AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Regulating electrochemical performance of Cu7S4 electrodes via ligand engineering in copper cluster precursors

Zhou WuLu-Fan WangXiao-Fei LiuRen-Wu HuangRui WangGuoqiang Sun( )Shuang-Quan Zang( )
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

Atomically precise protected nanoclusters are used as precursors to fabricate copper-based metal sulfides via pyrolysis. The bond energy can be modulated by the ligands, which allows tuning the vacancy concentration and electrochemical performance of the final pyrolysis products.

Abstract

Cu-based chalcogenide materials exhibit significant promise for the development of Zn-metal-free anode materials for aqueous Zn-ion batteries (AZIBs). Here, we present the establishment of an efficient and universal strategy that capitalizes on the pyrolysis of copper nanoclusters to fabricate conversion-type Cu7S4 anodes engineered for AZIBs, showcasing outstanding electrochemical performance. Furthermore, by exploiting ligand engineering, we enable the precise control of both the type of molecular fragments generated during nanocluster pyrolysis, thus enabling the manipulation of vacancy concentrations and ion/electron migration in the resultant pyrolysis products. In contrast to the direct pyrolysis of metal salts and ligands, the products derived from copper nanoclusters exhibit enhanced specific capacity, rate performance, and overall stability. This research offers valuable insights for the development of novel electrode materials through the pyrolysis of atomically precise nanoclusters.

Electronic Supplementary Material

Download File(s)
6956_ESM.pdf (8.9 MB)

References

[1]

Gao, Y.; Tang, Z. D.; Chen, X.; Yan, J. M.; Jiang, Y.; Xu, J. H.; Tao, Z.; Wang, L.; Liu, Z. M.; Wang, G. Magnetically accelerated thermal energy storage within Fe3O4-anchored MXene-based phase change materials. Aggregate 2023, 4, e248.

[2]

Louli, A. J.; Eldesoky, A.; Weber, R.; Genovese, M.; Coon, M.; deGooyer, J.; Deng, Z.; White, R. T.; Lee, J.; Rodgers, T. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 2020, 5, 693–702.

[3]

Ren, K.; Liu, Z.; Wei, T.; Fan, Z. J. Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 2021, 13, 129.

[4]

Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665.

[5]

Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

[6]

Xiong, X. S.; Yan, W. Q.; Zhu, Y. S.; Liu, L. L.; Fu, L. J.; Chen, Y. H.; Yu, N. F.; Wu, Y. P.; Wang, B.; Xiao, R. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Adv. Energy Mater. 2022, 12, 2103112.

[7]

Miao, L. C.; Guo, Z. P.; Jiao, L. F. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy Mater. 2023, 3, 300014.

[8]

Ge, H. Y.; Feng, X. L.; Liu, D. P.; Zhang, Y. Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy 2023, 2, e9120039.

[9]

Guo, Y.; Liu, C.; Xu, L.; Huang, K. X.; Wu, H.; Cai, W. L.; Zhang, Y. A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy Mater. 2022, 2, 200032.

[10]

Sun, G. Q.; Zhou, M. Q.; Dong, X. Y.; Zang, S. Q.; Qu, L. T. An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Res. 2022, 15, 5081–5088.

[11]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, 9120025.

[12]

Wang, Y. R.; Yin, J.; Zhu, J. Two-dimensional cathode materials for aqueous rechargeable zinc-ion batteries. Chin. J. Chem. 2022, 40, 973–988.

[13]

Zheng, J. X.; Cao, Z.; Ming, F. W.; Liang, H. F.; Qi, Z. B.; Liu, W. Q.; Xia, C.; Chen, C. X.; Cavallo, L.; Wang, Z. C. et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 2022, 7, 197–203.

[14]

Zhou, M. Q.; Wu, Z.; Wang, R.; Sun, G. Q.; Zang, S. Q. An in situ reduction strategy toward dendrite-free Zn anodes. Sci. China Mater. 2023, 66, 1757–1766.

[15]

Li, L.; Jia, S. F.; Cao, M. H.; Ji, Y. Q.; Qiu, H. W.; Zhang, D. Research progress of “rocking chair” type zinc-ion batteries with zinc metal-free anodes. Chin. Chem. Lett. 2023, 34, 108307.

[16]

Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2002529.

[17]

Zhou, L. F.; Du, T.; Li, J. Y.; Wang, Y. S.; Gong, H.; Yang, Q. R.; Chen, H.; Luo, W. B.; Wang, J. Z. A strategy for anode modification for future zinc-based battery application. Mater. Horiz. 2022, 9, 2722–2751.

[18]

Shi, Y.; Yang, B.; Guo, X.; Wu, X.; Pang, H. Copper sulfides and their composites for high-performance rechargeable batteries. Mater. Today Chem. 2022, 23, 100675.

[19]

Cai, P.; Wang, K. L.; Ning, J.; He, X.; Chen, M. L.; Li, Q. X.; Li, H. M.; Zhou, M.; Wang, W.; Jiang, K. Advanced in situ induced dual-mechanism heterointerface towards ultrastable aqueous rocking-chair zinc-ion batteries. Adv. Energy Mater. 2022, 12, 2202182.

[20]

Lei, Q.; Zhang, J. Q.; Liang, Z. F.; Yue, Y.; Ren, Z. G.; Sun, Y. H.; Yao, Z. Y.; Li, J.; Zhao, Y. X.; Yin, Y. R. et al. Synergistic engineering of sulfur vacancies and heterointerfaces in copper sulfide anodes for aqueous Zn-ion batteries with fast diffusion kinetics and an ultralong lifespan. Adv. Energy Mater. 2022, 12, 2200547.

[21]

Yang, L. G.; Zhang, Y. H.; Wang, X.; Yu, Y. Z.; Zhang, Z. Y.; Zou, K.; Qi, Y. Z.; Lu, W. X.; Zhou, Z. Y. Tracking the pyrolysis process from 2D Mn2 n polymer to high-rate anode materials for lithium ion batteries. J. Alloys Compd. 2023, 932, 167601.

[22]

Li, W.; Ma, Y. S.; Li, P.; Jing, X. Y.; Jiang, K.; Wang, D. H. Electrochemically activated Cu2− x Te as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries. Adv. Energy Mater. 2021, 11, 2102607.

[23]

Li, W.; Ma, Y. S.; Shi, H.; Jiang, K.; Wang, D. H. Cu7Te4 as an anode material and Zn dendrite inhibitor for aqueous Zn-ion battery. Adv. Funct. Mater. 2022, 32, 2205602.

[24]

Lv, Z. H.; Wang, B.; Ye, M. H.; Zhang, Y. F.; Yang, Y.; Li, C. C. Activating the stepwise intercalation-conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 1126–1137.

[25]

Ren, W.; Xiong, F. Y.; Fan, Y. Q.; Xiong, Y. L.; Jian, Z. L. Hierarchical copper sulfide porous nanocages for rechargeable multivalent-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 10471–10478.

[26]

Yang, Y.; Xiao, J. F.; Cai, J. Y.; Wang, G. M.; Du, W. C.; Zhang, Y. F.; Lu, X. H.; Li, C. C. Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 2021, 31, 2005092.

[27]

Zhang, J. Q.; Lei, Q.; Ren, Z. G.; Zhu, X. H.; Li, J.; Li, Z.; Liu, S. L.; Ding, Y. R.; Jiang, Z.; Li, J. et al. A superlattice-stabilized layered CuS anode for high-performance aqueous zinc-ion batteries. ACS Nano 2021, 15, 17748–17756.

[28]

Baumann, A. E.; Burns, D. A.; Liu, B. Q.; Thoi, V. S. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2019, 2, 86.

[29]

Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

[30]

Pan, B. X.; Peng, X.; Wang, Y. F.; An, Q.; Zhang, X.; Zhang, Y. X.; Teets, T. S.; Zeng, M. H. Tracking the pyrolysis process of a 3-MeOsalophen-ligand based Co2 complex for promoted oxygen evolution reaction. Chem. Sci. 2019, 10, 4560–4566.

[31]

Fan, X.; Yuan, F. R.; Wang, J. Q.; Cheng, Z. B.; Xiang, S. C.; Yang, H. Y.; Zhang, Z. J. Structural isomerization in Cu(I) clusters: Tracing the Cu thermal migration paths and unveiling the structure-dependent photoluminescence. CCS Chem. 2023, 5, 350–360.

[32]

Wu, H. M.; Andrew, G. N.; Anumula, R.; Luo, Z. X. How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4(dppy)4Cl2 vs. Cu21(dppy)10 with altered photoluminescence. Chin. Chem. Lett. 2024, 35, 108340.

[33]

Yun, Y. P.; Li, L.; Zhou, M. M.; Li, M.; Sun, N. N.; Li, H. F.; Jin, S.; Zuo, C. S.; Sheng, H. T.; Zhu, M. Z. Atomically precise coreless AuCu bimetallic nanoclusters for Ullmann C–O coupling. Nano Res. 2023, 16, 10756–10762.

[34]

Zhang, L. L. M.; Wong, W. Y. Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications. Aggregate 2023, 4, e266.

[35]

Zhao, Y. X.; Wen, J. H.; Li, P.; Zhang, P. F.; Wang, S. N.; Li, D. C.; Dou, J. M.; Li, Y. W.; Ma, H. Y.; Xu, L. Q. A “pre-division metal clusters” strategy to mediate efficient dual-active sites ORR catalyst for ultralong rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202216950.

[36]

Yang, Z. Z.; Yang, A. L.; Ma, W.; Ma, K.; Lv, Y. K.; Peng, P.; Zang, S. Q.; Li, B. J. Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy. J. Nanobiotechnol. 2022, 20, 20.

[37]

Zhang, L. L.; Guo, M. D.; Zhou, J.; Fang, C.; Sun, X. Y. Benchmark models for elucidating ligand effects: Thiols ligated isostructural Cu6 nanoclusters. Small 2023, 19, 2301633.

[38]

Zhou, R. S.; Zhang, X. Y.; Fu, J.; Xin, L. D.; Jiao, W. Z.; Song, J. F. Four new Cu6S6 cluster-based coordination compounds: Synthesis, crystal structures and fluorescence properties. Dalton Trans. 2021, 50, 4567–4576.

[39]

Zhao, J. Q.; Cai, D. D.; Dai, J.; Kurmoo, M.; Peng, X.; Zeng, M. H. Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode. Sci. Bull. 2019, 64, 1667–1674.

[40]

Liu, C.; Zheng, L. R.; Song, Q.; Xue, Z. J.; Huang, C. H.; Liu, L.; Qiao, X. Z.; Li, X.; Liu, K. Y.; Wang, T. A metastable crystalline phase in two-dimensional metallic oxide nanoplates. Angew. Chem., Int. Ed. 2019, 58, 2055–2059.

[41]

Peng, C.; Yue, L. J.; Cui, Y.; He, X. F.; Xu, S. D.; Guo, C. L.; Guo, M. Q.; Chen, H. Preparation of Cu7.2S4@N,S co-doped carbon honeycomb-like composite structure for high-rate and high-stability sodium-ion storage. J. Colloid Interface Sci. 2023, 648, 527–534.

[42]

Huang, C.; Gao, A. M.; Yi, F. Y.; Wang, Y. C.; Shu, D.; Liang, Y. S.; Zhu, Z. H.; Ling, J. Z.; Hao, J. N. Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors. Chem. Eng. J. 2021, 419, 129643.

[43]

Meng, A. L.; Huang, T. Q.; Li, H. Y.; Cheng, H.; Lin, Y. S.; Zhao, J.; Li, Z. J. Sulfur vacancies and morphology dependent sodium storage properties of MoS2− x and its sodiation/desodiation mechanism. J. Colloid Interface Sci. 2021, 589, 147–156.

[44]

He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

[45]

Shi, X.; Zhang, H. Z.; Zeng, S. Q.; Wang, J.; Cao, X. S.; Liu, X. Q.; Lu, X. H. Pyrrolic-dominated nitrogen redox enhances reaction kinetics of pitch-derived carbon materials in aqueous zinc ion hybrid supercapacitors. ACS Mater. Lett. 2021, 3, 1291–1299.

[46]

Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. Z. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 2021, 11, 2003419.

[47]

Yang, Z. Y.; Lai, F. Y.; Mao, Q. J.; Liu, C.; Wang, R. Y.; Lu, Z. H.; Zhang, T. R.; Liu, X. F. Reversing zincophobic/hydrophilic nature of metal-N-C via metal-coordination interaction for dendrite-free Zn anode with high depth-of-discharge. Adv. Mater. 2024, 36, 2311637.

[48]

Huang, C.; Wang, Q. F.; Zhang, D. H.; Shen, G. Z. Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries. Nano Res. 2022, 15, 8118–8127.

[49]

Zhao, Y. X.; Yao, Z. Y.; Wang, L. H.; Hui, Z.; Ren, Z. G.; Sun, Y. H.; Lei, Q.; Zhang, W.; Si, J. Y.; Li, Z. et al. Ultrastable Cu2+ intercalation chemistry based on a niobium sulfide nanosheet cathode for advanced aqueous storage devices. ACS Nano 2023, 17, 6497–6506.

[50]

Cui, F. H.; Wang, D. S.; Hu, F.; Yu, X.; Guan, C.; Song, G. H.; Xu, F.; Zhu, K. Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater. 2022, 44, 197–205.

[51]

Liu, Y. J.; Li, J. W.; Liu, B. B.; Chen, Y. H.; Wu, Y. M.; Hu, X.; Zhong, G. B.; Yuan, J.; Chen, J. X.; Zhan, H. B. et al. Confined WS2 nanosheets tubular nanohybrid as high-kinetic and durable anode for sodium-based dual ion batteries. ChemSusChem 2023, 16, e202201200.

[52]

Zong, Q.; Wang, Q. Q.; Liu, C. F.; Tao, D. W.; Wang, J. Y.; Zhang, J. J.; Du, H. W.; Chen, J. F.; Zhang, Q. L.; Cao, G. Z. Potassium ammonium vanadate with rich oxygen vacancies for fast and highly stable Zn-ion storage. ACS Nano 2022, 16, 4588–4598.

[53]

Fang, Z. T.; Liu, C.; Li, X. G.; Peng, L. M.; Ding, W. P.; Guo, X. F.; Hou, W. H. Systematic modification of MoO3-based cathode by the intercalation engineering for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2210010.

[54]

Wang, J. H.; Liu, Z. L.; Wang, H. G.; Cui, F. C.; Zhu, G. S. Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chem. Eng. J. 2022, 450, 138051.

[55]

Li, S. W.; Huang, C.; Gao, L.; Shen, Q. Y.; Li, P.; Qu, X. H.; Jiao, L. F.; Liu, Y. C. Unveiling the “proton lubricant” chemistry in aqueous zinc-MoS2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202211478.

[56]

Wang, J. J.; Zhao, X. Y.; Kang, J. Z.; Wang, X. M.; Yu, H.; Du, C. F.; Yan, Q. Y. Li+, Na+ co-stabilized vanadium oxide nanobelts with a bilayer structure for boosted zinc-ion storage performance. J. Mater. Chem. A 2022, 10, 21531–21539.

[57]

Wu, Q. J.; Si, D. H.; Sun, P. P.; Dong, Y. L.; Zheng, S.; Chen, Q.; Ye, S. H.; Sun, D.; Cao, R.; Huang, Y. B. Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site. Angew. Chem., Int. Ed. 2023, 62, e202306822.

[58]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

Nano Research
Pages 9746-9755
Cite this article:
Wu Z, Wang L-F, Liu X-F, et al. Regulating electrochemical performance of Cu7S4 electrodes via ligand engineering in copper cluster precursors. Nano Research, 2024, 17(11): 9746-9755. https://doi.org/10.1007/s12274-024-6956-z
Topics:

382

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 12 July 2024
Revised: 07 August 2024
Accepted: 08 August 2024
Published: 07 September 2024
© Tsinghua University Press 2024
Return