.; Ghosh, S.; Khan, A.; Ghosh, K.; Islam, S. M. Visible light assisted chemical fixation of atmospheric CO2 into cyclic carbonates using covalent organic framework as a potential photocatalyst. Mol. Catal. 2021, 499, 111253.

[70]

Wang, T.; Zhu, Y. Q.; Wang, W.; Niu, J. F.; Lu, Z. Y.; He, P. L. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984.

[71]

Mohamed, M. G.; EL-Mahdy, A. F. M.; Kotp, M. G.; Kuo, S. W. Advances in porous organic polymers: Syntheses, structures, and diverse applications. Mater. Adv. 2022, 3, 707–733.

[72]

Sarkar, C.; Paul, R.; Dao, D. Q.; Xu, S. J.; Chatterjee, R.; Shit, S. C.; Bhaumik, A.; Mondal, J. Unlocking molecular secrets in a monomer-assembly-promoted Zn-metalated catalytic porous organic polymer for light-responsive CO2 insertion. ACS Appl. Mater. Interfaces 2022, 14, 37620–37636.

[73]

Das, N.; Paul, R.; Biswas, S.; Das, R.; Chatterjee, R.; Bhaumik, A.; Peter, S. C.; Wong, B. M.; Mondal, J. Photo-responsive signatures in a porous organic polymer enable visible light-driven CO2 photofixation. ACS Sustain. Chem. Eng. 2023, 11, 2066–2078.

[74]

Tay, Q.; Kanhere, P.; Ng, C. F.; Chen, S.; Chakraborty, S.; Huan, A. C. H.; Sum, T. C.; Ahuja, R.; Chen, Z. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem. Mater. 2015, 27, 4930–4933.

[75]

Kumar, A.; Samanta, S.; Srivastava, R. Graphitic carbon nitride modified with Zr-thiamine complex for efficient photocatalytic CO2 insertion to epoxide: Comparison with traditional thermal catalysis. ACS Appl. Nano Mater. 2021, 4, 6805–6820.

[76]

Liu, Y.; Chen, Y.; Liu, Y. L.; Chen, Z. W.; Yang, H.; Yue, Z. X.; Fang, Q.; Zhi, Y. F.; Shan, S. Y. Zn and N co-doped porous carbon nanosheets for photothermally-driven CO2 cycloaddition. J. Catal. 2022, 407, 65–76.

[77]

Guo, Y. C.; Chen, W. J.; Feng, L.; Liang, J. S.; Wang, X. M.; Zhang, X. Greenery-inspired nanoengineering of bamboo-like hierarchical porous nanotubes with spatially organized bifunctionalities for synergistic photothermal catalytic CO2 fixation. J. Mater. Chem. A 2022, 10, 12418–12428.

[78]

Cheng, R. L.; Wang, A. H.; Sang, S. X.; Liang, H. G.; Liu, S. Q.; Tsiakaras, P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: An economic and ecofriendly choice. Chem. Eng. J. 2023, 466, 142982.

[79]

Cheng, R. L.; Ren, J.; Wang, H. R.; Liang, H. G.; Tsiakaras, P. Photo-induced CO2 cycloaddition and tetracycline degradation over novel FeO x modified defective graphitic carbon nitride composite. Appl. Catal. B: Environ. Energy 2024, 352, 124024.

[80]

Wang, Y. F.; Liu, H. M.; Shi, Q. J.; Miao, Z. R.; Duan, H. H.; Wang, Y. O.; Rong, H. P.; Zhang, J. T. Single-atom titanium on mesoporous nitrogen, oxygen-doped carbon for efficient photo-thermal catalytic CO2 cycloaddition by a radical mechanism. Angew. Chem., Int. Ed. 2024, 63, e202404911.

[81]

Wang, T. T.; Chen, F. F.; Jiang, L. J.; Li, J. Z.; Chen, K.; Gao, J. K. Metal-organic-framework-derived bromine and nitrogen dual-doped porous carbon for CO2 photocycloaddition reaction. Inorg. Chem. 2024, 63, 4224–4232.

[82]

Ijaz, M.; Zafar, M. Titanium dioxide nanostructures as efficient photocatalyst: Progress, challenges and perspective. Int. J. Energy Res. 2021, 45, 3569–3589.

[83]

Rashid, M. M.; Simončič, B.; Tomšič, B. Recent advances in TiO2-functionalized textile surfaces. Surf. Interfaces 2021, 22, 100890.

[84]

Elgohary, E. A.; Mohamed, Y. M. A.; Rabie, S. T.; Salih, S. A.; Fekry, A. M.; El Nazer, H. A. Highly selective visible-light-triggered CO2 fixation to cyclic carbonates under mild conditions using TiO2/multiwall carbon nanotubes (MWCNT) grafted with Pt or Pd nanoparticles. New J. Chem. 2021, 45, 17301–17312.

[85]

Liu, C. Y.; Niu, H. H.; Wang, D. X.; Gao, C.; Said, A.; Liu, Y. S.; Wang, G.; Tung, C. H.; Wang, Y. F. S-scheme Bi-oxide/Ti-oxide molecular hybrid for photocatalytic cycloaddition of carbon dioxide to epoxides. ACS Catal. 2022, 12, 8202–8213.

[86]

Yang, R. J.; Mei, L.; Fan, Y. Y.; Zhang, Q. Y.; Zhu, R. S.; Amal, R.; Yin, Z. Y.; Zeng, Z. Y. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods, 2021, 5, 2100887.

[87]

Wu, Y. N.; Yu, X. F.; Du, Y. J.; Xia, L. H.; Guo, Q.; Zhang, K. S.; Zhang, W. L.; Liu, S. M.; Peng, Y. H.; Li, Z. et al. A combination of two swords thermo-bluelight-synergistic-catalytic CO2 cycloaddition on ZnIn2S4 exposed abundant of zinc cation sites. Appl. Catal. B: Environ. 2023, 331, 122732.

[88]

Tan, C. L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Isolated single-atom cobalt in the ZnIn2S4 monolayer with exposed Zn sites for CO2 photofixation. ACS Catal. 2023, 13, 8317–8329.

[89]

Bakiro, M.; Ahmed, S, H.; Alzamly, A. Efficient visible-light photocatalytic cycloaddition of CO2 and propylene oxide using reduced graphene oxide supported BiNbO4. ACS Sustain. Chem. Eng. 2020, 8, 12072–12079.

[90]

Luo, H.; Ren, J.; Sun, Y.; Liu, Y. L.; Zhou, F.; Shi, G. Y.; Zhou, J. Recent advances in chemical fixation of CO2 based on flow chemistry. Chin. Chem. Lett. 2023, 34, 107782.

[91]

Prasad, D.; Patil, K. N.; Dateer, R. B.; Kim, H.; Nagaraja, B. M.; Jadhav, A. H. Basicity controlled MgCo2O4 nanostructures as catalyst for viable fixation of CO2 into epoxides at atmospheric pressure. Chem. Eng. J. 2021, 405, 126907.

[92]

Nesbitt, N. T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W. A. Liquid–solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 2020, 10, 14093–14106.

[93]

Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas–water boundary. Angew. Chem., Int. Ed. 2022, 134, e202200802.

[94]

Jung, H.; Kim, C.; Yoo, H. W.; You, J.; Kim, J. S.; Jamal, A.; Gereige, I.; Ager, J. W.; Jung, H. T. Continuous-flow reactor with superior production rate and stability for CO2 reduction using semiconductor photocatalysts. Energy Environ. Sci. 2023, 16, 2869–2878.

[95]

Pieber, B.; Shalom, M.; Antonietti, M.; Seeberger, P. H.; Gilmore, K. Kontinuierliche heterogene photokatalyse in seriellen mikro-batch-reaktoren. Angew. Chem., Int. Ed. 2018, 130, 10127–10131.

[96]

Hao, Y. W.; Pang, S.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid reactions. Chem. Sci. 2020, 11, 10035–10046.

[97]

Zou, Y. J.; Xiao, K.; Qin, Q.; Shi, J. W.; Heil, T.; Markushyna, Y.; Jiang, L.; Antonietti, M.; Savateev, A. Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano 2021, 15, 6551–6561.

[98]

Pang, S.; Peng, D. L.; Hao, Y. W.; Song, B.; Zhang, X. Q.; Jiang, L. Regulating interlayer spacing of aminated graphene oxide membranes for efficient flow reactions. Matter 2023, 6, 1173–1187.

[99]

Guselnikova, O.; Postnikov, P.; Kosina, J.; Kolska, Z.; Trelin, A.; Svorcik, V.; Lyutakov, O. A breath of fresh air for atmospheric CO2 utilisation: A plasmon-assisted preparation of cyclic carbonate at ambient conditions. J. Mater. Chem. A 2021, 9, 8462–8469.

[100]

Athanasiou, D. A.; Romanos, G. E.; Falaras, P. Design and optimization of a photocatalytic reactor for water purification combining optical fiber and membrane technologies. Chem. Eng. J. 2016, 305, 92–103.

[101]

Kant, P.; Liang, S. Z.; Rubin, M.; Ozin, G. A.; Dittmeyer, R. Low-cost photoreactors for highly photon/energy-efficient solar-driven synthesis. Joule 2023, 7, 1347–1362.

[102]

Binjhade, R.; Mondal, R.; Mondal, S. Continuous photocatalytic reactor: Critical review on the design and performance. J. Environ. Chem. Eng. 2022, 10, 107746.

Nano Research
Pages 9601-9619
Cite this article:
Chen X, Liu Y, Wang G, et al. Recent advances in photocatalytic CO2 cycloaddition reaction. Nano Research, 2024, 17(11): 9601-9619. https://doi.org/10.1007/s12274-024-6953-2
Topics:

406

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 21 June 2024
Revised: 01 August 2024
Accepted: 08 August 2024
Published: 11 September 2024
© Tsinghua University Press 2024
Return