AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advanced emerging ambient energy harvesting technologies enabled by transition metal dichalcogenides: Opportunity and challenge

Ning SunYan WangXianya LiuJianmin LiShiyan WangYixiang LuoZhe FengJie DongMengyang ZhangFengshun WangYang Li( )Longlu Wang( )
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Show Author Information

Graphical Abstract

Transition metal dichalcogenides (TMDs) have demonstrated dramatically potential in ambient energy harvesting nowadays, whereas remain some deficiencies in the intrinsic structure hinder their application. We comprehensively summarized representative structure optimized approaches to further enhance the output performance of TMDs ambient energy harvesters.

Abstract

Environmental pollution and global warming caused by fossil fuels have become increasingly serious issues. Therefore, it is urgent to explore novel strategies to obtain sustainable, renewable and clean energy. Fortunately, ambient energy harvesting technologies, which are receiving increasing attention, provide an optimal solution. Additionally, the investigation of two-dimensional (2D) materials represented by transition metal dichalcogenides (TMDs) significantly facilitates the advancement of ambient energy harvesting technologies due to their unique properties, enabling the application of ambient energy harvesting. Herein, we summarized recent advances in the application of TMDs in thermal energy harvesting, osmotic energy harvesting, mechanical energy harvesting, water energy harvesting and radiofrequency energy harvesting respectively. In the meanwhile, we listed some representative structure and device optimization strategies for enhancing the energy conversion performance of these ambient energy harvesters, aiming to provide valuable insights for future investigations towards further optimization. Finally, we highlight the pressing issues currently faced in the application of the TMDs ambient energy harvesting technologies and propose some potential solutions to these challenges. We aimed to provide a comprehensive review in the applications of the energy harvesting technologies, in order to provide innovative insights for optimizing existing TMDs-based technologies.

References

[1]

Hussain, M. Z.; Yang, Z. X.; Huang, Z.; Jia, Q. L.; Zhu, Y. Q.; Xia, Y. D. Recent advances in metal-organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Adv. Sci. 2021, 8, 2100625.

[2]

Chen, L.; Msigwa, G.; Yang, M. Y.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P. S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310.

[3]

Yilmaz, G.; Peh, S. B.; Zhao, D.; Ho, G. W. Atomic-and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv. Sci. 2019, 6, 1901129.

[4]

Yang, L. X.; Luo, S. L.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q. Y. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p–n heterojunction network catalyst. Environ. Sci. Technol. 2010, 44, 7641–7646.

[5]

Li, X. Q.; Xie, W. R.; Zhu, J. Interfacial solar steam/vapor generation for heating and cooling. Adv. Sci. 2022, 9, 2104181.

[6]

Zhang, M. Y.; Wang, L.; Xu, H.; Song, Y. Z.; He, X. M. Polyimides as promising materials for lithium-ion batteries: A review. Nano-Micro Lett. 2023, 15, 135.

[7]

Bielecki, A.; Ernst, S.; Skrodzka, W.; Wojnicki, I. The externalities of energy production in the context of development of clean energy generation. Environ. Sci. Pollut. Res. 2020, 27, 11506–11530.

[8]

Zhang, Y.; Hu, L.; Zhang, Y. C.; Wang, X. Z.; Wang, H. G. Snowflake-like Cu2S/MoS2/Pt heterostructure with near infrared photothermal-enhanced electrocatalytic and photoelectrocatalytic hydrogen production. Appl. Catal. B: Environ. 2022, 315, 121540.

[9]

Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

[10]

Zhang, S. Q.; Zhang, Z. F.; Si, Y. M.; Li, B.; Deng, F.; Yang, L. X.; Liu, X.; Dai, W. L.; Luo, S. L. Gradient hydrogen migration modulated with self-adapting S vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano 2021, 15, 15238–15248.

[11]

Ren, W.; Sun, Y.; Zhao, D. L.; Aili, A.; Zhang, S.; Shi, C. Q.; Zhang, J. L.; Geng, H. Y.; Zhang, J.; Zhang, L. X. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 2021, 7, eabe0586.

[12]

Jeong, M. H.; Kim, K. C.; Kim, J. S.; Choi, K. J. Operation of wearable thermoelectric generators using dual sources of heat and light. Adv. Sci. 2022, 9, 2104915.

[13]

Zhu, S. J.; Fan, Z.; Feng, B. Q.; Shi, R. Z.; Jiang, Z. X.; Peng, Y.; Gao, J.; Miao, L.; Koumoto, K. Review on wearable thermoelectric generators: From devices to applications. Energies 2022, 15, 3375.

[14]

Wang, C.; Tang, J. D.; Li, L. Y.; Wan, J. H.; Ma, Y. C.; Jin, Y. H.; Liu, J. B.; Wang, H.; Zhang, Q. Q. Ultrathin self-standing covalent organic frameworks toward highly-efficient nanofluidic osmotic energy generator. Adv. Funct. Mater. 2022, 32, 2204068.

[15]

Gao, M. Y.; Tsai, P. C.; Su, Y. S.; Peng, P. H.; Yeh, L. H. Single mesopores with high surface charges as ultrahigh performance osmotic power generators. Small 2020, 16, 2006013.

[16]

Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O. Nanofluidic osmotic power generators-advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem. Sci. 2021, 12, 12874–12910.

[17]

Yeh, L. H.; Huang, Z. Y.; Liu, Y. C.; Deng, M. J.; Chou, T. H.; Yang, H. C.; Ahamad, T.; Alshehri, S. M.; Wu, K. C. W. A nanofluidic osmotic power generator demonstrated in polymer gel electrolytes with substantially enhanced performance. J. Mater. Chem. A 2019, 7, 26791–26796.

[18]

Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567.

[19]

Meng, J.; Guo, Z. H.; Pan, C. X.; Wang, L. Y.; Chang, C. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 2021, 6, 2442–2450.

[20]

Xu, X. Y.; Li, J.; Tao, X. L.; Yan, Q.; Wu, H.; Guan, Z. X.; Liu, L. Q.; Chen, X. Y.; Ou-Yang, W. Study of interfacial design for direct-current tribovoltaic generators. Nano Energy 2022, 94, 106957.

[21]

Ye, C. Y.; Liu, D.; Peng, X.; Jiang, Y.; Cheng, R. W.; Ning, C.; Sheng, F. F.; Zhang, Y. H.; Dong, K.; Wang, Z. L. A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 2021, 15, 18172–18181.

[22]

Jiang, C. M.; Li, X. J.; Ying, Y. B.; Ping, J. F. Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting. Small 2021, 17, 2007805.

[23]

Xiong, J. Q.; Lin, M. F.; Wang, J. X.; Gaw, S. L.; Parida, K.; Lee, P. S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243.

[24]

Chen, P. F.; An, J.; Shu, S.; Cheng, R. W.; Nie, J. H.; Jiang, T.; Wang, Z. L. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 2021, 11, 2003066.

[25]

Li, X. M.; Feng, G.; Chen, Y. D.; Li, J. D.; Yin, J.; Deng, W.; Guo, W. L. Hybrid hydrovoltaic electricity generation driven by water evaporation. Nano Res. Energy 2024, 3, e9120110.

[26]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[27]

Su, Q.; Li, Y.; Hu, R.; Song, F.; Liu, S. Y.; Guo, C. P.; Zhu, S. M.; Liu, W. B.; Pan, J. Heterojunction photocatalysts based on 2D materials: The role of configuration. Adv. Sustain. Syst. 2020, 4, 2000130.

[28]

Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

[29]

Aftab, S.; Iqbal, M. Z.; Haider, Z.; Iqbal, M. W.; Nazir, G.; Shehzad, M. A. Bulk photovoltaic effect in 2D materials for solar-power harvesting. Adv. Opt. Mater. 2022, 10, 2201288.

[30]

Aryal, U. K.; Ahmadpour, M.; Turkovic, V.; Rubahn, H. G.; Di Carlo, A.; Madsen, M. 2D materials for organic and perovskite photovoltaics. Nano Energy 2022, 94, 106833.

[31]

Javed, M. S.; Mateen, A.; Hussain, I.; Ali, S.; Asim, S.; Ahmad, A.; Tag Eldin, E.; Bajaber, M. A.; Najam, T.; Han, W. H. The quest for negative electrode materials for supercapacitors: 2D materials as a promising family. Chem. Eng. J. 2023, 452, 139455.

[32]

Philip, A.; Kumar, A. R. Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: A review. Renew. Sustain. Energy Rev. 2023, 182, 113423.

[33]

Tao, H. C.; Fan, Q.; Ma, T.; Liu, S. Z.; Gysling, H.; Texter, J.; Guo, F.; Sun, Z. Y. Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 2020, 111, 100637.

[34]

Bhat, A.; Anwer, S.; Bhat, K. S.; Mohideen, M. I. H.; Liao, K.; Qurashi, A. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Mater. Appl. 2021, 5, 61.

[35]

Xie, L. B.; Wang, L. L.; Liu, X.; Zhao, W. W.; Liu, S. J.; Huang, X.; Zhao, Q. Tetra-coordinated W2S3 for efficient dual-pH hydrogen production. Angew. Chem., Int. Ed. 2024, 63, e202316306.

[36]

Wang, L. L.; Zhang, F. R.; Sun, N.; Xie, L. B.; Zhi, T.; Zhang, Q. F.; Luo, Z. Z.; Liu, X.; Liu, S. J.; Zhao, Q. Boosting hydrogen evolution on MoS2 via synergistic regulation of interlayer dislocations and interlayer spacing. Chem. Eng. J. 2023, 474, 145792.

[37]

Zhang, Y. C.; Zhang, F.; Yang, Z. J.; Xue, H. G.; Dionysiou, D. D. Development of a new efficient visible-light-driven photocatalyst from SnS2 and polyvinyl chloride. J. Catal. 2016, 344, 692–700.

[38]

Qin, G.; Song, X. Y.; Chen, Q.; He, W. J.; Yang, J.; Li, Y.; Zhang, Y. C.; Wang, J.; Dionysiou, D. D. Novel durable and recyclable Cu@MoS2/polyacrylamide/copper alginate hydrogel photo-Fenton-like catalyst with enhanced and self-regenerable adsorption and degradation of high concentration tetracycline. Appl. Catal. B: Environ. Energy 2024, 344, 123640.

[39]

Li, Y.; Fan, M. H.; Wang, C. H.; Li, Y. X.; Yu, X.; Ding, J.; Yan, L.; Qiu, L. L.; Zhang, Y. C.; Wang, L. L. 3D layer-by-layer amorphous MoS x assembled from [Mo3S13]2− clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chin. Chem. Lett. 2024, 35, 109764.

[40]

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

[41]

Lan, C. Y.; Li, C.; Ho, J. C.; Liu, Y. 2D WS2: From vapor phase synthesis to device applications. Adv. Elect. Mater. 2021, 7, 2000688.

[42]

Pielić, B.; Novko, D.; Rakić, I. S.; Cai, J. Q.; Petrović, M.; Ohmann, R.; Vujičić, N.; Basletić, M.; Busse, C.; Kralj, M. Electronic structure of quasi-freestanding WS2/MoS2 heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 50552–50563.

[43]

Niknam, S.; Dehdast, S. A.; Pourdakan, O.; Shabani, M.; Koohi, M. K. Tungsten disulfide nanomaterials (WS2 NM) application in biosensors and nanomedicine: A review. Nanomed. Res. J. 2022, 7, 214–226.

[44]

de la Asunción-Nadal, V.; Franco, C.; Veciana, A.; Ning, S.; Terzopoulou, A.; Sevim, S.; Chen, X. Z.; Gong, D.; Cai, J.; Wendel-Garcia, P. D. MoSBOTs: Magnetically driven biotemplated MoS2-based microrobots for biomedical applications. Small 2022, 18, 2203821.

[45]

Sun, N.; Gu, C.; Ji, H. C.; Zhu, X. J.; Liu, X. Y.; Zhuang, Y. L.; Wang, L. L. Structure engineering of MoS2 for desalination. Desalination 2024, 575, 117270.

[46]

Wang, W. S.; Onofrio, N.; Petit, E.; Karamoko, B. A.; Wu, H. L.; Liu, J. F.; Li, J.; Qi, K.; Zhang, Y.; Gervais, C. et al. High-surface-area functionalized nanolaminated membranes for energy-efficient nanofiltration and desalination in forward osmosis. Nat. Water 2023, 1, 187–197.

[47]

Shalini, V.; Harish, S.; Ikeda, H.; Hayakawa, Y.; Archana, J.; Navaneethan, M. Enhancement of thermoelectric power factor via electron energy filtering in Cu doped MoS2 on carbon fabric for wearable thermoelectric generator applications. J. Colloid Interface Sci. 2023, 633, 120–131.

[48]

Wang, T.; Yao, K.; Hua, Y. B.; Shankar, E. G.; Shanthappa, R.; Yu, J. S. Rational design of MXene-MoS2 heterostructure with rapid ion transport rate as an advanced anode for sodium-ion batteries. Chem. Eng. J. 2023, 457, 141363.

[49]

Hu, C. Y.; Achari, A.; Rowe, P.; Xiao, H.; Suran, S.; Li, Z.; Huang, K.; Chi, C.; Cherian, C. T.; Sreepal, V. et al. pH-dependent water permeability switching and its memory in MoS2 membranes. Nature 2023, 616, 719–723.

[50]

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

[51]

Choi, W.; Kim, J.; Lee, E.; Mehta, G.; Prasad, V. Asymmetric 2D MoS2 for scalable and high-performance piezoelectric sensors. ACS Appl. Mater. Interfaces 2021, 13, 13596–13603.

[52]

Zhou, H. Z.; Sun, C.; Xin, W.; Li, Y. J.; Chen, Y. Z.; Zhu, H. M. Spatiotemporally coupled electron–hole dynamics in two dimensional heterostructures. Nano Lett. 2022, 22, 2547–2553.

[53]

Chen, N.; Yang, Y. N.; He, F.; Li, Y. J.; Liu, Q. W.; Li, Y. L. Chemical bond conversion directly drives power generation on the surface of graphdiyne. Matter 2022, 5, 2933–2945.

[54]

Ng, H. K.; Xiang, D.; Suwardi, A.; Hu, G. W.; Yang, K.; Zhao, Y. S.; Liu, T.; Cao, Z. H.; Liu, H. J.; Li, S. S. et al. Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 2022, 5, 489–496.

[55]

Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.

[56]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[57]

Song, Y. H.; Shi, Z. Q.; Hu, G. H.; Xiong, C. X.; Isogai, A.; Yang, Q. L. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: A review. J. Mater. Chem. A 2021, 9, 1910–1937.

[58]

Zhang, Z.; Jiang, D. D.; Zhao, J. Q.; Liu, G. X.; Bu, T. Z.; Zhang, C.; Wang, Z. L. Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 1903713.

[59]

Zheng, M. L.; Lin, S. Q.; Xu, L.; Zhu, L. P.; Wang, Z. L. Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Adv. Mater. 2020, 32, 2000928.

[60]

Lim, H.; Kim, M. S.; Cho, Y.; Ahn, J.; Ahn, S.; Nam, J. S.; Bae, J.; Yun, T. G.; Kim, I. D. Hydrovoltaic electricity generator with hygroscopic materials: A review and new perspective. Adv. Mater. 2024, 36, 2301080.

[61]

Jeong, M. H.; Kang, S. B.; Choi, K. J. Ambient-temperature-independent power generation in wearable thermoelectric generator with CNTs/MoS2 solar absorber. ACS Appl. Electron. Mater. 2024, 6, 2960–2968.

[62]

Suresh Prasanna, C.; Harish, S.; Archana, J.; Senthil Kumar, E.; Ikeda, H.; Navaneethan, M. Interfacial energy barrier tuning in MnO2/MoS2/carbon fabric integrated with low resistance textrode for highly efficient wearable thermoelectric generator. Carbon 2024, 218, 118609.

[63]

Soleimani, Z.; Zoras, S.; Ceranic, B.; Cui, Y. L.; Shahzad, S. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy 2021, 89, 106325.

[64]

Siddique, A. R. M.; Mahmud, S.; Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 2017, 73, 730–744.

[65]

Gayner, C.; Kar, K. K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382.

[66]

Rosi, F. D. Thermoelectricity and thermoelectric power generation. Solid-State Electron. 1968, 11, 833–868.

[67]

Chasmar, R. P.; Stratton, R. The thermoelectric figure of merit and its relation to thermoelectric generators. J. Electron. Control 1959, 7, 52–72.

[68]

Paul, J.; Pandey, A. K.; Mishra, Y. N.; Said, Z.; Mishra, Y. K.; Ma, Z. J.; Jacob, J.; Kadirgama, K.; Samykano, M.; Tyagi, V. V. Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities. Renew. Sustain. Energy Rev. 2022, 161, 112321.

[69]

Butt, M. A.; Kazanskiy, N. L.; Khonina, S. N. Revolution in flexible wearable electronics for temperature and pressure monitoring—A review. Electronics 2022, 11, 716.

[70]

Luo, Y. F.; Abidian, M. R.; Ahn, J. H.; Akinwande, D.; Andrews, A. M.; Antonietti, M.; Bao, Z. N.; Berggren, M.; Berkey, C. A.; Bettinger, C. J. et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295.

[71]

Yeo, H. G. Piezoelectric energy-harvesting devices for wearable self-powering system. JMST Adv. 2023, 5, 37–43.

[72]

Hippalgaonkar, K.; Wang, Y.; Ye, Y.; Qiu, D. Y.; Zhu, H. Y.; Wang, Y.; Moore, J.; Louie, S. G.; Zhang, X. High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 2017, 95, 115407.

[73]

Bilc, D. I.; Benea, D.; Pop, V.; Ghosez, P.; Verstraete, M. J. Electronic and thermoelectric properties of transition-metal dichalcogenides. J. Phys. Chem. C 2021, 125, 27084–27097.

[74]

Xu, S. N.; Si, C.; Li, Y.; Gu, B. L.; Duan, W. H. Valley depolarization dynamics in monolayer transition-metal dichalcogenides: Role of the satellite valley. Nano Lett. 2021, 21, 1785–1791.

[75]

Zhang, Y. F.; Lv, Q.; Fan, A. R.; Yu, L. X.; Wang, H. D.; Ma, W. G.; Lv, R. T.; Zhang, X. Reduction in thermal conductivity of monolayer WS2 caused by substrate effect. Nano Res. 2022, 15, 9578–9587.

[76]

Wei, L. B.; Li, Y. R.; Tian, C. F.; Jiang, J. Recent progress in anisotropic 2D semiconductors: From material properties to photoelectric detection. Phys. Status Solidi A 2021, 218, 2100204.

[77]

Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

[78]

He, M. H.; Lin, Y. J.; Chiu, C. M.; Yang, W. F.; Zhang, B. B.; Yun, D. Q.; Xie, Y. N.; Lin, Z. H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595.

[79]

Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G.; Zhou, Y. S.; Zhang, Y.; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

[80]

Gayner, C.; Amouyal, Y. Energy filtering of charge carriers: Current trends, challenges, and prospects for thermoelectric materials. Adv. Funct. Mater. 2020, 30, 1901789.

[81]

Chen, K.; Wang, L. L.; Luo, Z. Z.; Xu, X. W.; Li, Y.; Liu, S. J.; Zhao, Q. Flexible thermoelectrics based on plastic inorganic semiconductors. Adv. Mater. Technol. 2023, 8, 2300189.

[82]

Zebarjadi, M.; Joshi, G.; Zhu, G. H.; Yu, B.; Minnich, A.; Lan, Y. C.; Wang, X. W.; Dresselhaus, M.; Ren, Z. F.; Chen, G. Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 2011, 11, 2225–2230.

[83]

More, P. V.; Hiragond, C.; Dey, A.; Khanna, P. K. Band engineered p-type RGO-CdS-PANI ternary nanocomposites for thermoelectric applications. Sustain. Energy Fuels 2017, 1, 1766–1773.

[84]

Joseph, D.; Navaneethan, M.; Abinaya, R.; Harish, S.; Archana, J.; Ponnusamy, S.; Hara, K.; Hayakawa, Y. Thermoelectric performance of Cu-doped MoS2 layered nanosheets for low grade waste heat recovery. Appl. Surf. Sci. 2020, 505, 144066.

[85]

Zheng, Y.; Luo, Y. B.; Du, C. F.; Zhu, B. B.; Liang, Q. H.; Hng, H. H.; Hippalgaonkar, K.; Xu, J. W.; Yan, Q. Y. Designing hybrid architectures for advanced thermoelectric materials. Mater. Chem. Front. 2017, 1, 2457–2473.

[86]

Du, Y.; Cai, K. F.; Chen, S.; Wang, H. X.; Shen, S. Z.; Donelson, R.; Lin, T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015, 5, 6411.

[87]

Li, J. H.; Shi, Q. W.; Röhr, J. A.; Wu, H.; Wu, B.; Guo, Y.; Zhang, Q. H.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. Flexible 3D porous MoS2/CNTs architectures with ZT of 0.17 at room temperature for wearable thermoelectric applications. Adv. Funct. Mater. 2020, 30, 2002508.

[88]

Guo, Y.; Dun, C.; Xu, J. W.; Li, P. X.; Huang, W. X.; Mu, J. K.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interfaces 2018, 10, 33316–33321.

[89]

Zhao, W. R.; Ding, J. M.; Zou, Y.; Di, C. A.; Zhu, D. B. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 2020, 49, 7210–7228.

[90]

Cutler, M.; Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 1969, 181, 1336–1340.

[91]

Shalini, V.; Harish, S.; Ikeda, H.; Hayakawa, Y.; Archana, J.; Navaneethan, M. Investigating the effect of defect states and to enhance the electrical conductivity of p-type Vanadium-doped MoS2 for wearable thermoelectric application. J. Alloys Compd. 2023, 960, 170317.

[92]

Dona, J.; Harish, S.; Hara, K.; Navaneethan, M. Metal-assisted growth of MoS2 nanosheets on carbon fabric with enhanced electrical conductivity for self-powered wearable thermoelectric application. J. Mater. Sci.: Mater. Electron. 2023, 34, 1538.

[93]

Jiang, D.; Li, Y.; Li, Z.; Yang, Z. H.; Xia, Z. X.; Fu, P.; Zhang, Y. F.; Du, F. P. High-performance MoS2/SWCNT composite films for a flexible thermoelectric power generator. ACS Appl. Mater. Interfaces 2023, 15, 30495–30503.

[94]

Zhu, W.; Deng, Y.; Gao, M.; Wang, Y. Hierarchical Bi-Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energy Convers. Manage. 2015, 106, 1192–1200.

[95]

Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X. W.; Wang, D. Z.; Muto, A. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

[96]

Zhu, W.; Deng, Y.; Cao, L. L. Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy 2017, 34, 463–471.

[97]

Jung, Y. S.; Jeong, D. H.; Kang, S. B.; Kim, F.; Jeong, M. H.; Lee, K. S.; Son, J. S.; Baik, J. M.; Kim, J. S.; Choi, K. J. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 2017, 40, 663–672.

[98]

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. 2013, 125, 4254–4258.

[99]

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

[100]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[101]

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

[102]

Srivastava, M.; Banerjee, S.; Bairagi, S.; Singh, P.; Kumar, B.; Singh, P.; Kale, R. D.; Mulvihill, D. M.; Ali, S. W. Recent progress in molybdenum disulfide (MoS2) based flexible nanogenerators: An inclusive review. Chem. Eng. J. 2024, 480, 147963.

[103]

Zhao, Y.; Tong, T.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B 2006, 24, 331–335.

[104]

Lin, S. Q.; Li, W.; Chen, Z. W.; Shen, J. W.; Ge, B. H.; Pei, Y. Z. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 2016, 7, 10287.

[105]

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

[106]

Zhao, T. C.; Xu, M. Y.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.

[107]

Zhai, N. N.; Wen, Z.; Chen, X. P.; Wei, A. M.; Sha, M.; Fu, J. J.; Liu, Y. N.; Zhong, J.; Sun, X. H. Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 2020, 10, 2001041.

[108]

Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J. P.; Kis, A.; Radenovic, A. Light-enhanced blue energy generation using MoS2 nanopores. Joule 2019, 3, 1549–1564.

[109]

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

[110]

Hong, J. G.; Zhang, B. P.; Glabman, S.; Uzal, N.; Dou, X. M.; Zhang, H. G.; Wei, X. Z.; Chen, Y. S. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. J. Membr. Sci. 2015, 486, 71–88.

[111]

Safaei, J.; Wang, G. X. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano Res. Energy 2022, 1, 9120008.

[112]

Xiao, T. L.; Li, X. J.; Liu, Z. Y.; Lu, B. X.; Zhai, J.; Diao, X. G. Low-cost 2D nanochannels as biomimetic salinity-and heat-gradient power generators. Nano Energy 2022, 103, 107782.

[113]

Heiranian, M.; Farimani, A. B.; Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6, 8616.

[114]

Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.

[115]

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254–256.

[116]

Zhu, Z. P.; Wang, D. Y.; Tian, Y.; Jiang, L. Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions. J. Am. Chem. Soc. 2019, 141, 8658–8669.

[117]

Gao, Z. X.; Zhang, J. J.; Ahmad, M.; Jiang, B.; Sun, Z.; Wang, S.; Jin, Y. C. Design of metallic phase WS2/cellulose nanofibers composite membranes for light-boosted osmotic energy conversion. Carbohydr. Polym. 2022, 296, 119847.

[118]

Hirunpinyopas, W.; Prestat, E.; Worrall, S. D.; Haigh, S. J.; Dryfe, R. A. W.; Bissett, M. A. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 2017, 11, 11082–11090.

[119]

Wang, Z. Y.; Tu, Q. S.; Zheng, S. X.; Urban, J. J.; Li, S. F.; Mi, B. X. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 2017, 17, 7289–7298.

[120]

Cao, C. Y.; Dong, H. L.; Liang, F. H.; Zhang, Y.; Zhang, W.; Wang, H. L.; Shao, H. Y.; Liu, H. C.; Dong, K.; Tang, Y. X. et al. Interfacial reinforcement structure design towards ultrastable lithium storage in MoS2-based composited electrode. Chem. Eng. J. 2021, 416, 129094.

[121]

Zhu, C. C.; Liu, P.; Niu, B.; Liu, Y. N.; Xin, W. W.; Chen, W. P.; Kong, X. Y.; Zhang, Z.; Jiang, L.; Wen, L. P. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes. J. Am. Chem. Soc. 2021, 143, 1932–1940.

[122]

Wang, Q. C.; Wu, Y. D.; Zhu, C. C.; Hu, Y. H.; Fu, L.; Qian, Y. C.; Zhang, Z. H.; Li, T. Y.; Li, X.; Kong, X. Y. et al. Efficient solar-osmotic power generation from bioinspired anti-fouling 2D WS2 composite membranes. Angew. Chem., Int. Ed. 2023, 62, e202302938.

[123]

Man, Z. M.; Safaei, J.; Zhang, Z.; Wang, Y. Z.; Zhou, D.; Li, P.; Zhang, X. G.; Jiang, L.; Wang, G. X. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 2021, 143, 16206–16216.

[124]

He, H. N.; Li, X. L.; Huang, D.; Luan, J. Y.; Liu, S. L.; Pang, W. K.; Sun, D.; Tang, Y. G.; Zhou, W. Z.; He, L. R. et al. Electron-injection-engineering induced phase transition toward stabilized 1T-MoS2 with extraordinary sodium storage performance. ACS Nano 2021, 15, 8896–8906.

[125]

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

[126]

Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

[127]

Zhang, Z.; Zhang, P. P.; Yang, S.; Zhang, T.; Löffler, M.; Shi, H. H.; Lohe, M. R.; Feng, X. L. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 13959–13966.

[128]

Wu, Y. D.; Xin, W. W.; Kong, X. Y.; Chen, J. J.; Qian, Y. C.; Sun, Y.; Zhao, X. L.; Chen, W. P.; Jiang, L.; Wen, L. P. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 2020, 7, 2702–2709.

[129]

Yang, G. L.; Lei, W. W.; Chen, C.; Qin, S.; Zhang, L. Z.; Su, Y. Y.; Wang, J. M.; Chen, Z. Q.; Sun, L.; Wang, X. G. et al. Ultrathin Ti3C2T x (MXene) membrane for pressure-driven electrokinetic power generation. Nano Energy 2020, 75, 104954.

[130]

Liu, P.; Sun, Y.; Zhu, C. C.; Niu, B.; Huang, X. D.; Kong, X. Y.; Jiang, L.; Wen, L. P. Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting. Nano Lett. 2020, 20, 3593–3601.

[131]

Ren, Q. L.; Chen, K. L.; Zhu, H. Y.; Zhang, J. F.; Qu, Z. G. Nanoparticle enhanced salinity-gradient osmotic energy conversion under photothermal effect. Energy Convers. Manag. 2022, 251, 115032.

[132]

Zhang, X. P.; Wen, Q.; Wang, L. L.; Ding, L. P.; Yang, J. L.; Ji, D. Y.; Zhang, Y. B.; Jiang, L.; Guo, W. Asymmetric electrokinetic proton transport through 2D nanofluidic heterojunctions. ACS Nano 2019, 13, 4238–4245.

[133]

Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

[134]

White, W.; Sanborn, C. D.; Reiter, R. S.; Fabian, D. M.; Ardo, S. Observation of photovoltaic action from photoacid-modified nafion due to light-driven ion transport. J. Am. Chem. Soc. 2017, 139, 11726–11733.

[135]

Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. M.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

[136]

Zeng, Q. S.; Liu, Z. Novel optoelectronic devices: Transition-metal-dichalcogenide-based 2D heterostructures. Adv. Electron. Mater. 2018, 4, 1700335.

[137]

Alzakia, F. I.; Tang, B. S.; Pennycook, S. J.; Tan, S. C. Engineering the photoresponse of liquid-exfoliated 2D materials by size selection and controlled mixing for an ultrasensitive and ultraresponsive photodetector. Mater. Horiz. 2020, 7, 3325–3338.

[138]

Jia, P.; Wang, L. L.; Zhang, Y. H.; Yang, Y. T.; Jin, X. Y.; Zhou, M.; Quan, D.; Jia, M. J.; Cao, L. X.; Long, R. et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 2021, 33, 2007529.

[139]

Deng, Y. H. Identifying and understanding the positive impact of defects for optoelectronic devices. Adv. Sensor Res. 2024, 3, 2300144.

[140]

Ji, J. Z.; Kang, Q.; Zhou, Y.; Feng, Y. P.; Chen, X.; Yuan, J. Y.; Guo, W.; Wei, Y.; Jiang, L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.

[141]

Xiao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew. Chem., Int. Ed. 2018, 57, 10123–10126.

[142]

Xu, C.; Song, Y.; Han, M. D.; Zhang, H. X. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7, 25.

[143]

Jiang, C. M.; Li, X. J.; Lian, S. W. M.; Ying, Y. B.; Ho, J. S.; Ping, J. F. Wireless technologies for energy harvesting and transmission for ambient self-powered systems. ACS Nano 2021, 15, 9328–9354.

[144]

Chen, H. T.; Song, Y.; Cheng, X. L.; Zhang, H. X. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019, 56, 252–268.

[145]

Xu, M. H.; Wen, Y. X.; Niu, F. K.; Yang, Q. L.; Xiong, C. X.; Shi, Z. Q. Flexible piezoelectric generator based on PLLA/ZnO oriented fibers for wearable self-powered sensing. Compos. Part A: Appl. Sci. Manuf. 2023, 169, 107518.

[146]

Verma, K.; Sharma, R. A flexible piezoelectric generator based on KNN/PVDF composite films: Role of KNN concentration on the piezoelectric performance of generator. Chin. J. Phys. 2023, 84, 198–215.

[147]

Nan, Y.; Tan, D.; Shao, J. J.; Willatzen, M.; Wang, Z. L. 2D materials as effective cantilever piezoelectric Nano energy harvesters. ACS Energy Lett. 2021, 6, 2313–2319.

[148]

Zhang, Q.; Zuo, S. L.; Chen, P.; Pan, C. F. Piezotronics in two-dimensional materials. InfoMat 2021, 3, 987–1007.

[149]

Sherrell, P. C.; Fronzi, M.; Shepelin, N. A.; Corletto, A.; Winkler, D. A.; Ford, M.; Shapter, J. G.; Ellis, A. V. A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 2022, 51, 650–671.

[150]

Pace, G.; del Rio Castillo, A. E.; Lamperti, A.; Lauciello, S.; Bonaccorso, F. 2D materials-based electrochemical triboelectric nanogenerators. Adv. Mater. 2023, 35, 2211037.

[151]

Liu, Y. Q.; Ping, J. F.; Ying, Y. B. Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv. Funct. Mater. 2021, 31, 2009994.

[152]

Choi, Y. S.; Kim, S. W.; Kar-Narayan, S. Materials-related strategies for highly efficient triboelectric energy generators. Adv. Energy Mater. 2021, 11, 2003802.

[153]

Zhu, X. L.; Hu, Y.; Wu, G.; Chen, W.; Bao, N. Z. Two-dimensional nanosheets-based soft electro-chemo-mechanical actuators: Recent advances in design, construction, and applications. ACS Nano 2021, 15, 9273–9298.

[154]

Rana, S.; Singh, V.; Singh, B. Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. iScience 2022, 25, 103748.

[155]

Chhowalla, M.; Liu, Z. F.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.

[156]

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

[157]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[158]

Al Mahadi Hasan, M.; Wang, Y. H.; Bowen, C. R.; Yang, Y. 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 2021, 13, 82.

[159]

Zhang, Z.; Gong, L. K.; Luan, R. F.; Feng, Y.; Cao, J.; Zhang, C. Tribovoltaic effect: Origin, interface, characteristic, mechanism & application. Adv. Sci. 2024, 11, 2305460.

[160]

Liu, J.; Liu, F. F.; Bao, R. M.; Jiang, K. R.; Khan, F.; Li, Z.; Peng, H. H.; Chen, J.; Alodhayb, A.; Thundat, T. Scaled-up direct-current generation in MoS2 multilayer-based moving heterojunctions. ACS Appl. Mater. Interfaces 2019, 11, 35404–35409.

[161]

Kim, M.; Lee, C.; Kim, S. H.; Park, M. U.; Yang, J.; Yi, Y.; Yoo, K. H. Tribodiffusion-driven triboelectric nanogenerators based on MoS2. J. Mater. Chem. A 2021, 9, 10316–10325.

[162]

Fan, B. B.; Wang, Z. Z.; Liu, G. X.; Wang, Z.; Fu, X. P.; Gong, L. K.; Zhang, C. Robust flexible textile tribovoltaic nanogenerator via a 2D 2H-MoS2/Ta4C3 dynamic heterojunction. Adv. Funct. Mater. 2023, 33, 2301821.

[163]

Kim, M.; Kim, S. H.; Park, M. U.; Lee, C.; Kim, M.; Yi, Y.; Yoo, K. H. MoS2 triboelectric nanogenerators based on depletion layers. Nano Energy 2019, 65, 104079.

[164]

Liu, J.; Goswami, A.; Jiang, K. R.; Khan, F.; Kim, S.; McGee, R.; Li, Z.; Hu, Z. Y.; Lee, J.; Thundat, T. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol. 2018, 13, 112–116.

[165]

Sharma, S.; Kiran, R.; Azad, P.; Vaish, R. A review of piezoelectric energy harvesting tiles: Available designs and future perspective. Energy Convers. Manag. 2022, 254, 115272.

[166]

Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

[167]

Lee, J. H.; Park, J. Y.; Cho, E. B.; Kim, T. Y.; Han, S. A.; Kim, T. H.; Liu, Y. N.; Kim, S. K.; Roh, C. J.; Yoon, H. J. et al. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 2017, 29, 1606667.

[168]

Wang, Z. L. Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 2010, 1, 1388–1393.

[169]

Kim, D.; Lee, K. Y.; Gupta, M. K.; Majumder, S.; Kim, S. W. Self-compensated insulating ZnO-based piezoelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 6949–6955.

[170]

Xue, X. Y.; Nie, Y. X.; He, B.; Xing, L. L.; Zhang, Y.; Wang, Z. L. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology 2013, 24, 225501.

[171]

Han, J. K.; Kim, S.; Jang, S.; Lim, Y. R.; Kim, S. W.; Chang, H.; Song, W.; Lee, S. S.; Lim, J.; An, K. S. et al. Tunable piezoelectric nanogenerators using flexoelectricity of well-ordered hollow 2D MoS2 shells arrays for energy harvesting. Nano Energy 2019, 61, 471–477.

[172]

Han, S. A.; Kim, T. H.; Kim, S. K.; Lee, K. H.; Park, H. J.; Lee, J. H.; Kim, S. W. Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 2018, 30, 1800342.

[173]

Cao, S. A.; Zou, H. J.; Jiang, B.; Li, M. L.; Yuan, Q. P. Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor. Nano Energy 2022, 102, 107635.

[174]

Xu, S.; Zhang, W. J.; Wang, C. L.; Peng, W. H.; Shi, G.; Cui, Z.; Fu, P.; Liu, M. Y.; He, Y. J.; Qiao, X. G. et al. Mechanically induced atom transfer radical polymerization with high efficiency via piezoelectric heterostructures. Polymer 2022, 252, 124949.

[175]

Remškar, M.; Iskra, I.; Jelenc, J.; Škapin, S. D.; Višić, B.; Varlec, A.; Kržan, A. A novel structure of polyvinylidene fluoride (PVDF) stabilized by MoS2 nanotubes. Soft Matter 2013, 9, 8647–8653.

[176]

Ma, W.; Yao, B. H.; Zhang, W.; He, Y. Q.; Yu, Y.; Niu, J. F. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets. Chem. Eng. J. 2021, 415, 129000.

[177]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[178]

Liu, Z. H.; Liu, C.; Chen, Z. T.; Huang, H. L.; Liu, Y. F.; Xue, L.; Sun, J. W.; Wang, X.; Xiong, P.; Zhu, J. W. Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration, 2023, 3, 20220061.

[179]

Li, L. H.; Feng, S. J.; Bai, Y. Y.; Yang, X. Q.; Liu, M. Y.; Hao, M. M.; Wang, S. Q.; Wu, Y.; Sun, F. Q.; Liu, Z. et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 2022, 13, 1043.

[180]

Cai, H. F.; Guo, Y. F.; Guo, W. L. Synergistic effect of substrate and ion-containing water in graphene based hydrovoltaic generators. Nano Energy 2021, 84, 105939.

[181]

Kumar, S.; Sharma, A.; Gupta, V.; Tomar, M. Development of novel MoS2 hydrovoltaic nanogenerators for electricity generation from moving NaCl droplet. J. Alloys Compd. 2021, 884, 161058.

[182]

He, D. R.; Yang, Y. C.; Zhou, Y.; Wan, J. Y.; Wang, H. A.; Fan, X.; Li, Q.; Huang, H. H. Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture. Nano Energy 2021, 81, 105630.

[183]

Zhao, T. C.; Hu, Y. J.; Zhuang, W.; Xu, Y. F.; Feng, J. Y.; Chen, P. N.; Peng, H. S. A fiber fluidic nanogenerator made from aligned carbon nanotubes composited with transition metal oxide. ACS Mater. Lett. 2021, 3, 1448–1452.

[184]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[185]

Wang, X. F.; Lin, F. R.; Wang, X.; Fang, S. M.; Tan, J.; Chu, W. C.; Rong, R.; Yin, J.; Zhang, Z. H.; Liu, Y. P. et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902–4927.

[186]

Lü, J.; Ren, G. P.; Hu, Q. C.; Rensing, C.; Zhou, S. G. Microbial biofilm-based hydrovoltaic technology. Trends Biotechnol. 2023, 41, 1155–1167.

[187]
Lyklema, J. Fundamentals of Interface and Colloid Science: Soft Colloids; Elsevier: Amsterdam, 2005.
[188]

Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383.

[189]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[190]

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

[191]

Strohm, K. M.; Buechler, J.; Kasper, E. SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microw. Theory Techn. 1998, 46, 669–676.

[192]

Suh, Y. H.; Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Techn. 2002, 50, 1784–1789.

[193]

Sizov, F.; Rogalski, A. THz detectors. Prog. Quantum Electron. 2010, 34, 278–347.

[194]
Steudel, S.; Myny, K.; Vicca, P.; Cheyns, D.; Genoe, J.; Heremans, P. Ultra-high frequency rectification using organic diodes. In Proceedings of the International Electron Devices Meeting, San Francisco, USA, 2008, pp 93–96.
[195]

Chasin, A.; Volskiy, V.; Libois, M.; Myny, K.; Nag, M.; Rockelé, M.; Vandenbosch, G. A. E.; Genoe, J.; Gielen, G.; Heremans, P. An integrated a-IGZO UHF energy harvester for passive RFID tags. IEEE Trans. Electron Devices 2014, 61, 3289–3295.

[196]

Zhang, J. W.; Li, Y. P.; Zhang, B. L.; Wang, H. B.; Xin, Q.; Song, A. M. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz. Nat. Commun. 2015, 6, 7561.

[197]

Sani, N.; Robertsson, M.; Cooper, P.; Wang, X.; Svensson, M.; Andersson Ersman, P.; Norberg, P.; Nilsson, M.; Nilsson, D.; Liu, X. J. et al. All-printed diode operating at 1.6 GHz. Proc. Natl. Acad. Sci. USA 2014, 111, 11943–11948.

[198]

Di Giorgio, C.; Blundo, E.; Pettinari, G.; Felici, M.; Polimeni, A.; Bobba, F. Exceptional elasticity of microscale constrained MoS2 domes. ACS Appl. Mater. Interfaces 2021, 13, 48228–48238.

[199]

Oviroh, P. O.; Jen, T. C.; Ren, J.; van Duin, A. Towards the realisation of high permi-selective MoS2 membrane for water desalination. npj Clean Water 2023, 6, 14.

[200]
Pozar, D. M. Microwave Engineering; 4th ed. John Wiley & Sons: Hoboken, 2012; pp 26–30.
[201]

Zhang, X.; Grajal, J.; Vazquez-Roy, J. L.; Radhakrishna, U.; Wang, X. X.; Chern, W.; Zhou, L.; Lin, Y. X.; Shen, P. C.; Ji, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368–372.

[202]

Donchev, E.; Pang, J. S.; Gammon, P. M.; Centeno, A.; Xie, F.; Petrov, P. K.; Breeze, J. D.; Ryan, M. P.; Riley, D. J.; McN, N. The rectenna device: From theory to practice (a review). MRS Energy Sustain. 2014, 1, 1.

[203]

Wang, Y. C.; Shi, Y. G.; Mei, D. Q.; Chen, Z. C. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 2018, 215, 690–698.

[204]

Li, K. C.; Sun, X.; Wang, Y. Z.; Wang, J.; Dai, X.; Li, G. J.; Wang, H. All-in-one single-piece flexible solar thermoelectric generator with scissored heat rectifying p-n modules. Nano Energy 2022, 93, 106789.

[205]

Li, Y. H.; Zheng, W.; Zhang, H. D.; Wang, H. Q.; Cai, H.; Zhang, Y. X.; Yang, Z. Q. Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy 2020, 70, 104540.

[206]

Khan, H.; Mahmood, N.; Zavabeti, A.; Elbourne, A.; Rahman, M. A.; Zhang, B. Y.; Krishnamurthi, V.; Atkin, P.; Ghasemian, M. B.; Yang, J. et al. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nat. Commun. 2020, 11, 3449.

[207]

Sun, Z. Y.; Wen, X.; Wang, L. M.; Yu, J. Y.; Qin, X. H. Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 2022, 15, 4584–4591.

Nano Research
Pages 9620-9639
Cite this article:
Sun N, Wang Y, Liu X, et al. Advanced emerging ambient energy harvesting technologies enabled by transition metal dichalcogenides: Opportunity and challenge. Nano Research, 2024, 17(11): 9620-9639. https://doi.org/10.1007/s12274-024-6959-9
Topics:

333

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 July 2024
Revised: 08 August 2024
Accepted: 08 August 2024
Published: 12 September 2024
© Tsinghua University Press 2024
Return