Olefin hydrogenation under mild condition is crucial and challenging for industrial applications. Herein, defective UiO-66(Ce) was constructed by using cyanuric acid as the molecular etching “scissors” and further to synthesize heterogeneous catalyst with highly dispersed RuNi nanoparticles (Ru1Ni1.5@UiO-66(Ce)-12 h). The construction of Ce-O-Ru/Ni heterogeneous interfaces and Ni–Ru bonds provide electron transfer channels from Ce-oxo clusters and Ni species to Ru species. Furthermore, the microenvironment and electronic structure of Ru0 active sites were synergistically regulated by adjusting the content of metal-organic frameworks (MOFs) defects and Ni promoter, thereby enhancing the adsorption and activation ability of H–H and C=C bonds. Therefore, Ru1Ni1.5@UiO-66(Ce)-12 h achieved dicyclopentadiene saturated hydrogenation (100% conversion) to tetrahydrodicyclopentadiene (~ 100% selectivity) under mild condition (35 °C, 1 MPa) with only 25 min. Meanwhile, the sample exhibited excellent structural stability after 6 cycles test. This study provides a promising strategy for the rational design of remarkable noble metal-based catalysts for practical applications.
Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.
Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.
Xing, C. Y.; Xue, Y. R.; Zheng, X. C.; Gao, Y.; Chen, S. A.; Li, Y. L. Highly selective electrocatalytic olefin hydrogenation in aqueous solution. Angew. Chem., Int. Ed. 2023, 62, e202310722.
Guo, Q. Y.; Wang, Z. T.; Feng, X. Y.; Fan, Y. J.; Lin, W. B. Generation and stabilization of a dinickel catalyst in a metal-organic framework for selective hydrogenation reactions. Angew. Chem., Int. Ed. 2023, 62, e202306905.
Parastaev, A.; Muravev, V.; Osta, E. H.; Kimpel, T. F.; Simons, J. F. M.; van Hoof, A. J. F.; Uslamin, E.; Zhang, L.; Struijs, J. J. C.; Burueva, D. B. et al. Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles. Nat. Catal. 2022, 5, 1051–1060.
Lin, S. H.; Hetaba, W.; Chaudret, B.; Leitner, W.; Bordet, A. Copper-decorated iron carbide nanoparticles heated by magnetic induction as adaptive multifunctional catalysts for the selective hydrodeoxygenation of aldehydes. Adv. Energy Mater. 2022, 12, 2201783.
He, H. R.; Canning, G. A.; Nguyen, A.; Dasgupta, A.; Meyer, R. J.; Rioux, R. M.; Janik, M. J. Active-site isolation in intermetallics enables precise identification of elementary reaction kinetics during olefin hydrogenation. Nat. Catal. 2023, 6, 596–605.
Wang, Z.; Wang, C. P.; Mao, S. J.; Lu, B.; Chen, Y. Z.; Zhang, X.; Chen, Z. R.; Wang, Y. Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nat. Commun. 2022, 13, 3561.
Xu, W. L.; Zhang, Y. W.; Wang, J. J.; Xu, Y. X.; Bian, L.; Ju, Q.; Wang, Y. M.; Fang, Z. L. Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nat. Commun. 2022, 13, 2068.
Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.
Zhao, D. F.; Li, X. J.; Zhang, K. Y.; Guo, J. Z.; Huang, X. B.; Wang, G. Recent advances in thermocatalytic hydrogenation of unsaturated organic compounds with metal-organic frameworks-based materials: Construction strategies and related mechanisms. Coord. Chem. Rev. 2023, 487, 215159.
Lu, G. L.; Chu, F.; Huang, X. B.; Li, Y. Q.; Liang, K. Y.; Wang, G. Recent advances in metal-organic frameworks-based materials for photocatalytic selective oxidation. Coord. Chem. Rev. 2022, 450, 214240.
Tsumori, N.; Chen, L. Y.; Wang, Q. J.; Zhu, Q. L.; Kitta, M.; Xu, Q. Quasi-MOF: Exposing inorganic nodes to guest metal nanoparticles for drastically enhanced catalytic activity. Chem 2018, 4, 845–856.
Zhuo, Y. F.; Guo, X. L.; Cai, W.; Shao, T.; Xia, D. H.; Li, C. H.; Liu, S. W. Synergetic modulation of molecular oxygen activation and surface acidity/basicity on defective M/UiO-66m (M = Pt, Pd) for advanced oxidation of gaseous formaldehyde at room temperature. Appl. Catal. B: Environ. 2023, 333, 122789.
Wang, W. C.; Sheng, T.; Chen, S. S.; Xiang, Z. Y.; Zhou, F. Y.; Zhu, W. B.; Wang, H. L. Defect engineering of metal-organic framework for highly efficient hydrodeoxygenation of lignin derivates in water. Chem. Eng. J. 2023, 453, 139711.
Hu, Z. G.; Wang, Y. X.; Zhao, D. The chemistry and applications of hafnium and cerium(IV) metal-organic frameworks. Chem. Soc. Rev. 2021, 50, 4629–4683.
Yang, P. F.; Mao, F. X.; Li, Y. S.; Zhuang, Q. X.; Gu, J. L. Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy. Chem.—Eur. J. 2018, 24, 2962–2970.
He, H. H.; Yuan, J. P.; Cai, P. Y.; Wang, K. Y.; Feng, L.; Kirchon, A.; Li, J.; Zhang, L. L.; Zhou, H. C.; Fang, Y. Yolk–shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions. J. Am. Chem. Soc. 2023, 145, 17164–17175.
Zhou, X. L.; Jin, H. Y.; Xia, B. Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv. Mater. 2021, 33, 2104341.
Liu, W.; Feng, H. S.; Yang, Y. S.; Niu, Y. M.; Wang, L.; Yin, P.; Hong, S.; Zhang, B. S.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.
Liu, Y.; Shi, Y. W.; Wang, H.; Zhang, S. B. Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res. 2024, 17, 5835–5844.
Hong, F.; Cheng, G. J.; Hu, W. H.; Wang, S. Y.; Jiang, Q. K.; Fu, J. H.; Qiao, B. T.; Huang, J. H. Selective and stable Au-Cu bimetallic catalyst for CO-PROX. Nano Res. 2023, 16, 9031–9038.
Li, R. S.; Wang, L. M.; Zhou, P. Y.; Lin, J.; Liu, Z. Y.; Chen, J.; Zhao, D. F.; Huang, X. B.; Tao, Z. P.; Wang, G. Electronic state, abundance and microenvironment modulation of Ru nanoclusters within hierarchically porous UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene. Chin. J. Catal. 2024, 56, 150–165.
Li, L. G.; Liu, C.; Liu, S. H.; Wang, J.; Han, J. J.; Chan, T. S.; Li, Y. Y.; Hu, Z. W.; Shao, Q.; Zhang, Q. B. et al. Phase engineering of a ruthenium nanostructure toward high-performance bifunctional hydrogen catalysis. ACS Nano 2022, 16, 14885–14894.
Shi, X. Y.; Xie, M. H.; Yang, K. W.; Niu, Y. T.; Ma, H. B.; Zhu, Y. M.; Li, J. Y.; Pan, T. T.; Zhou, X. Y.; Cui, Y. J. et al. Synergistic effect of Ni/Ni(OH)2 core–shell catalyst boosts tandem nitrate reduction for ampere-level ammonia production. Angew. Chem., Int. Ed. 2024, 63, e202406750.
Tian, Y. J.; Guo, L. H.; Qiao, C. Z.; Sun, Z. X.; Yamauchi, Y.; Liu, S. D. Dynamics-driven tailoring of sub-nanometric Pt-Ni bimetals confined in hierarchical zeolite for catalytic hydrodeoxygenation. Appl. Catal. B: Environ. 2023, 336, 122945.
Qiao, S. C.; Shou, H. W.; Xu, W. J.; Cao, Y. Y.; Zhou, Y. Z.; Wang, Z. X.; Wu, X. J.; He, Q.; Song, L. Regulating and identifying the structures of PdAu alloys with splendid oxygen reduction activity for rechargeable zinc-air batteries. Energy Environ. Sci. 2023, 16, 5842–5851.
Jin, L. J.; Qin, Q. J.; Dong, L. H.; Liu, S. Q.; Xie, S. Z.; Lu, J. K.; Xu, A. H.; Liu, J. X.; Liu, H.; Yao, Y. C. et al. Study of the cycloaddition of CO2 with styrene oxide over six-connected spn topology MOFs (Zr, Hf) at room temperature. Chem.—Eur. J. 2021, 27, 14947–14963.
Liu, Z. Y.; Wang, L. M.; Wang, C. G.; Li, R. S.; Zhou, P. Y.; Gao, H. Y.; Wang, G. Modulating the strong metal-support interactions by regulating the chemical microenvironment of Pt confined in MOFs for low temperature hydrogenation of DCPD. Chem. Eng. J. 2024, 479, 147601.
Jia, D. D.; Zhao, J.; Tao, Z. P.; Gao, H. Y.; Fu, Z. L.; Yan, R.; Zhu, Z. P.; Shu, X. T.; Wang, G. Highly dispersed Ni nanocatalysts supported by MOFs derived hierarchical N-doped porous carbon for hydrogenation of dicyclopentadiene. Carbon 2021, 184, 855–863.
Wu, C. H.; Chen, X. P.; Liang, J. Z.; Fu, J. W.; Zhang, Z. Y.; Wei, X. J.; Wang, L. L. MOF-templated fabrication of Ni@C/g-C3N4 catalyst with high-dense accessible active sites achieving dicyclopentadiene hydrogenation at ambient conditions and comprehensive mechanism insight. Chem. Eng. J. 2023, 462, 142141.
Zhou, P. Y.; Hai, G. T.; Zhao, G. C.; Li, R. S.; Huang, X. B.; Lu, Y. F.; Wang, G. CeO2 as an “electron pump” to boost the performance of Co4N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization. Appl. Catal. B: Environ. 2023, 325, 122364.
Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.
An, J. H.; Wang, Y. H.; Lu, J. M.; Zhang, J.; Zhang, Z. X.; Xu, S. T.; Liu, X. Y.; Zhang, T.; Gocyla, M.; Heggen, M. et al. Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: The catalysis of interfacial Lewis acid-base pair. J. Am. Chem. Soc. 2018, 140, 4172–4181.
Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.
Shen, F. Y.; Zhang, Z. H.; Wang, Z.; Ren, H.; Liang, X. H.; Cai, Z. J.; Yang, S. T.; Sun, G. D.; Cao, Y. N.; Yang, X. X. et al. Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution. Nat. Commun. 2024, 15, 448.
Zhang, W.; Li, C.; Cao, Y. Y.; Ji, J. Y.; Li, Z. C.; Niu, Z.; Gu, H. W.; Braunstein, P.; Lang, J. P. Electronic engineering of Co-Ru diatomic sites and Ru nanoparticles for synergistic promotion of hydrogen evolution. Nano Res. 2024, 17, 3714–3723.
Jiang, T. L.; Liu, Z. C.; Yuan, Y.; Zheng, X. H.; Park, S.; Wei, S. Y.; Li, L. X.; Ma, Y. R.; Liu, S.; Chen, J. H. et al. Ultrafast electrical pulse synthesis of highly active electrocatalysts for beyond-industrial-level hydrogen gas batteries. Adv. Mater. 2023, 35, 2300502.
Yun, R. R.; Xu, R. M.; Shi, C. S.; Zhang, B. B.; Li, T. H.; He, L.; Sheng, T.; Chen, Z. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano Res. 2023, 16, 8970–8976.
Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.
Li, Y. W.; Wu, Y. H.; Li, T. T.; Lu, M. T.; Chen, Y.; Cui, Y. J.; Gao, J. K.; Qian, G. D. Tuning the electronic structure of a metal-organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. Carbon Energy 2023, 5, e265.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Li, T.; Heenan, T. M. M.; Rabuni, M. F.; Wang, B.; Farandos, N. M.; Kelsall, G. H.; Matras, D.; Tan, C.; Lu, X. K.; Jacques, S. D. M. et al. Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography. Nat. Commun. 2019, 10, 1497.
Zhao, G. C.; Hai, G. T.; Zhou, P. Y.; Liu, Z. M.; Zhang, Y. Y.; Peng, B. X.; Xia, W.; Huang, X. B.; Wang, G. Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv. Funct. Mater. 2023, 33, 2213170.
Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning Lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 2018, 140, 10553–10561.
Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. G.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200211.
Lv, J. J.; Liu, P. P.; Li, R. S.; Wang, L. M.; Zhang, K. Y.; Zhou, P. Y.; Huang, X. B.; Wang, G. Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120587.
Zhao, C. F.; Wang, J.; Gao, Y.; Zhang, J.; Huang, C. Y.; Shi, Q. H.; Mu, S. C.; Xiao, Q. F.; Huo, S. J.; Xia, Z. H. et al. D-orbital manipulated Ru nanoclusters for high-efficiency overall water splitting at industrial-level current densities. Adv. Funct. Mater. 2024, 34, 2307917.
Cao, W.; Gao, X. H.; Wu, J.; Huang, A. Q.; Hu, H.; Chen, Z. W. Regulating the spin polarization of NiFe layered double hydroxide for the enhanced oxygen evolution reaction. ACS Catal. 2024, 14, 3640–3646.
Liu, P. F.; Zheng, C. L.; Liu, W.; Wu, X. D.; Liu, S. Oxidative redispersion-derived single-site Ru/CeO2 catalysts with mobile Ru complexes trapped by surface hydroxyls instead of oxygen vacancies. ACS Catal. 2024, 14, 6028–6044.
Zhao, L. M.; Qin, X. T.; Zhang, X. R.; Cai, X. B.; Huang, F.; Jia, Z. M.; Diao, J. Y.; Xiao, D. Q.; Jiang, Z.; Lu, R. F. et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv. Mater. 2022, 34, 2110455.
Fu, Q. J.; Yan, L. T.; Liu, D. D.; Zhang, S.; Jiang, H. M.; Xie, W. P.; Yang, L. Z.; Wang, Y. J.; Wang, H. Y.; Zhao, X. B. Highly-dispersed surface NiO species and exposed Ni (200) facets facilitating activation of furan ring for high-efficiency total hydrogenation of furfural. Appl. Catal. B: Environ. 2024, 343, 123501.
Lu, J.; Serna, P.; Gates, B. C. Zeolite- and MgO-supported molecular iridium complexes: Support and ligand effects in catalysis of ethene hydrogenation and H–D exchange in the conversion of H2 + D2. ACS Catal. 2011, 1, 1549–1561.
Uzun, A.; Ortalan, V.; Browning, N. D.; Gates, B. C. A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. J. Catal. 2010, 269, 318–328.
Yang, C. S.; Ma, S. C.; Liu, Y. M.; Wang, L. H.; Yuan, D. S.; Shao, W. P.; Zhang, L. J.; Yang, F.; Lin, T. J.; Ding, H. X. et al. Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides. Nat. Commun. 2024, 15, 540.