AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Real-time fluorescent detection of food spoilage with doped quantum dots-anchored hydrogel sensor

Chenying Li1,§Jianzhong Li1,§Lei Ji1Yibin Zhu1Jiajia Liu1( )Jiatao Zhang2( )
School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China
School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, China

§ Chenying Li and Jianzhong Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Spermine assumes a pivotal role in assessing food safety due to its potential to induce a spectrum of diseases upon excessive consumption. However, contemporary spermine detection methodologies, exemplified by high-performance liquid chromatography (HPLC), demand costly instrumentation and the expertise of skilled technicians. To address this challenge, the study introduces a portable fluorescence sensing platform. Ratiometric fluorescent probes were realized through the utilization of CdS quantum dots deeply doped with Ag+ (CdS:Ag QDs) and nitrogen-doped carbon quantum dots (N-CQDs). Hydrogen bonds formed between CdS:Ag QDs and spermine result in the formation of the assembly and the decreasing of the fluorescence intensity. In an effort to broaden the applicative scope and streamline deployment processes, fluorescent sensing hydrogels were meticulously engineered, capitalizing on the swelling properties inherent in polyvinyl alcohol (PVA) hydrogels. The systematic delineation of the correlation between 1 − R/B and spermine concentration facilitates the quantitative determination of spermine concentration. The incorporation of this composite construct serves to alleviate environmental influences on the probes, thereby augmenting their precision. The portable fluorescent sensing platform proves pivotal in expeditiously measuring spermine concentration within the fluorescent sensing hydrogel, enabling a quantitative assessment of pork freshness. The utilization of this platform for food freshness evaluation imparts the benefits of convenience, cost-effectiveness, and intuitive operation.

Electronic Supplementary Material

Download File(s)
6957_ESM.pdf (925.2 KB)

References

[1]

Chung, S.; Breshears, L. E.; Gonzales, A.; Jennings, C. M.; Morrison, C. M.; Betancourt, W. Q.; Reynolds, K. A.; Yoon, J. Y. Norovirus detection in water samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope. Nat. Protoc. 2021, 16, 1452–1475.

[2]

Ke, Y. L.; Liu, Y.; Zu, B. Y.; Lei, D.; Wang, G. F.; Li, J. G.; Ren, W. F.; Dou, X. C. Electronic tuning in reaction-based fluorescent sensing for instantaneous and ultrasensitive visualization of ethylenediamine. Angew. Chem., Int. Ed. 2022, 61, e202203358.

[3]

Yang, T. X.; Duncan, T. V. Challenges and potential solutions for nanosensors intended for use with foods. Nat. Nanotechnol. 2021, 16, 251–265.

[4]

Yan, X.; Li, H. X.; Su, X. G. Review of optical sensors for pesticides. TrAC Trends Anal. Chem. 2018, 103, 1–20.

[5]

Li, Y. X.; Guo, Z. H.; Zhao, X. Y.; Liu, S.; Chen, Z. M.; Dong, W. F.; Wang, S. X.; Sun, Y. L.; Wu, X. An all-optical multidirectional mechano-sensor inspired by biologically mechano-sensitive hair sensilla. Nat. Commun. 2024, 15, 2906.

[6]

Vikesland, P. J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018, 13, 651–660.

[7]

Miao, X.; Wu, C. X.; Li, F.; Zhang, M. Fast and visual detection of biogenic amines and food freshness based on ICT-induced ratiometric fluorescent probes. Adv. Funct. Mater. 2023, 33, 2212980.

[8]

Tong, X. Y.; Lin, X. F.; Duan, N.; Wang, Z. P.; Wu, S. J. Laser-printed paper-based microfluidic chip based on a multicolor fluorescence carbon dot biosensor for visual determination of multiantibiotics in aquatic products. ACS Sens. 2022, 7, 3947–3955.

[9]

Liu, K.; Zhang, J.; Shi, Q. Y.; Ding, L. P.; Liu, T. H.; Fang, Y. Precise manipulation of excited-state intramolecular proton transfer via incorporating charge transfer toward high-performance film-based fluorescence sensing. J. Am. Chem. Soc. 2023, 145, 7408–7415.

[10]

De Iacovo, A.; Mitri, F.; De Santis, S.; Giansante, C.; Colace, L. Colloidal quantum dots for explosive detection: Trends and perspectives. ACS Sens. 2024, 9, 555–576.

[11]

Jin, Z. C.; Dridi, N.; Palui, G.; Palomo, V.; Jokerst, J. V.; Dawson, P. E.; Sang, Q. X. A.; Mattoussi, H. Quantum dot-peptide conjugates as energy transfer probes for sensing the proteolytic activity of matrix metalloproteinase-14. Anal. Chem. 2023, 95, 2713–2722.

[12]

Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.

[13]

Feng, Y. N.; Lei, D.; Zu, B. Y.; Li, J. G.; Li, Y. J.; Dou, X. C. A self-accelerating naphthalimide-based probe coupled with upconversion nanoparticles for ultra-accurate tri-mode visualization of hydrogen peroxide. Adv. Sci. 2024, 11, 2309182.

[14]

Chen, B. B.; Liu, M. L.; Gao, Y. T.; Chang, S.; Qian, R. C.; Li, D. W. Design and applications of carbon dots-based ratiometric fluorescent probes: A review. Nano Res. 2023, 16, 1064–1083.

[15]

de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[16]

Parobek, D.; Dong, Y. T.; Qiao, T.; Son, D. H. Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals. Chem. Mater. 2018, 30, 2939–2944.

[17]

Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.

[18]

Jin, H.; Zhao, C. Q.; Gui, R. J.; Gao, X. H.; Wang, Z. H. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal. Chim. Acta 2018, 1025, 154–162.

[19]

Javeria, H.; Abbas, M. Q.; Chen, S. H.; Du, Z. X. Peanut shell carbon quantum dots modified with citric acid: Amplifying visual detection of fluorescence sensitivity for Cu2+. J. Mater. Chem. A 2024, 12, 16098–16107.

[20]

Gui, R. J.; Jin, H.; Bu, X. N.; Fu, Y. X.; Wang, Z. H.; Liu, Q. Y. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 2019, 383, 82–103.

[21]

Wang, Y. H.; Zhang, C.; Chen, X. C.; Yang, B.; Yang, L.; Jiang, C. L.; Zhang, Z. P. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nanoscale 2016, 8, 5977–5984.

[22]

Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.

[23]

Ye, Y. W.; Wu, T. T.; Jiang, X. T.; Cao, J. X.; Ling, X.; Mei, Q. S.; Chen, H.; Han, D. M.; Xu, J. J.; Shen, Y. Z. Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl. Mater. Interfaces 2020, 12, 14552–14562.

[24]

Suo, Y. X.; Long, W. J.; Qi, L. L.; Yao, F. M.; Lei, G. H.; Guan, Y. T.; Hu, Z. K.; Marchioni, E.; Zhao, M. J.; Zhou, L. et al. Fluorescent sensor based on CdTe-QDs@N-CDs complexes for visual identification of goji berries origin. Sens. Actuators B: Chem. 2024, 406, 135438.

[25]

Wu, P.; Hou, X. D.; Xu, J. J.; Chen, H. Y. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016, 8, 8427–8442.

[26]

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

[27]

Shu, B. W.; Chang, Y. J.; Zhang, J. H.; Cheng, X. P.; Yu, D. B. Synthesis and photoluminescence kinetics of Ce3+-doped CsPbI3 QDs with near-unity PLQY. Nano Res. 2021, 14, 3352–3357.

[28]

Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.

[29]

Mukherjee, S.; Selvaraj, J.; Paramasivam, T. Ag-doped ZnInS/ZnS core/shell quantum dots for display applications. ACS Appl. Nano Mater. 2021, 4, 10228–10243.

[30]

Kroupa, D. M.; Hughes, B. K.; Miller, E. M.; Moore, D. T.; Anderson, N. C.; Chernomordik, B. D.; Nozik, A. J.; Beard, M. C. Synthesis and spectroscopy of silver-doped PbSe quantum dots. J. Am. Chem. Soc. 2017, 139, 10382–10394.

[31]

Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521.

[32]

Liu, J.; Zhao, Q.; Liu, J. L.; Wu, Y. S.; Cheng, Y.; Ji, M. W.; Qian, H. M.; Hao, W. C.; Zhang, L. J.; Wei, X. J. et al. Heterovalent-doping-enabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing II-VI nanocrystals. Adv. Mater. 2015, 27, 2753–2761.

[33]

Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem., Int. Ed. 2015, 54, 3683–3687.

[34]

Bai, B.; Zhao, C. Y.; Xu, M.; Ma, J. B.; Du, Y. J.; Chen, H. L.; Liu, J. J.; Liu, J.; Rong, H. P.; Chen, W. X. et al. Unique cation exchange in nanocrystal matrix via surface vacancy engineering overcoming chemical kinetic energy barriers. Chem 2020, 6, 3086–3099.

[35]

Li, X. Y.; Ji, M. W.; Li, H. B.; Wang, H. Z.; Xu, M.; Rong, H. P.; Wei, J.; Liu, J.; Liu, J. J.; Chen, W. X. et al. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: Principles and applications. Matter 2020, 2, 554–586.

[36]

Bai, B.; Xu, M.; Li, J. Z.; Zhang, S. P.; Qiao, C.; Liu, J. J.; Zhang, J. T. Dopant diffusion equilibrium overcoming impurity loss of doped QDs for multimode anti-counterfeiting and encryption. Adv. Funct. Mater. 2021, 31, 2100286.

[37]

Suzzi, G.; Torriani, S. Editorial: Biogenic amines in foods. Front. Microbiol. 2015, 6, 472.

[38]

Önal, A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007, 103, 1475–1486.

[39]

Holbert, C. E.; Cullen, M. T.; Casero, R. A.; Stewart, T. M. Polyamines in cancer: Integrating organismal metabolism and antitumour immunity. Nat. Rev. Cancer 2022, 22, 467–480.

[40]

Hu, Y. Y.; Ma, X. J.; Zhang, Y. B.; Che, Y. K.; Zhao, J. C. Detection of amines with fluorescent nanotubes: Applications in the assessment of meat spoilage. ACS Sens. 2016, 1, 22–25.

[41]

Liu, Y. N.; Xiao, Y. Q.; Shang, M. H.; Zhuang, Y. T.; Wang, L. Smart fluorescent tag based on amine response for non-contact and visual monitoring of seafood freshness. Chem. Eng. J. 2022, 428, 132647.

[42]

Wang, J.; Li, D. Q.; Ye, Y. X.; Qiu, Y.; Liu, J. W.; Huang, L.; Liang, B.; Chen, B. L. A fluorescent metal-organic framework for food real-time visual monitoring. Adv. Mater. 2021, 33, 2008020.

[43]

Bhamore, J. R.; Murthy, Z. V. P.; Kailasa, S. K. Fluorescence turn-off detection of spermine in biofluids using pepsin mediated synthesis of gold nanoclusters as a probe. J. Mol. Liq. 2019, 280, 18–24.

[44]

Kalač, P. Health effects and occurrence of dietary polyamines: A review for the period 2005–mid 2013. Food Chem. 2014, 161, 27–39.

[45]

Fletcher, J. T.; Bruck, B. S. Spermine detection via metal-mediated ethynylarene 'turn-on' fluorescence signaling. Sens. Actuators B: Chem. 2015, 207, 843–848.

[46]

Moret, S.; Smela, D.; Populin, T.; Conte, L. S. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 2005, 89, 355–361.

[47]

Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545.

[48]

, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J. C.; Fraser, P. D.; Giavalisco, P.; Hall, R. D. et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756

[49]

Ouameur, A. A.; Tajmir-Riahi, H. A. Structural analysis of DNA interactions with biogenic polyamines and cobalt(III) hexamine studied by Fourier transform infrared and capillary electrophoresis. J. Biol. Chem. 2004, 279, 42041–42054.

[50]

Önal, A.; Tekkeli, S. E. K.; Önal, C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem. 2013, 138, 509–515.

[51]

Zeng, L.; Xu, X. X.; Guo, L. L.; Wang, Z. X.; Ding, H. L.; Song, S. S.; Xu, L. G.; Kuang, H.; Liu, L. Q.; Xu, C. L. An immunochromatographic sensor for ultrasensitive and direct detection of histamine in fish. J. Hazard. Mater. 2021, 419, 126533.

[52]

Koole, R.; Liljeroth, P.; de Mello Donegá, C.; Vanmaekelbergh, D.; Meijerink, A. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J. Am. Chem. Soc. 2006, 128, 10436–10441.

[53]

Wu, C.; Tan, P.; Chen, X. J.; Chang, H. R.; Chen, Y. H.; Su, G. H.; Liu, T.; Lu, Z. W.; Sun, M. M.; Wang, Y. Y. et al. Machine learning-assisted high-throughput strategy for real-time detection of spermine using a triple-emission ratiometric probe. ACS Appl. Mater. Interfaces 2023, 15, 48506–48518.

[54]

Zhang, J. X.; Jin, J. H.; Wan, J. Q.; Jiang, S. H.; Wu, Y. Z.; Wang, W. F.; Gong, X.; Wang, H. X. Quantum dots-based hydrogels for sensing applications. Chem. Eng. J. 2021, 408, 127351.

[55]

Aziz, S. B.; Abdulwahid, R. T.; Rasheed, M. A.; Abdullah, O. G.; Ahmed, H. M. Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers 2017, 9, 486.

Nano Research
Cite this article:
Li C, Li J, Ji L, et al. Real-time fluorescent detection of food spoilage with doped quantum dots-anchored hydrogel sensor. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6957-y
Topics:

72

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 September 2024
Revised: 18 October 2024
Accepted: 21 October 2024
Published: 11 November 2024
© Tsinghua University Press 2024
Return