AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Rational design and structural regulation of near-infrared silver chalcogenide quantum dots

Zhen-Ya Liu1,2Wei Zhao1Li-Ming Chen1Yan-Yan Chen1Zhi-Gang Wang1( )An-An Liu1( )Dai-Wen Pang1,3( )
College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, Nankai University, Tianjin 300071, China
School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Show Author Information

Graphical Abstract

Silver chalcogenides (Ag2E; E = S, Se, or Te) quantum dots (QDs) have emerged as promising candidates for near-infrared (NIR) applications. The paper reviews the recent advances in the rational design and precise structural regulation of Ag2E QDs, encompassing aspects such as size control, crystal structure engineering, and surface/interface engineering.

Abstract

Silver chalcogenides (Ag2E; E = S, Se, or Te) quantum dots (QDs) have emerged as promising candidates for near-infrared (NIR) applications. However, their narrow bandgap and small exciton Bohr radius render the optical properties of Ag2E QDs highly sensitive to surface and size variations. Moreover, the propensity for the formation of silver impurities and their low solubility product constants pose challenges in their controllable synthesis. Recent advancements have deepened our understanding of the relationship between the multi-hierarchical structure of Ag2E QDs and their optical properties. Through rational design and precise structural regulation, the performance of Ag2E QDs has been significantly enhanced across various applications. This review provides a comprehensive overview of historical and current progress in the synthesis and structural regulation of Ag2E QDs, encompassing aspects such as size control, crystal structure engineering, and surface/interface engineering. Additionally, it discusses outstanding challenges and potential opportunities in this field. The aim of this review is to promote the custom synthesis of Ag2E QDs for applications in biological imaging, and optoelectronics applications.

References

[1]

Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 1981, 34, 345–349.

[2]

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

[3]

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[4]

Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 1984, 80, 4464–4469.

[5]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[6]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[7]

Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

[8]

Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V. I. Colloidal semiconductor nanocrystal lasers and laser diodes. Chem. Rev. 2023, 123, 8251–8296.

[9]

García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[10]

Lu, H. P.; Carroll, G. M.; Neale, N. R.; Beard, M. C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953.

[11]

Cao, F. R.; Liu, L. S.; Li, L. Short-wave infrared photodetector. Mater. Today 2023, 62, 327–349.

[12]

Zhao, X. F.; Lim, L. J.; Ang, S. S.; Tan, Z. K. Efficient short-wave infrared light-emitting diodes based on heavy-metal-free quantum dots. Adv. Mater. 2022, 34, 2206409.

[13]

Liu, Y. S.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y. X.; Liu, X.; Pan, Y. N.; Zhang, Z. Y.; Du, M. X.; Lu, S. Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics. Chem. Rev. 2022, 122, 209–268.

[14]

Yang, Y.; Jiang, Q. Y.; Zhang, F. Nanocrystals for deep-tissue in vivo luminescence imaging in the near-infrared region. Chem. Rev. 2024, 124, 554–628.

[15]

Bahmani Jalali, H.; De Trizio, L.; Manna, L.; Di Stasio, F. Indium arsenide quantum dots: An alternative to lead-based infrared emitting nanomaterials. Chem. Soc. Rev. 2022, 51, 9861–9881.

[16]

Liu, L.; Bai, B.; Yang, X. Y.; Du, Z. L.; Jia, G. H. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications. Chem. Rev. 2023, 123, 3625–3692.

[17]

Du, C. Y.; Tian, J. Y.; Liu, X. J. Effect of intrinsic vacancy defects on the electronic properties of monoclinic Ag2S. Mater. Chem. Phys. 2020, 249, 122961.

[18]

Alekberov, O.; Jahangirli, Z.; Paucar, R.; Huseynova, S.; Abdulzade, N.; Nakhmedov, A.; Wakita, K.; Mamedov, N. Band structure and vacancy formation in β-Ag2S: Ab-initio study. Phys. Status Solidi C 2015, 12, 672–675.

[19]

Kashida, S.; Watanabe, N.; Hasegawa, T.; Iida, H.; Mori, M.; Savrasov, S. Electronic structure of Ag2S, band calculation and photoelectron spectroscopy. Solid State Ionics 2003, 158, 167–175.

[20]

Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816.

[21]

Fang, C. M.; de Groot, R. A.; Wiegers, G. A. Ab initio band structure calculations of the low-temperature phases of Ag2Se, Ag2Te and Ag3AuSe2. J. Phys. Chem. Solids 2002, 63, 457–464.

[22]

Jahangirli, Z.; Alekperov, O.; Eyyubov, Q. Ab-initio investigation of the electronic structure, optical properties, and lattice dynamics of β-Ag2Te. Phys. Status Solidi B 2018, 255, 1800344.

[23]

Xu, R.; Husmann, A.; Rosenbaum, T. F.; Saboungi, M. L.; Enderby, J. E.; Littlewood, P. B. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 1997, 390, 57–60.

[24]

Jiang, P.; Chen, Z. L. Ligand effect on the synthesis of emission-tunable near-infrared Ag2S quantum dots. New J. Chem. 2017, 41, 5707–5712.

[25]

Pons, T.; Medintz, I. L.; Sapsford, K. E.; Higashiya, S.; Grimes, A. F.; English, D. S.; Mattoussi, H. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett. 2007, 7, 3157–3164.

[26]

Chen, B.; Zheng, W. L.; Chun, F. J.; Xu, X. W.; Zhao, Q.; Wang, F. Synthesis and hybridization of CuInS2 nanocrystals for emerging applications. Chem. Soc. Rev. 2023, 52, 8374–8409.

[27]

Al Mahfuz, M. M.; Park, J.; Islam, R.; Ko, D. K. Colloidal Ag2Se intraband quantum dots. Chem. Commun. 2023, 59, 10722–10736.

[28]

Ming, L. Y.; Zabala-Gutierrez, I.; Calderon, O. G.; Melle, S.; Ximendes, E.; Rubio-Retama, J.; Marin, R. A brighter era for silver chalcogenide semiconductor nanocrystals. Opt. Mater. 2023, 141, 113940.

[29]

Zhang, Y.; Ke, X. Z.; Chen, C. F.; Yang, J.; Kent, P. R. C. Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study. Phys. Rev. B 2009, 80, 024304.

[30]

Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087.

[31]

Holder, C. F.; Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019, 13, 7359–7365.

[32]

Shen, Y. L.; Lifante, J.; Ximendes, E.; Santos, H. D. A.; Ruiz, D.; Juárez, B. H.; Zabala Gutiérrez, I.; Torres Vera, V.; Rubio Retama, J.; Martín Rodríguez, E. et al. Perspectives for Ag2S NIR-II nanoparticles in biomedicine: From imaging to multifunctionality. Nanoscale 2019, 11, 19251–19264.

[33]

Ding, C. P.; Huang, Y. J.; Shen, Z. Y.; Chen, X. Y. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence. Adv. Mater. 2021, 33, 2007768.

[34]

Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.

[35]

Wu, H.; Shi, X. L.; Duan, J. G.; Liu, Q. F.; Chen, Z. G. Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ. Sci. 2023, 16, 1870–1906.

[36]

Gao, F.; Lu, Q. Y.; Zhao, D. Y. Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett. 2003, 3, 85–88.

[37]

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

[38]

Sahu, A.; Qi, L. J.; Kang, M. S.; Deng, D.; Norris, D. J. Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 6509–6512.

[39]

Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mater. 2012, 24, 3–5.

[40]

Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012, 33, 5130–5135.

[41]

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

[42]

Campos, M. P.; De Roo, J.; Greenberg, M. W.; McMurtry, B. M.; Hendricks, M. P.; Bennett, E.; Saenz, N.; Sfeir, M. Y.; Abécassis, B.; Ghose, S. K. et al. Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals. Chem. Sci. 2022, 13, 4555–4565.

[43]

Mozaffari, S.; Li, W. H.; Dixit, M.; Seifert, S.; Lee, B.; Kovarik, L.; Mpourmpakis, G.; Karim, A. M. The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Adv. 2019, 1, 4052–4066.

[44]

Zhang, Y. J.; Liu, Y. S.; Li, C. Y.; Chen, X. Y.; Wang, Q. B. Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J. Phys. Chem. C 2014, 118, 4918–4923.

[45]

Sadovnikov, S. I.; Ishchenko, A. V.; Weinstein, I. A. Optical properties of Ag2S quantum dots. Mater. Sci. Eng. B 2023, 296, 116667.

[46]

Huang, X.; Zhu, J. W.; Dong, C. H.; Li, Y. Q.; Yu, Q.; Wang, X.; Chen, Z. J.; Li, J. B.; Yang, Y.; Wang, H. F. Polyvalent aptamer-functionalized NIR-II quantum dots for targeted theranostics in high PD-L1-expressing tumors. ACS Appl. Mater. Interfaces 2024, 16, 21571–21581.

[47]

Tang, R.; Xue, J. P.; Xu, B. G.; Shen, D. W.; Sudlow, G. P.; Achilefu, S. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 2015, 9, 220–230.

[48]

Yang, T.; Tang, Y.; Liu, L.; Lv, X. Y.; Wang, Q. L.; Ke, H. T.; Deng, Y. B.; Yang, H.; Yang, X. L.; Liu, G. et al. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 2017, 11, 1848–1857.

[49]

Bera, A.; Busupalli, B.; Prasad, B. L. V. Solvent-less solid state synthesis of dispersible metal and semiconducting metal sulfide nanocrystals. ACS Sustain. Chem. Eng. 2018, 6, 12006–12016.

[50]

Sim, K. M.; Kwon, J.; Ma, J.; Pyo, W. J.; Kim, D.; Sung, Y.; Nam, S. Y.; Joo, T.; Kim, S.; Chung, D. S. Stoichiometric engineering of Ag2S nanocrystals to realize high performance for organic–inorganic hybrid photodiodes. J. Phys. Chem. C 2024, 128, 8540–8548.

[51]

Hendricks, M. P.; Campos, M. P.; Cleveland, G. T.; Jen-La Plante, I.; Owen, J. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 2015, 348, 1226–1230.

[52]

Mir, W. J.; Swarnkar, A.; Sharma, R.; Katti, A.; Adarsh, K. V.; Nag, A. Origin of unusual excitonic absorption and emission from colloidal Ag2S nanocrystals: Ultrafast photophysics and solar cell. J. Phys. Chem. Lett. 2015, 6, 3915–3922.

[53]

Vasilopoulou, M.; Kim, H. P.; Kim, B. S.; Papadakis, M.; Ximim Gavlim, A. E.; Macedo, A. G.; Jose da Silva, W.; Schneider, F. K.; Mat Teridi, M. A.; Coutsolelos, A. G. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photonics 2020, 14, 50–56.

[54]

Liu, Y.; Zhang, Q. H.; Huang, A. B.; Zhang, K. Y.; Wan, S.; Chen, H. Y.; Fu, Y. T.; Zuo, W. S.; Wang, Y. Z.; Cao, X. et al. Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation. Nat. Commun. 2024, 15, 2141.

[55]

Dong, B. H.; Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Zhang, Y.; Deng, M. J.; Wang, Q. B. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509.

[56]

Chen, S. H.; Liu, H. K.; Huang, B.; Zheng, J.; Zhang, Z. L.; Pang, D. W.; Huang, P.; Cui, R. Biosynthesis of NIR-II Ag2Se quantum dots with bacterial catalase for photoacoustic imaging and alleviating-hypoxia photothermal therapy. Small 2024, 20, 2310795.

[57]

Abusa, Y.; Yox, P.; Cady, S. D.; Viswanathan, G.; Opare-Addo, J.; Smith, E. A.; Mudryk, Y.; Lebedev, O. I.; Perras, F. A.; Kovnir, K. Make selenium reactive again: Activating elemental selenium for synthesis of metal selenides ranging from nanocrystals to large single crystals. J. Am. Chem. Soc. 2023, 145, 22762–22775.

[58]

Campos, M. P.; Hendricks, M. P.; Beecher, A. N.; Walravens, W.; Swain, R. A.; Cleveland, G. T.; Hens, Z.; Sfeir, M. Y.; Owen, J. S. A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit. J. Am. Chem. Soc. 2017, 139, 2296–2305.

[59]

Sahu, A.; Khare, A.; Deng, D. D.; Norris, D. J. Quantum confinement in silver selenide semiconductor nanocrystals. Chem. Commun. 2012, 48, 5458–5460.

[60]

Qu, J. L.; Goubet, N.; Livache, C.; Martinez, B.; Amelot, D.; Gréboval, C.; Chu, A.; Ramade, J.; Cruguel, H.; Ithurria, S. et al. Intraband mid-infrared transitions in Ag2Se nanocrystals: Potential and limitations for Hg-free low-cost photodetection. J. Phys. Chem. C 2018, 122, 18161–18167.

[61]

Park, M.; Choi, D.; Choi, Y.; Shin, H. B.; Jeong, K. S. Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals. ACS Photonics 2018, 5, 1907–1911.

[62]

Son, J.; Choi, D.; Park, M.; Kim, J.; Jeong, K. S. Transformation of colloidal quantum dot: From intraband transition to localized surface plasmon resonance. Nano Lett. 2020, 20, 4985–4992.

[63]

Song, H.; Lee, J. H.; Eom, S. Y.; Choi, D.; Jeong, K. S. Ultranarrow mid-infrared quantum plasmon resonance of self-doped silver selenide nanocrystal. ACS Nano 2023, 17, 16895–16903.

[64]

Mølnås, H.; Paul, S. J.; Scimeca, M. R.; Mattu, N.; Paredes, I. J.; Röhr, J. A.; Ravi, V. K.; Li, L. T.; Taylor, A. D.; Sahu, A. Understanding the growth mechanisms of ultrasmall silver selenide quantum dots for short-wave infrared detectors. Colloids Surf. A: Physicochem. Eng. Asp. 2023, 674, 131946.

[65]

Scimeca, M. R.; Mattu, N.; Paredes, I. J.; Tran, M. N.; Paul, S. J.; Aydil, E. S.; Sahu, A. Origin of intraband optical transitions in Ag2Se colloidal quantum dots. J. Phys. Chem. C 2021, 125, 17556–17564.

[66]

Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

[67]

Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 2016, 138, 1893–1903.

[68]

Fan, Y. L.; Liu, Z. Y.; Zeng, Y. M.; Huang, L. Y.; Li, Z., Zhang, Z. L.; Pang, D. W.; Tian, Z. Q. A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media. Talanta 2021, 223, 121721.

[69]

Zhao, J. Y.; Wang, Z. G.; Hu, H.; Zhang, Z. L.; Tang, B.; Luo, M. Y.; Yang, L. L.; Wang, B. S.; Pang, D. W. How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes. Sci. Bull. 2022, 67, 619–625.

[70]

Yang, L. L.; Zhao, W.; Liu, Z. Y.; Ren, M. T.; Kong, J.; Zong, X.; Luo, M. Y.; Tang, B.; Xie, J. H. Y.; Pang, D. W. et al. Acid-resistant near-infrared II Ag2Se quantum dots for gastrointestinal imaging. Anal. Chem. 2023, 95, 15540–15548.

[71]

Liao, C.; Tang, L. P.; Jia, Y. Z.; Sun, S. L.; Yang, H. R.; Xu, J.; Gu, Z. X. Slow auger recombination in Ag2Se colloidal quantum dots. Nano Lett. 2023, 23, 9865–9871.

[72]

Zhang, M. Y.; Liu, A. A.; Fu, H. H.; Zhang, W.; Zhang, S. H.; Liu, Z. Y.; Jiang, L. H.; Shao, X. G.; Pang, D. W. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%. Chem. Mater. 2021, 33, 9524–9533.

[73]

Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

[74]

Zhang, M. Y.; Liu, A. A.; Jiao, L. Y.; Zhang, S. H.; Jiang, L. H.; Kong, X. L.; Pang, D. W. Capture of small clusters by ligand-solvent interaction. J. Chem. Phys. 2023, 159, 064301.

[75]

Wang, Y. J.; Peng, L. C.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242.

[76]

Yao, D.; Xin, W.; Liu, Z. Y.; Wang, Z.; Feng, J. Y.; Dong, C. W.; Liu, Y.; Yang, B.; Zhang, H. Phosphine-free synthesis of metal chalcogenide quantum dots by directly dissolving chalcogen dioxides in alkylthiol as the precursor. ACS Appl. Mater. Interfaces 2017, 9, 9840–9848.

[77]

He, H.; Lin, Y.; Tian, Z. Q.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W. Ultrasmall Pb: Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window. Small 2018, 14, 1703296.

[78]

Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. C.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.

[79]

Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.

[80]

Zhou, Y. F.; Huang, B.; Chen, S. H.; Liu, S. L.; Zhang, M. X.; Cui, R. Ultra-bright near-infrared-IIb emitting Zn-doped Ag2Te quantum dots for noninvasive monitoring of traumatic brain injury. Nano Res. 2023, 16, 2719–2727.

[81]

Ge, W.; Chen, G.; Huang, X. Y.; Gao, B. B.; Wang, F. Heteroions radii matching produced intensely luminescent bismuth-Ag2S nanocrystals for through-skull NIR-II imaging of orthotopic glioma. Nano Lett. 2024, 24, 4562–4570.

[82]

Uematsu, T.; Tepakidareekul, M.; Hirano, T.; Torimoto, T.; Kuwabata, S. Facile high-yield synthesis of Ag-In-Ga-S Quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem. Mater. 2023, 35, 1094–1106.

[83]

Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852–4857.

[84]

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

[85]

Kubie, L.; Martinez, M. S.; Miller, E. M.; Wheeler, L. M.; Beard, M. C. Atomically thin metal sulfides. J. Am. Chem. Soc. 2019, 141, 12121–12127.

[86]

Tappan, B. A.; Horton, M. K.; Brutchey, R. L. Ligand-mediated phase control in colloidal AgInSe2 nanocrystals. Chem. Mater. 2020, 32, 2935–2945.

[87]

Li, J. Y.; Guan, T. Y.; Tu, D. T.; Lian, W.; Zhang, P.; Han, S. Y.; Wen, F.; Chen, X. Y. Highly efficient NIR-II luminescent I-III-VI semiconductor nanoprobes based on AgInTe2: Zn/ZnS nanocrystals. Chem. Commun. 2022, 58, 2204–2207.

[88]

Tang, Z. Y.; Yang, H. C.; Sun, Z. Q.; Zhang, Y. J.; Chen, G. C.; Wang, Q. B. The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs. Nano Res. 2023, 16, 12315–12322.

[89]

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

[90]

Yan, D. N.; Dong, Y. H.; Wei, N. W.; Yang, S.; Zhu, H.; Gu, W. Z.; Zou, Y. S.; Zeng, H. B. High photoluminescence Ag-In-Ga-S quantum dots based on ZnX2-treated surface passivation. Nano Res. 2024, 17, 7533–7541.

[91]

Hoisang, W.; Uematsu, T.; Torimoto, T.; Kuwabata, S. Luminescent Quaternary Ag(In x Ga1– x )S2/GaS y core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg. Chem. 2021, 60, 13101–13109.

[92]

Hu, Z.; Lu, H. X.; Zhou, W. J.; Wei, J. X.; Dai, H. Q.; Liu, H.; Xiong, Z. Y.; Xie, F. X.; Zhang, W. L.; Guo, R. Q. Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes. J. Mater. Sci. Technol. 2023, 134, 189–196.

[93]

Lu, H. X.; Liu, H.; Fu, Z. Z.; Chen, Y. Y.; Dai, H. Q.; Hu, Z.; Zhang, W. L.; Guo, R. Q. Rational design of AgGaS/ZnS/ZnS quantum dots with a near-unity photoluminescence quantum yield via double shelling scheme. J. Mater. Sci. Technol. 2024, 169, 235–242.

[94]

Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758–3765.

[95]

Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G. Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid. J. Lumin. 2020, 220, 117008.

[96]

Tang, S. L.; He, C. S.; Li, D.; Cai, W. H.; Fan, L. Z.; Li, Y. C. Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core–shell nanocrystals with distinct absorption and emission properties enabling sensitive near-infrared photodetection. J. Mater. Sci. 2018, 53, 11355–11366.

[97]

Zhang, Y. J.; Yang, H. C.; An, X. Y.; Wang, Z.; Yang, X. H.; Yu, M. X.; Zhang, R.; Sun, Z. Q.; Wang, Q. B. Controlled synthesis of Ag2Te@Ag2S core–shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window. Small 2020, 16, 2001003.

[98]

Wang, K.; Deng, K. H.; Tian, Y. S.; Sun, M. Y.; Yu, Z. L.; Tian, Z. Q.; Zhang, Z. L. Core/shell-structured Ag2Te/Ag2Se quantum dots for high-resolution in vivo fluorescence imaging in the near infrared IIb region. ACS Appl. Nano Mater. 2023, 6, 14289–14299.

[99]

Perepelitsa, A. S.; Ovchinnikov, O. V.; Smirnov, M. S.; Kondratenko, T. S.; Grevtseva, I. G.; Aslanov, S. V.; Khokhlov, V. Y. Structural and optical properties of Ag2S/SiO2 core/shell quantum dots. J. Lumin. 2021, 231, 117805.

[100]

Tappan, B. A.; Zhu, B. N.; Cottingham, P.; Mecklenburg, M.; Scanlon, D. O.; Brutchey, R. L. Crystal structure of colloidally prepared metastable Ag2Se nanocrystals. Nano Lett. 2021, 21, 5881–5887.

[101]

Santos, H. D. A.; Zabala Gutiérrez, I.; Shen, Y. L.; Lifante, J.; Ximendes, E.; Laurenti, M.; Méndez-González, D.; Melle, S.; Calderón, O. G.; López Cabarcos, E. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 2020, 11, 2933.

[102]

Jin, B. J.; Zhang, F.; Wu, G.; Yuan, T. W.; Wang, Q.; Zhou, H.; Zhao, Y. F.; Zhang, G. Q.; Hong, X. Structural evolution induced by Au atom diffusion in Ag2S. Chem. Commun. 2019, 55, 13176–13178.

[103]

Zang, P. Y.; Du, Y. Q.; Yu, C. H.; Yang, D.; Gai, S. L.; Feng, L. L.; Liu, S. K.; Yang, P. P.; Lin, J. Photothermal-actuated thermoelectric therapy by harnessing Janus-structured Ag-Ag2S nanoparticles with enhanced antitumor efficacy. Chem. Mater. 2023, 35, 7770–7780.

[104]

Zhang, X. S.; Wei, J. S.; Chen, J. W.; Cheng, K.; Zhang, F.; Ashraf, G.; Li, Y.; Hou, X. L.; Zhang, R. Y.; Hu, Y. G. et al. A nanoplatform of hollow Ag2S/Ag nanocomposite shell for photothermal and enhanced sonodynamic therapy mediated by photoacoustic and CT imaging. Chem. Eng. J. 2022, 433, 133196.

[105]

Dong, L. L.; Ji, G. M.; Liu, Y.; Xu, X.; Lei, P. P.; Du, K. M.; Song, S. Y.; Feng, J.; Zhang, H. J. Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo. Nanoscale 2018, 10, 825–831.

[106]

Zhang, X.; Wang, W. L.; Su, L. C.; Ge, X. G.; Ye, J. M.; Zhao, C. Y.; He, Y.; Yang, H. H.; Song, J. B.; Duan, H. W. Plasmonic-fluorescent Janus Ag/Ag2S nanoparticles for in situ H2O2-activated NIR-II fluorescence imaging. Nano Lett. 2021, 21, 2625–2633.

[107]

Lifante, J.; Shen, Y. L.; Zabala Gutierrez, I.; Rubia-Rodríguez, I.; Ortega, D.; Fernandez, N.; Melle, S.; Granado, M.; Rubio-Retama, J.; Jaque, D. et al. Reaching deeper: Absolute in vivo thermal reading of liver by combining superbright Ag2S nanothermometers and in silico simulations. Adv. Sci. 2021, 8, 2003838.

[108]

Tian, R.; Shen, Z. Y.; Zhou, Z. J.; Munasinghe, J.; Zhang, X.; Jacobson, O.; Zhang, M. X.; Niu, G.; Pang, D. W.; Cui, R. et al. Ultrasmall quantum dots with broad-spectrum metal doping ability for trimodal molecular imaging. Adv. Funct. Mater. 2019, 29, 1901671.

[109]

Huang, B.; Tang, T.; Chen, S. H.; Li, H.; Sun, Z. J.; Zhang, Z. L.; Zhang, M. X.; Cui, R. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat. Commun. 2023, 14, 197.

[110]

Zhang, J. Y.; Min, J. J.; Li, B. H.; Yang, W. X.; Zeng, Z. P.; Liu, D. Y.; Ji, B. T. Thiol-free synthesis of bright near-infrared-emitting Ag2S nanocrystals through heterovalent-metal decoration for ecofriendly solar cells. Chem. Mater. 2023, 35, 1325–1334.

[111]

Pan, L. J.; Tu, J. W.; Yang, L. L.; Tian, Z. Q.; Zhang, Z. L. Photoluminescence enhancement of NIR-II emissive Ag2S quantum dots via chloride-mediated growth and passivation. Adv. Opt. Mater. 2022, 10, 2102806.

[112]

Luo, M. Y.; Tang, B.; Liu, A. A.; Zhao, J. Y.; Zhang, Z. L.; Pang, D. W. A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands. Nano Res. 2023, 16, 12608–12617.

[113]

Afshari, M. J.; Li, C.; Zeng, J. F.; Cui, J. B.; Wu, S. W.; Gao, M. Y. Self-illuminating NIR-II bioluminescence imaging probe based on silver sulfide quantum dots. ACS Nano 2022, 16, 16824–16832.

[114]

Li, C. Y.; Li, W. F.; Liu, H. H.; Zhang, Y. J.; Chen, G. C.; Li, Z. J.; Wang, Q. B. An activatable NIR-II nanoprobe for in vivo early real-time diagnosis of traumatic brain injury. Angew. Chem., Int. Ed. 2020, 59, 247–252.

[115]

Song, D.; Zhu, M. T.; Li, C. C.; Zhou, Y.; Xie, Y. D.; Li, Z.; Liu, Z. H. Boosting and activating NIR-IIb luminescence of Ag2Te quantum dots with a molecular trigger. Anal. Chem. 2021, 93, 16932–16939.

[116]

Ge, X. L.; Huang, B.; Zhang, Z. L.; Liu, X. L.; He, M.; Yu, Z. L.; Hu, B.; Cui, R.; Liang, X. J.; Pang, D. W. Glucose-functionalized near-infrared Ag2Se quantum dots with renal excretion ability for long-term in vivo tumor imaging. J. Mater. Chem. B 2019, 7, 5782–5788.

[117]

Zhan, Y.; Ling, S. S.; Huang, H. Y.; Zhang, Y. J.; Chen, G. C.; Huang, S. G.; Li, C. Y.; Guo, W. L.; Wang, Q. B. Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe. Angew. Chem., Int. Ed. 2021, 60, 2637–2642.

[118]

Sun, Z. Q.; Liu, C.; Yang, H. C.; Yang, X. H.; Zhang, Y. J.; Lin, H. Z.; Li, Y. Y.; Wang, Q. B. AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Res. 2022, 15, 8555–8563.

[119]

Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 2015, 8, 1637–1647.

[120]

Ding, Q.; Zhao, J.; Zhang, H. Y.; Li, C.; Sun, M. Z.; Chen, C.; Lin, H. W.; Xu, C. L.; Kuang, H.; Xu, L. G. Enantiomeric NIR-II emitting rare-earth-doped Ag2Se nanoparticles with differentiated in vivo imaging efficiencies. Angew. Chem. 2022, 134, e202210370.

[121]

Hunt, N. J.; Lockwood, G. P.; Heffernan, S. J.; Daymond, J.; Ngu, M.; Narayanan, R. K.; Westwood, L. J.; Mohanty, B.; Esser, L.; Williams, C. C. et al. Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycaemia. Nat. Nanotechnol. 2024, 19, 534–544.

[122]

Ma, Z. W.; Sun, Z. Q.; Yang, H. C.; Wang, Z. X.; Ren, F.; Yin, N.; Chen, Q.; Zhang, Y. J.; Li, C. Y.; Chen, L. W. et al. Interface-mediation-enabled high-performance near-infrared AgAuSe quantum dot light-emitting diodes. J. Am. Chem. Soc. 2023, 145, 24972–24980.

[123]

Gao, B.; Gao, P. Y.; Lu, S. H.; Lv, J.; Wang, Y. C.; Ma, Y. M. Interface structure prediction via CALYPSO method. Sci. Bull. 2019, 64, 301–309.

[124]

Oganov, A. R.; Pickard, C. J.; Zhu, Q.; Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 2019, 4, 331–348.

[125]

Hartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-level insight into semiconductor nanocrystal surfaces. J. Am. Chem. Soc 2021, 143, 1251–1266.

Nano Research
Pages 10585-10606
Cite this article:
Liu Z-Y, Zhao W, Chen L-M, et al. Rational design and structural regulation of near-infrared silver chalcogenide quantum dots. Nano Research, 2024, 17(12): 10585-10606. https://doi.org/10.1007/s12274-024-6958-x
Topics:

457

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 June 2024
Revised: 08 August 2024
Accepted: 08 August 2024
Published: 14 September 2024
© Tsinghua University Press 2024
Return