AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defect engineering and Ni promoter synergistically accelerating electron transfer to Ru0 sites in UiO-66(Ce) for dicyclopentadiene hydrogenation under mild condition

Rushuo Li1Tao Ban1Danfeng Zhao1Jing Lin1Zhiyuan Liu1Linmeng Wang1Xiubing Huang1( )Zhiping Tao2( )Ge Wang1( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
Show Author Information

Graphical Abstract

The work firstly reports the synergistical strategy of metal-organic frameworks (MOFs) defect engineering and Ni promoter to enhance the activity of Ru0 species to obtain a novel defective UiO-66(Ce) encapsulated RuNi nanoparticles heterogeneous catalyst, efficiently achieving dicyclopentadiene (DCPD) saturated hydrogenation under mild condition, thereby revealing the effects of synergistic strategies on the electronic state of Ru0 species.

Abstract

Olefin hydrogenation under mild condition is crucial and challenging for industrial applications. Herein, defective UiO-66(Ce) was constructed by using cyanuric acid as the molecular etching “scissors” and further to synthesize heterogeneous catalyst with highly dispersed RuNi nanoparticles (Ru1Ni1.5@UiO-66(Ce)-12 h). The construction of Ce-O-Ru/Ni heterogeneous interfaces and Ni–Ru bonds provide electron transfer channels from Ce-oxo clusters and Ni species to Ru species. Furthermore, the microenvironment and electronic structure of Ru0 active sites were synergistically regulated by adjusting the content of metal-organic frameworks (MOFs) defects and Ni promoter, thereby enhancing the adsorption and activation ability of H–H and C=C bonds. Therefore, Ru1Ni1.5@UiO-66(Ce)-12 h achieved dicyclopentadiene saturated hydrogenation (100% conversion) to tetrahydrodicyclopentadiene (~ 100% selectivity) under mild condition (35 °C, 1 MPa) with only 25 min. Meanwhile, the sample exhibited excellent structural stability after 6 cycles test. This study provides a promising strategy for the rational design of remarkable noble metal-based catalysts for practical applications.

Electronic Supplementary Material

Download File(s)
6954_ESM.pdf (3.7 MB)

References

[1]

Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

[2]

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[3]

Xing, C. Y.; Xue, Y. R.; Zheng, X. C.; Gao, Y.; Chen, S. A.; Li, Y. L. Highly selective electrocatalytic olefin hydrogenation in aqueous solution. Angew. Chem., Int. Ed. 2023, 62, e202310722.

[4]

Guo, Q. Y.; Wang, Z. T.; Feng, X. Y.; Fan, Y. J.; Lin, W. B. Generation and stabilization of a dinickel catalyst in a metal-organic framework for selective hydrogenation reactions. Angew. Chem., Int. Ed. 2023, 62, e202306905.

[5]

Parastaev, A.; Muravev, V.; Osta, E. H.; Kimpel, T. F.; Simons, J. F. M.; van Hoof, A. J. F.; Uslamin, E.; Zhang, L.; Struijs, J. J. C.; Burueva, D. B. et al. Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles. Nat. Catal. 2022, 5, 1051–1060.

[6]

Lin, S. H.; Hetaba, W.; Chaudret, B.; Leitner, W.; Bordet, A. Copper-decorated iron carbide nanoparticles heated by magnetic induction as adaptive multifunctional catalysts for the selective hydrodeoxygenation of aldehydes. Adv. Energy Mater. 2022, 12, 2201783.

[7]

He, H. R.; Canning, G. A.; Nguyen, A.; Dasgupta, A.; Meyer, R. J.; Rioux, R. M.; Janik, M. J. Active-site isolation in intermetallics enables precise identification of elementary reaction kinetics during olefin hydrogenation. Nat. Catal. 2023, 6, 596–605.

[8]

Wang, Z.; Wang, C. P.; Mao, S. J.; Lu, B.; Chen, Y. Z.; Zhang, X.; Chen, Z. R.; Wang, Y. Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nat. Commun. 2022, 13, 3561.

[9]

Xu, W. L.; Zhang, Y. W.; Wang, J. J.; Xu, Y. X.; Bian, L.; Ju, Q.; Wang, Y. M.; Fang, Z. L. Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nat. Commun. 2022, 13, 2068.

[10]

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

[11]

Zhao, D. F.; Li, X. J.; Zhang, K. Y.; Guo, J. Z.; Huang, X. B.; Wang, G. Recent advances in thermocatalytic hydrogenation of unsaturated organic compounds with metal-organic frameworks-based materials: Construction strategies and related mechanisms. Coord. Chem. Rev. 2023, 487, 215159.

[12]

Lu, G. L.; Chu, F.; Huang, X. B.; Li, Y. Q.; Liang, K. Y.; Wang, G. Recent advances in metal-organic frameworks-based materials for photocatalytic selective oxidation. Coord. Chem. Rev. 2022, 450, 214240.

[13]

Tsumori, N.; Chen, L. Y.; Wang, Q. J.; Zhu, Q. L.; Kitta, M.; Xu, Q. Quasi-MOF: Exposing inorganic nodes to guest metal nanoparticles for drastically enhanced catalytic activity. Chem 2018, 4, 845–856.

[14]

Zhuo, Y. F.; Guo, X. L.; Cai, W.; Shao, T.; Xia, D. H.; Li, C. H.; Liu, S. W. Synergetic modulation of molecular oxygen activation and surface acidity/basicity on defective M/UiO-66m (M = Pt, Pd) for advanced oxidation of gaseous formaldehyde at room temperature. Appl. Catal. B: Environ. 2023, 333, 122789.

[15]

Wang, W. C.; Sheng, T.; Chen, S. S.; Xiang, Z. Y.; Zhou, F. Y.; Zhu, W. B.; Wang, H. L. Defect engineering of metal-organic framework for highly efficient hydrodeoxygenation of lignin derivates in water. Chem. Eng. J. 2023, 453, 139711.

[16]

Hu, Z. G.; Wang, Y. X.; Zhao, D. The chemistry and applications of hafnium and cerium(IV) metal-organic frameworks. Chem. Soc. Rev. 2021, 50, 4629–4683.

[17]

Yang, P. F.; Mao, F. X.; Li, Y. S.; Zhuang, Q. X.; Gu, J. L. Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy. Chem.—Eur. J. 2018, 24, 2962–2970.

[18]

He, H. H.; Yuan, J. P.; Cai, P. Y.; Wang, K. Y.; Feng, L.; Kirchon, A.; Li, J.; Zhang, L. L.; Zhou, H. C.; Fang, Y. Yolk–shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions. J. Am. Chem. Soc. 2023, 145, 17164–17175.

[19]

Zhou, X. L.; Jin, H. Y.; Xia, B. Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv. Mater. 2021, 33, 2104341.

[20]

Liu, W.; Feng, H. S.; Yang, Y. S.; Niu, Y. M.; Wang, L.; Yin, P.; Hong, S.; Zhang, B. S.; Zhang, X.; Wei, M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.

[21]

Liu, Y.; Shi, Y. W.; Wang, H.; Zhang, S. B. Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res. 2024, 17, 5835–5844.

[22]

Hong, F.; Cheng, G. J.; Hu, W. H.; Wang, S. Y.; Jiang, Q. K.; Fu, J. H.; Qiao, B. T.; Huang, J. H. Selective and stable Au-Cu bimetallic catalyst for CO-PROX. Nano Res. 2023, 16, 9031–9038.

[23]

Li, R. S.; Wang, L. M.; Zhou, P. Y.; Lin, J.; Liu, Z. Y.; Chen, J.; Zhao, D. F.; Huang, X. B.; Tao, Z. P.; Wang, G. Electronic state, abundance and microenvironment modulation of Ru nanoclusters within hierarchically porous UiO-66(Ce) for efficient hydrogenation of dicyclopentadiene. Chin. J. Catal. 2024, 56, 150–165.

[24]

Li, L. G.; Liu, C.; Liu, S. H.; Wang, J.; Han, J. J.; Chan, T. S.; Li, Y. Y.; Hu, Z. W.; Shao, Q.; Zhang, Q. B. et al. Phase engineering of a ruthenium nanostructure toward high-performance bifunctional hydrogen catalysis. ACS Nano 2022, 16, 14885–14894.

[25]

Shi, X. Y.; Xie, M. H.; Yang, K. W.; Niu, Y. T.; Ma, H. B.; Zhu, Y. M.; Li, J. Y.; Pan, T. T.; Zhou, X. Y.; Cui, Y. J. et al. Synergistic effect of Ni/Ni(OH)2 core–shell catalyst boosts tandem nitrate reduction for ampere-level ammonia production. Angew. Chem., Int. Ed. 2024, 63, e202406750.

[26]

Tian, Y. J.; Guo, L. H.; Qiao, C. Z.; Sun, Z. X.; Yamauchi, Y.; Liu, S. D. Dynamics-driven tailoring of sub-nanometric Pt-Ni bimetals confined in hierarchical zeolite for catalytic hydrodeoxygenation. Appl. Catal. B: Environ. 2023, 336, 122945.

[27]

Qiao, S. C.; Shou, H. W.; Xu, W. J.; Cao, Y. Y.; Zhou, Y. Z.; Wang, Z. X.; Wu, X. J.; He, Q.; Song, L. Regulating and identifying the structures of PdAu alloys with splendid oxygen reduction activity for rechargeable zinc-air batteries. Energy Environ. Sci. 2023, 16, 5842–5851.

[28]

Jin, L. J.; Qin, Q. J.; Dong, L. H.; Liu, S. Q.; Xie, S. Z.; Lu, J. K.; Xu, A. H.; Liu, J. X.; Liu, H.; Yao, Y. C. et al. Study of the cycloaddition of CO2 with styrene oxide over six-connected spn topology MOFs (Zr, Hf) at room temperature. Chem.—Eur. J. 2021, 27, 14947–14963.

[29]

Liu, Z. Y.; Wang, L. M.; Wang, C. G.; Li, R. S.; Zhou, P. Y.; Gao, H. Y.; Wang, G. Modulating the strong metal-support interactions by regulating the chemical microenvironment of Pt confined in MOFs for low temperature hydrogenation of DCPD. Chem. Eng. J. 2024, 479, 147601.

[30]

Jia, D. D.; Zhao, J.; Tao, Z. P.; Gao, H. Y.; Fu, Z. L.; Yan, R.; Zhu, Z. P.; Shu, X. T.; Wang, G. Highly dispersed Ni nanocatalysts supported by MOFs derived hierarchical N-doped porous carbon for hydrogenation of dicyclopentadiene. Carbon 2021, 184, 855–863.

[31]

Wu, C. H.; Chen, X. P.; Liang, J. Z.; Fu, J. W.; Zhang, Z. Y.; Wei, X. J.; Wang, L. L. MOF-templated fabrication of Ni@C/g-C3N4 catalyst with high-dense accessible active sites achieving dicyclopentadiene hydrogenation at ambient conditions and comprehensive mechanism insight. Chem. Eng. J. 2023, 462, 142141.

[32]

Zhou, P. Y.; Hai, G. T.; Zhao, G. C.; Li, R. S.; Huang, X. B.; Lu, Y. F.; Wang, G. CeO2 as an “electron pump” to boost the performance of Co4N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization. Appl. Catal. B: Environ. 2023, 325, 122364.

[33]

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

[34]

An, J. H.; Wang, Y. H.; Lu, J. M.; Zhang, J.; Zhang, Z. X.; Xu, S. T.; Liu, X. Y.; Zhang, T.; Gocyla, M.; Heggen, M. et al. Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: The catalysis of interfacial Lewis acid-base pair. J. Am. Chem. Soc. 2018, 140, 4172–4181.

[35]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[36]

Shen, F. Y.; Zhang, Z. H.; Wang, Z.; Ren, H.; Liang, X. H.; Cai, Z. J.; Yang, S. T.; Sun, G. D.; Cao, Y. N.; Yang, X. X. et al. Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution. Nat. Commun. 2024, 15, 448.

[37]

Zhang, W.; Li, C.; Cao, Y. Y.; Ji, J. Y.; Li, Z. C.; Niu, Z.; Gu, H. W.; Braunstein, P.; Lang, J. P. Electronic engineering of Co-Ru diatomic sites and Ru nanoparticles for synergistic promotion of hydrogen evolution. Nano Res. 2024, 17, 3714–3723.

[38]

Jiang, T. L.; Liu, Z. C.; Yuan, Y.; Zheng, X. H.; Park, S.; Wei, S. Y.; Li, L. X.; Ma, Y. R.; Liu, S.; Chen, J. H. et al. Ultrafast electrical pulse synthesis of highly active electrocatalysts for beyond-industrial-level hydrogen gas batteries. Adv. Mater. 2023, 35, 2300502.

[39]

Yun, R. R.; Xu, R. M.; Shi, C. S.; Zhang, B. B.; Li, T. H.; He, L.; Sheng, T.; Chen, Z. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano Res. 2023, 16, 8970–8976.

[40]

Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.

[41]

Li, Y. W.; Wu, Y. H.; Li, T. T.; Lu, M. T.; Chen, Y.; Cui, Y. J.; Gao, J. K.; Qian, G. D. Tuning the electronic structure of a metal-organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. Carbon Energy 2023, 5, e265.

[42]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[43]

Li, T.; Heenan, T. M. M.; Rabuni, M. F.; Wang, B.; Farandos, N. M.; Kelsall, G. H.; Matras, D.; Tan, C.; Lu, X. K.; Jacques, S. D. M. et al. Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography. Nat. Commun. 2019, 10, 1497.

[44]

Zhao, G. C.; Hai, G. T.; Zhou, P. Y.; Liu, Z. M.; Zhang, Y. Y.; Peng, B. X.; Xia, W.; Huang, X. B.; Wang, G. Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv. Funct. Mater. 2023, 33, 2213170.

[45]

Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning Lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 2018, 140, 10553–10561.

[46]

Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. G.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200211.

[47]

Lv, J. J.; Liu, P. P.; Li, R. S.; Wang, L. M.; Zhang, K. Y.; Zhou, P. Y.; Huang, X. B.; Wang, G. Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120587.

[48]

Zhao, C. F.; Wang, J.; Gao, Y.; Zhang, J.; Huang, C. Y.; Shi, Q. H.; Mu, S. C.; Xiao, Q. F.; Huo, S. J.; Xia, Z. H. et al. D-orbital manipulated Ru nanoclusters for high-efficiency overall water splitting at industrial-level current densities. Adv. Funct. Mater. 2024, 34, 2307917.

[49]
Meng, N.; Feng, Y.; Zhao, Z. R.; Lian, F. Boosting the ORR/OER activity of cobalt-based nano-catalysts by Co 3d orbital regulation. Small, in press, DOI: 10.1002/smll.202400855.
[50]

Cao, W.; Gao, X. H.; Wu, J.; Huang, A. Q.; Hu, H.; Chen, Z. W. Regulating the spin polarization of NiFe layered double hydroxide for the enhanced oxygen evolution reaction. ACS Catal. 2024, 14, 3640–3646.

[51]

Liu, P. F.; Zheng, C. L.; Liu, W.; Wu, X. D.; Liu, S. Oxidative redispersion-derived single-site Ru/CeO2 catalysts with mobile Ru complexes trapped by surface hydroxyls instead of oxygen vacancies. ACS Catal. 2024, 14, 6028–6044.

[52]

Zhao, L. M.; Qin, X. T.; Zhang, X. R.; Cai, X. B.; Huang, F.; Jia, Z. M.; Diao, J. Y.; Xiao, D. Q.; Jiang, Z.; Lu, R. F. et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv. Mater. 2022, 34, 2110455.

[53]

Fu, Q. J.; Yan, L. T.; Liu, D. D.; Zhang, S.; Jiang, H. M.; Xie, W. P.; Yang, L. Z.; Wang, Y. J.; Wang, H. Y.; Zhao, X. B. Highly-dispersed surface NiO species and exposed Ni (200) facets facilitating activation of furan ring for high-efficiency total hydrogenation of furfural. Appl. Catal. B: Environ. 2024, 343, 123501.

[54]

Lu, J.; Serna, P.; Gates, B. C. Zeolite- and MgO-supported molecular iridium complexes: Support and ligand effects in catalysis of ethene hydrogenation and H–D exchange in the conversion of H2 + D2. ACS Catal. 2011, 1, 1549–1561.

[55]

Uzun, A.; Ortalan, V.; Browning, N. D.; Gates, B. C. A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. J. Catal. 2010, 269, 318–328.

[56]

Yang, C. S.; Ma, S. C.; Liu, Y. M.; Wang, L. H.; Yuan, D. S.; Shao, W. P.; Zhang, L. J.; Yang, F.; Lin, T. J.; Ding, H. X. et al. Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides. Nat. Commun. 2024, 15, 540.

Nano Research
Pages 9550-9563
Cite this article:
Li R, Ban T, Zhao D, et al. Defect engineering and Ni promoter synergistically accelerating electron transfer to Ru0 sites in UiO-66(Ce) for dicyclopentadiene hydrogenation under mild condition. Nano Research, 2024, 17(11): 9550-9563. https://doi.org/10.1007/s12274-024-6954-1
Topics:

271

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 June 2024
Revised: 29 July 2024
Accepted: 08 August 2024
Published: 07 September 2024
© Tsinghua University Press 2024
Return