AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Food-derived exosomes as the future of drug delivery

Bin Yang1,2Miao Zhang3Lixia Yue3Ning Zhang4Hai Wei1Hongyu Zhang2( )Bing Wang2,3( )Peifeng Liu2( )
Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Show Author Information

Graphical Abstract

Abstract

Exosomes are a kind of nanoscale membrane vesicles that can be secreted by many types of cells in both normal and pathological states and play a very important role in intercellular information exchange and transmission by transporting proteins, nucleic acids, lipids, and other biologically active substances to act on the receptor cells. Recent studies have shown that exosomes from some plants, animals, microorganisms, and other food sources can also be extracted like the structure of exosomes secreted by mammalian cells, which are named food-derived exosomes (FDEs) and can be absorbed by intestinal cells and further transported to other organs through blood circulation. With the advantages of high biocompatibility, low immunogenicity, low toxicity, high cargo capacity, and the ability to cross biological barriers, FDEs can be involved in a variety of applications such as immune response, cell migration, and tumor invasion, and have attracted a lot of attention as biotherapeutic agents and drug delivery carriers in the treatment of human diseases. This article reviews the classification, preparation characterization, physiological processes in the human body, biological functions, and application prospects of FDEs. It aims to provide a reference for the research and application of FDEs in disease treatment.

References

[1]

Kantarcıoğlu, M. New therapeutic players on the horizon: Edible plant derived exosomes. Hepatol. Forum 2021, 2, 89–90.

[2]

López de las Hazas, M. C.; del Pozo-Acebo, L.; Hansen, M. S.; Gil-Zamorano, J.; Mantilla-Escalante, D. C.; Gómez-Coronado, D.; Marín, F.; Garcia-Ruiz, A.; Rasmussen, J. T.; Dávalos, A. Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression. Eur. J. Nutr. 2022, 61, 1043–1056.

[3]

Snow, J. W.; Hale, A. E.; Isaacs, S. K.; Baggish, A. L.; Chan, S. Y. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 2013, 10, 1107–1116.

[4]

del Pozo-Acebo, L.; López de las Hazas, M. C.; Tomé-Carneiro, J.; Gil-Cabrerizo, P.; San-Cristobal, R.; Busto, R.; Garcia-Ruiz, A.; Dávalos, A. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy. Int. J. Mol. Sci. 2021, 22, 1105.

[5]

del Pozo-Acebo, L.; López de las Hazas, M. C.; Tomé-Carneiro, J.; del Saz-Lara, A.; Gil-Zamorano, J.; Balaguer, L.; Chapado, L. A.; Busto, R.; Visioli, F.; Dávalos, A. Therapeutic potential of broccoli-derived extracellular vesicles as nanocarriers of exogenous miRNAs. Pharmacol. Res. 2022, 185, 106472.

[6]

van Niel, G.; D'Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228.

[7]

Karpman, D.; Ståhl, A. L.; Arvidsson, I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol. 2017, 13, 545–562.

[8]

Bei, Y. H.; Xu, T. Z.; Lv, D. C.; Yu, P. J.; Xu, J. H.; Che, L.; Das, A.; Tigges, J.; Toxavidis, V.; Ghiran, I. et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res. Cardiol. 2019, 114, 44.

[9]

Zhao, M.; Liu, S. Y.; Wang, C. S.; Wang, Y. Z.; Wan, M. H.; Liu, F.; Gong, M.; Yuan, Y. J.; Chen, Y. N.; Cheng, J. Q. et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano 2021, 15, 1519–1538.

[10]

Rathmell, W. G.; Sequeira, L. Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Plant Physiol. 1974, 53, 317–318.

[11]

Pinedo, M. L.; Segarra, C.; Conde, R. D. Occurrence of two endoproteinases in wheat leaf intercellular washing fluid. Physiol. Plant. 1993, 88, 287–293.

[12]

Hildonen, S.; Skarpen, E.; Halvorsen, T. G.; Reubsaet, L. Isolation and mass spectrometry analysis of urinary extraexosomal proteins. Sci. Rep. 2016, 6, 36331.

[13]

Agrawal, A. K.; Aqil, F.; Jeyabalan, J.; Spencer, W. A.; Beck, J.; Gachuki, B. W.; Alhakeem, S. S.; Oben, K.; Munagala, R.; Bondada, S. et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine 2017, 13, 1627–1636.

[14]

Simons, M.; Raposo, G. Exosomes - vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009, 21, 575–581.

[15]

Trams, E. G.; Lauter, C. J.; Salem, N. Jr; Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 1981, 645, 63–70.

[16]

Farooqi, A. A.; Desai, N. N.; Qureshi, M. Z.; Nogueira Librelotto, D. R.; Gasparri, M. L.; Bishayee, A.; Nabavi, S. M.; Curti, V.; Daglia, M. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol. Adv. 2018, 36, 328–334.

[17]

Parada, N.; Romero-Trujillo, A.; Georges, N.; Alcayaga-Miranda, F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 2021, 31, 61–74.

[18]

Sall, I. M.; Flaviu, T. A. Plant and mammalian-derived extracellular vesicles: A new therapeutic approach for the future. Front. Bioeng. Biotechnol. 2023, 11, 1215650.

[19]

Ju, S. W.; Mu, J. Y.; Dokland, T.; Zhuang, X. Y.; Wang, Q. L.; Jiang, H.; Xiang, X. Y.; Deng, Z. B.; Wang, B. M.; Zhang, L. F. et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 2013, 21, 1345–1357.

[20]

Dad, H. A.; Gu, T. W.; Zhu, A. Q.; Huang, L. Q.; Peng, L. H. Plant Exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther. 2021, 29, 13–31.

[21]

Mu, J. Y.; Zhuang, X. Y.; Wang, Q. L.; Jiang, H.; Deng, Z. B.; Wang, B. M.; Zhang, L. F.; Kakar, S.; Jun, Y.; Miller, D. et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573.

[22]

Li, Z. F.; Wang, H. Z.; Yin, H. R.; Bennett, C.; Zhang, H. G.; Guo, P. X. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci. Rep. 2018, 8, 14644.

[23]

Teng, Y.; Ren, Y.; Sayed, M.; Hu, X.; Lei, C.; Kumar, A.; Hutchins, E.; Mu, J. Y.; Deng, Z. B.; Luo, C. et al. Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe 2018, 24, 637–652.e8.

[24]

Wang, X. Y.; Zhang, M. Z.; Flores, S. R. L.; Woloshun, R. R.; Yang, C. H.; Yin, L. J.; Xiang, P.; Xu, X. D.; Garrick, M. D.; Vidyasagar, S. et al. Oral gavage of ginger nanoparticle-derived lipid vectors carrying dmt1 siRNA blunts iron loading in murine hereditary hemochromatosis. Mol. Ther. 2019, 27, 493–506.

[25]

Deng, Z. B.; Rong, Y.; Teng, Y.; Mu, J. Y.; Zhuang, X. Y.; Tseng, M.; Samykutty, A.; Zhang, L. F.; Yan, J.; Miller, D. et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic Cell AMP-activated protein kinase. Mol. Ther. 2017, 25, 1641–1654.

[26]

Şahin, F.; Koçak, P.; Güneş, M. Y.; Özkan, İ.; Yıldırım, E.; Kala, E. Y. In vitro wound healing activity of wheat-derived nanovesicles. Appl. Biochem. Biotechnol. 2019, 188, 381–394.

[27]

Raimondo, S.; Naselli, F.; Fontana, S.; Monteleone, F.; Lo Dico, A.; Saieva, L.; Zito, G.; Flugy, A.; Manno, M.; Di Bella, M. A. et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2015, 6, 19514–19527

[28]

Zhao, Z. H.; Yu, S. R.; Li, M.; Gui, X.; Li, P. Isolation of exosome-like nanoparticles and analysis of micrornas derived from coconut water based on small RNA high-throughput sequencing. J. Agric. Food Chem. 2018, 66, 2749–2757.

[29]

Wang, Q. L.; Zhuang, X. Y.; Mu, J. Y.; Deng, Z. B.; Jiang, H.; Zhang, L. F.; Xiang, X. Y.; Wang, B. M.; Yan, J.; Miller, D. et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 2013, 4, 1867.

[30]

Fujita, D.; Arai, T.; Komori, H.; Shirasaki, Y.; Wakayama, T.; Nakanishi, T.; Tamai, I. Apple-derived nanoparticles modulate expression of organic-anion-transporting polypeptide (OATP) 2B1 in Caco-2 cells. Mol. Pharm. 2018, 15, 5772–5780.

[31]

Wu, L.; Wang, L. L.; Liu, X.; Bai, Y. L.; Wu, R. N.; Li, X.; Mao, Y. T.; Zhang, L.; Zheng, Y. X.; Gong, T. et al. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery. Acta Pharm. Sin. B 2022, 12, 2029–2042.

[32]

Schuh, C. M. A. P.; Aguayo, S.; Zavala, G.; Khoury, M. Exosome-like vesicles in Apis mellifera bee pollen, honey and royal jelly contribute to their antibacterial and pro-regenerative activity. J. Exp. Biol. 2019, 222, jeb208702.

[33]

Chen, X. Y.; Liu, B. L.; Li, X. Z.; An, T. T.; Zhou, Y.; Li, G.; Wu-Smart, J.; Alvarez, S.; Naldrett, M. J.; Eudy, J. et al. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J. Extracell. Vesicles 2021, 10, e12069.

[34]

Jiang, M. W.; Li, F. Y.; Liu, Y. H.; Gu, Z. L.; Zhang, L. H.; Lee, J.; He, L. Q.; Vatsalya, V.; Zhang, H. G.; Deng, Z. B. et al. Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation. Hepatology 2023, 77, 1164–1180.

[35]

Kang, C. S.; Ban, M.; Choi, E. J.; Moon, H. G.; Jeon, J. S.; Kim, D. K.; Park, S. K.; Jeon, S. G.; Roh, T. Y.; Myung, S. J. et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One 2013, 8, e76520.

[36]

Zhang, Y.; Bi, J. Y.; Huang, J. Y.; Tang, Y. A.; Du, S. Y.; Li, P. Y. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020, 15, 6917–6934.

[37]

Jiang, Z. J.; Liu, G. Y.; Li, J. P. Recent progress on the isolation and detection methods of exosomes. Chem. Asian J. 2020, 15, 3973–3982.

[38]

He, M.; Crow, J.; Roth, M.; Zeng, Y.; Godwin, A. K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 2014, 14, 3773–3780.

[39]

Chen, C. C.; Skog, J.; Hsu, C. H.; Lessard, R. T.; Balaj, L.; Wurdinger, T.; Carter, B. S.; Breakefield, X. O.; Toner, M.; Irimia, D. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 2010, 10, 505–511.

[40]

An, M. R.; Wu, J.; Zhu, J. H.; Lubman, D. M. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J. Proteome Res. 2018, 17, 3599–3605.

[41]

Jackson, K. K.; Mata, C.; Marcus, R. K. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta 2023, 252, 123779.

[42]

Yang, M.; Liu, X. Y.; Luo, Q. Q.; Xu, L. L.; Chen, F. X. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnol. 2020, 18, 100.

[43]

Huang, W. G.; Yu, Y. R.; Yang, C. Y.; Zhang, X. H.; Shang, L. R.; Zu, Y.; Shi, K. Q. Aptamer decorated magnetic graphene oxide nanoparticles for effective capture of exosomes. Chem. Eng. J. 2022, 431, 133849.

[44]

Yu, L. L.; Zhu, J.; Liu, J. X.; Jiang, F.; Ni, W. K.; Qu, L. S.; Ni, R. Z.; Lu, C. H.; Xiao, M. B. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res. Int. 2018, 2018, 3634563.

[45]

Cantin, R.; Diou, J.; Bélanger, D.; Tremblay, A. M.; Gilbert, C. Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J. Immunol. Methods 2008, 338, 21–30.

[46]

Vergauwen, G.; Dhondt, B.; Van Deun, J.; De Smedt, E.; Berx, G.; Timmerman, E.; Gevaert, K.; Miinalainen, I.; Cocquyt, V.; Braems, G. et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci. Rep. 2017, 7, 2704.

[47]

Shetgaonkar, G. G.; Marques, S. M.; Dcruz, C. E. M.; Vibhavari, R. J. A.; Kumar, L.; Shirodkar, R. K. Exosomes as cell-derivative carriers in the diagnosis and treatment of central nervous system diseases. Drug Deliv. Transl. Res. 2022, 12, 1047–1079.

[48]

Yang, D. B.; Zhang, W. H.; Zhang, H. Y.; Zhang, F. Q.; Chen, L. M.; Ma, L. X.; Larcher, L. M.; Chen, S. X.; Liu, N.; Zhao, Q. X. et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020, 10, 3684–3707.

[49]

Böing, A. N.; van der Pol, E.; Grootemaat, A. E.; Coumans, F. A. W.; Sturk, A.; Nieuwland, R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 2014, 8, 23430.

[50]
Kotmakçı, M.; Akbaba, G. E. Exosome isolation: is there an optimal method with regard to diagnosis or treatment? in Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases. Wang, J., Ed. IntechOpen, 2017.
[51]

Chen, J. C.; Li, P. L.; Zhang, T. Y.; Xu, Z. P.; Huang, X. W.; Wang, R. M.; Du, L. T. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 2022, 9, 811971.

[52]

Wang, Z. Y.; Li, F.; Rufo, J.; Chen, C. Y.; Yang, S. J.; Li, L.; Zhang, J. X.; Cheng, J.; Kim, Y.; Wu, M. X. et al. Acoustofluidic salivary exosome isolation a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection. J. Mol. Diagn. 2020, 22, 50–59.

[53]

Zhang, M. Z.; Viennois, E.; Prasad, M.; Zhang, Y. C.; Wang, L. X.; Zhang, Z.; Han, M. K.; Xiao, B.; Xu, C. L.; Srinivasan, S. et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340.

[54]

Pocsfalvi, G.; Turiák, L.; Ambrosone, A.; del Gaudio, P.; Puska, G.; Fiume, I.; Silvestre, T.; Vékey, K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J. Plant Physiol. 2018, 229, 111–121.

[55]

Xiao, J.; Feng, S. Y.; Wang, X.; Long, K. R.; Luo, Y.; Wang, Y. H.; Ma, J. D.; Tang, Q. Z.; Jin, L.; Li, X. W. et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. Peerj 2018, 6, e5186.

[56]

Zhuang, X. Y.; Deng, Z. B.; Mu, J. Y.; Zhang, L. F.; Yan, J.; Miller, D.; Feng, W. K.; McClain, C. J.; Zhang, H. G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 2015, 4, 28713.

[57]

Potestà, M.; Roglia, V.; Fanelli, M.; Pietrobono, E.; Gismondi, A.; Vumbaca, S.; Nguedia Tsangueu, R. G.; Canini, A.; Colizzi, V.; Grelli, S. et al. Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines. Cell Death Discov. 2020, 6, 43.

[58]

Woith, E.; Melzig, M. F. Extracellular vesicles from fresh and dried plants-simultaneous purification and visualization using gel electrophoresis. Int. J. Mol. Sci. 2019, 20, 357.

[59]

Lawrie, A. S.; Albanyan, A.; Cardigan, R. A.; Mackie, I. J.; Harrison, P. Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang. 2009, 96, 206–212.

[60]

Xu, Y.; Nakane, N.; Maurer-Spurej, E. Novel test for microparticles in platelet-rich plasma and platelet concentrates using dynamic light scattering. Transfusion 2011, 51, 363–370.

[61]

Bhattacharjee, S. DLS and zeta potential - What they are and what they are not. J. Control. Release 2016, 235, 337–351.

[62]

Dragovic, R. A.; Gardiner, C.; Brooks, A. S.; Tannetta, D. S.; Ferguson, D. J. P.; Hole, P.; Carr, B.; Redman, C. W. G.; Harris, A. L.; Dobson, P. J. et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 2011, 7, 780–788.

[63]

Gardiner, C.; Ferreira, Y. J.; Dragovic, R. A.; Redman, C. W. G.; Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. Extracell. Vesicles 2013, 2, 19671.

[64]

Liu, X. Q.; Wang, H. W. Single particle Electron microscopy reconstruction of the exosome complex using the random conical tilt method. J. Vis. Exp. 2011, 49, 2574.

[65]

Hardij, J.; Cecchet, F.; Berquand, A.; Gheldof, D.; Chatelain, C.; Mullier, F.; Chatelain, B.; Dogné, J. M. Characterisation of tissue factor-bearing extracellular vesicles with AFM: Comparison of air-tapping-mode AFM and liquid Peak Force AFM. J. Extracell. Vesicles 2013, 2, 21045.

[66]

Vorselen, D.; van Dommelen, S. M.; Sorkin, R.; Piontek, M. C.; Schiller, J.; Döpp, S. T.; Kooijmans, S. A. A.; van Oirschot, B. A.; Versluijs, B. A.; Bierings, M. B. et al. The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat. Commun. 2018, 9, 4960.

[67]

Ye, S. Y.; Li, W. Z.; Wang, H. Y.; Zhu, L.; Wang, C.; Yang, Y. L. Quantitative nanomechanical analysis of small extracellular vesicles for tumor malignancy indication. Adv. Sci. 2021, 8, 2100825.

[68]

Han, J. M.; Song, H. Y.; Lim, S. T.; Kim, K. I.; Seo, H. S.; Byun, E. B. Immunostimulatory potential of extracellular vesicles isolated from an edible plant, Petasites japonicus, via the induction of murine dendritic cell maturation. Int. J. Mol. Sci. 2021, 22, 10634.

[69]

Jung, M. K.; Mun, J. Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 2018, 131, 56482.

[70]

Tatischeff, I.; Larquet, E.; Falcón-Pérez, J. M.; Turpin, P. Y.; Kruglik, S. G. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J. Extracell. Vesicles 2012, 1, 19179.

[71]

Chukhchin, D. G.; Bolotova, K.; Sinelnikov, I.; Churilov, D.; Novozhilov, E. Exosomes in the phloem and xylem of woody plants. Planta 2020, 251, 12.

[72]

Chen, X. Y.; Zhou, Y.; Yu, J. J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol. Pharm. 2019, 16, 2690–2699.

[73]

Li, X.; Corbett, A. L.; Taatizadeh, E.; Tasnim, N.; Little, J. P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I. T. S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019, 3, 011503.

[74]

Lamparski, H. G.; Metha-Damani, A.; Yao, J. Y.; Patel, S.; Hsu, D. H.; Ruegg, C.; Le Pecq, J. B. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 2002, 270, 211–226.

[75]

Andriolo, G.; Provasi, E.; Lo Cicero, V.; Brambilla, A.; Soncin, S.; Torre, T.; Milano, G.; Biemmi, V.; Vassalli, G.; Turchetto, L. et al. Exosomes from human cardiac progenitor cells for therapeutic applications: Development of a GMP-grade manufacturing method. Front. Physiol. 2018, 9, 1169.

[76]

Pachler, K.; Lener, T.; Streif, D.; Dunai, Z. A.; Desgeorges, A.; Feichtner, M.; Öller, M.; Schallmoser, K.; Rohde, E.; Gimona, M. A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 2017, 19, 458–472.

[77]

Osteikoetxea, X.; Balogh, A.; Szabó-Taylor, K.; Németh, A.; Szabó, T. G.; Pálóczi, K.; Sódar, B.; Kittel, A.; György, B.; Pállinger, E. et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One 2015, 10, e0121184.

[78]

Mihály, J.; Deák, R.; Szigyártó, I. C.; Bóta, A.; Beke-Somfai, T.; Varga, Z. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and C–H stretching vibrations. Biochim. Biophys. Acta Biomembr. 2017, 1859, 459–466.

[79]

Cui, Y.; Gao, J. Y.; He, Y. L.; Jiang, L. W. Plant extracellular vesicles. Protoplasma 2020, 257, 3–12.

[80]

Rutter, B. D.; Innes, R. W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 2017, 173, 728–741.

[81]

Cong, M. H.; Tan, S. Y.; Li, S. M.; Gao, L. N.; Huang, L. Q.; Zhang, H. G.; Qiao, H. Z. Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers. Adv. Drug Deliv. Rev. 2022, 182, 114108.

[82]

Rohner, E.; Yang, R.; Foo, K. S.; Goedel, A.; Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 2022, 40, 1586–1600.

[83]

Kim, J.; Li, S. Y.; Zhang, S. Y.; Wang, J. X. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J. Pharm. Sci. 2022, 17, 53–69.

[84]

An, Q. L.; van Bel, A. J. E.; Hückelhoven, R. Do plant cells secrete exosomes derived from multivesicular bodies. Plant Signal. Behav. 2007, 2, 4–7.

[85]

Movahed, N.; Cabanillas, D. G.; Wan, J.; Vali, H.; Laliberté, J. F.; Zheng, H. Q. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves. Plant Physiol. 2019, 180, 1375–1388.

[86]

Li, X. F.; Bao, H. X. G. D. L.; Wang, Z.; Wang, M. X.; Fan, B. F.; Zhu, C.; Chen, Z. X. Biogenesis and function of multivesicular bodies in plant immunity. Front. Plant Sci. 2018, 9, 797.

[87]

Patil, A. A.; Rhee, W. J. Exosomes: Biogenesis, composition, functions, and their role in pre-metastatic niche formation. Biotechnol. Bioproc. Eng. 2019, 24, 689–701.

[88]

Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L. F.; Théry, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 2013, 126, 5553–5565.

[89]

Wang, J.; Ding, Y.; Wang, J. Q.; Hillmer, S.; Miao, Y. S.; Lo, S. W.; Wang, X. F.; Robinson, D. G.; Jiang, L. W. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 2010, 22, 4009–4030

[90]

He, B. Y.; Hamby, R.; Jin, H. L. Plant extracellular vesicles: Trojan horses of cross-kingdom warfare. FASEB BioAdv. 2021, 3, 657–664.

[91]

Chronopoulos, A.; Kalluri, R. Emerging role of bacterial extracellular vesicles in cancer. Oncogene 2020, 39, 6951–6960.

[92]

Toyofuku, M.; Nomura, N.; Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 2019, 17, 13–24.

[93]

Tulkens, J.; De Wever, O.; Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat. Protoc. 2020, 15, 40–67.

[94]

Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015, 13, 620–630.

[95]

Han, R. N.; Wu, Y.; Han, Y. F.; Liu, X. F.; Liu, H.; Su, J. C. Engineered plant extracellular vesicles for autoimmune diseases therapy. Nano Res. 2024, 17, 2857–2873.

[96]

Homayun, B.; Lin, X. T.; Choi, H. J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019, 11, 129.

[97]

Azman, M.; Sabri, A. H.; Anjani, Q. K.; Mustaffa, M. F.; Hamid, K. A. Intestinal absorption study: Challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals 2022, 15, 975.

[98]

Reinholz, J.; Landfester, K.; Mailänder, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018, 25, 1694–1705.

[99]

Yu, M. R.; Yang, Y. W.; Zhu, C. L.; Guo, S. Y.; Gan, Y. Advances in the transepithelial transport of nanoparticles. Drug Discov. Today 2016, 21, 1155–1161.

[100]

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

[101]

Donoso-Meneses, D.; Figueroa-Valdés, A. I.; Khoury, M.; Alcayaga-Miranda, F. Oral administration as a potential alternative for the delivery of small extracellular vesicles. Pharmaceutics 2023, 15, 716.

[102]

Sriwastva, M. K.; Deng, Z. B.; Wang, B. M.; Teng, Y.; Kumar, A.; Sundaram, K.; Mu, J. Y.; Lei, C.; Dryden, G. W.; Xu, F. Y. et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022, 23, e53365.

[103]

Cao, M.; Yan, H. J.; Han, X.; Weng, L.; Wei, Q.; Sun, X. Y.; Lu, W. G.; Wei, Q. Y.; Ye, J.; Cai, X. T. et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326.

[104]

Mulcahy, L. A.; Pink, R. C.; Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014, 3, 24641.

[105]

Wolf, T.; Baier, S. R.; Zempleni, J. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. J. Nutr. 2015, 145, 2201–2206.

[106]

Izumi, H.; Tsuda, M.; Sato, Y.; Kosaka, N.; Ochiya, T.; Iwamoto, H.; Namba, K.; Takeda, Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J. Dairy Sci. 2015, 98, 2920–2933.

[107]

Stanly, C.; Moubarak, M.; Fiume, I.; Turiák, L.; Pocsfalvi, G. Membrane transporters in Citrus clementina fruit juice-derived nanovesicles. Int. J. Mol. Sci. 2019, 20, 6205.

[108]

Escrevente, C.; Keller, S.; Altevogt, P.; Costa, J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 2011, 11, 108.

[109]

Tian, T.; Wang, Y. Y.; Wang, H. T.; Zhu, Z. Q.; Xiao, Z. D. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem. 2010, 111, 488–496.

[110]

Bissig, C.; Gruenberg, J. ALIX and the multivesicular endosome: ALIX in wonderland. Trends Cell Biol. 2014, 24, 19–25.

[111]

Munir, J.; Lee, M.; Ryu, S. Exosomes in food: Health benefits and clinical relevance in diseases. Adv. Nutr. 2020, 11, 687–696.

[112]

Rivera, A. P.; Flores Monar, G. V.; Islam, H.; Puttagunta, S. M.; Islam, R.; Kundu, S.; Jha, S. B.; Sange, I. Ulcerative colitis-induced colorectal carcinoma: A deleterious concatenation. Cureus 2022, 14, e22636.

[113]

Kleerebezem, M.; Hols, P.; Bernard, E.; Rolain, T.; Zhou, M. M.; Siezen, R. J.; Bron, P. A. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 2010, 34, 199–230.

[114]

Okrozub, V. V.; Lazarenko, L. M.; Sichel, L. M.; Babenko, L. P.; Lytvyn, P. M.; Demchenko, O. M.; Melnichenko, Y. O.; Boyko, N. V.; Biavati, B.; Di Gioia, D. et al. The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J. 2015, 6, 13.

[115]

Rooks, M. G.; Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352.

[116]

Sonnenburg, E. D.; Smits, S. A.; Tikhonov, M.; Higginbottom, S. K.; Wingreen, N. S.; Sonnenburg, J. L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 529, 212–215.

[117]

Lei, C.; Mu, J. Y.; Teng, Y.; He, L. Q.; Xu, F. Y.; Zhang, X. C.; Sundaram, K.; Kumar, A.; Sriwastva, M. K.; Lawrenz, M. B. et al. Lemon exosome-like nanoparticles-manipulated probiotics protect mice from C. diff infection. Iscience 2020, 23, 101571.

[118]

Yu, S. R.; Zhao, Z. H.; Xu, X. Y.; Li, M.; Li, P. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chem. 2019, 272, 372–378.

[119]

Zu, M. H.; Xie, D. C.; Canup, B. S. B.; Chen, N. X.; Wang, Y. J.; Sun, R. X.; Zhang, Z.; Fu, Y. M.; Dai, F. Y.; Xiao, B. 'Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials 2021, 279, 121178

[120]

Yang, W. J.; Ma, Y.; Xu, H. T.; Zhu, Z. H.; Wu, J. X.; Xu, C.; Sun, W.; Zhao, E. H.; Wang, M.; Reis, R. L. et al. Mulberry biomass-derived nanomedicines mitigate colitis through improved inflamed mucosa accumulation and intestinal microenvironment modulation. Research 2023, 6, 0188.

[121]

Liu, Y.; Tan, M. L.; Zhu, W. J.; Cao, Y. N.; Peng, L. X.; Yan, Z. Y.; Zhao, G. In vitro effects of tartary buckwheat-derived nanovesicles on gut microbiota. J. Agric. Food Chem. 2022, 70, 2616–2629.

[122]

Yang, Y. Z.; Weng, W. H.; Peng, J. J.; Hong, L. M.; Yang, L.; Toiyama, Y.; Gao, R. Y.; Liu, M. F.; Yin, M. M.; Pan, C. et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866.e24

[123]

Zempleni, J.; Sukreet, S.; Zhou, F.; Wu, D.; Mutai, E. Milk-derived exosomes and metabolic regulation. Annu. Rev. Anim. Biosci. 2019, 7, 245–262.

[124]

Tong, L. J.; Hao, H. N.; Zhang, Z.; Lv, Y. Y.; Liang, X.; Liu, Q. Q.; Liu, T. J.; Gong, P. M.; Zhang, L. W.; Cao, F. F. et al. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 2021, 11, 8570–8586.

[125]

Zhou, F.; Paz, H. A.; Sadri, M.; Cui, J.; Kachman, S. D.; Fernando, S. C.; Zempleni, J. Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G618–G624.

[126]

Zhang, B. B.; Zhao, J. N.; Jiang, M. J.; Peng, D. D.; Dou, X. B.; Song, Y.; Shi, J. P. The potential role of gut microbial-derived exosomes in metabolic-associated fatty liver disease: Implications for treatment. Front. Immunol. 2022, 13, 893617.

[127]

Keshavarz Azizi Raftar, S.; Ashrafian, F.; Yadegar, A.; Lari, A.; Moradi, H. R.; Shahriary, A.; Azimirad, M.; Alavifard, H.; Mohsenifar, Z.; Davari, M. et al. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol. Spectr. 2021, 9, e0048421.

[128]

Teng, Y.; Mu, J. Y.; Xu, F. Y.; Zhang, X. C.; Sriwastva, M. K.; Liu, Q. M.; Li, X. H.; Lei, C.; Sundaram, K.; Hu, X. et al. Gut bacterial isoamylamine promotes age-related cognitive dysfunction by promoting microglial cell death. Cell Host Microbe 2022, 30, 944–960.e8.

[129]

Shen, Y.; Torchia, M. L. G.; Lawson, G. W.; Karp, C. L.; Ashwell, J. D.; Mazmanian, S. K. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 2012, 12, 509–520.

[130]

König, J.; Wells, J.; Cani, P. D.; García-Ródenas, C. L.; MacDonald, T.; Mercenier, A.; Whyte, J.; Troost, F.; Brummer, R. J. Human intestinal barrier function in health and disease. Clin. Transl. Gastroenterol. 2016, 7, e196.

[131]

Yun, B.; Kim, Y.; Park, D. J.; Oh, S. Comparative analysis of dietary exosome-derived microRNAs from human, bovine and caprine colostrum and mature milk. J. Anim. Sci. Technol. 2021, 63, 593–602.

[132]

Liao, Y. L.; Du, X. G.; Li, J.; Lönnerdal, B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res. 2017, 61, 1700082.

[133]

Suresh, A. P.; Kalarikkal, S. P.; Pullareddy, B.; Sundaram, G. M. Low pH-based method to increase the yield of plant-derived nanoparticles from fresh ginger rhizomes. ACS Omega 2021, 6, 17635–17641.

[134]

Wang, B. M.; Zhuang, X. Y.; Deng, Z. B.; Jiang, H.; Mu, J. Y.; Wang, Q. L.; Xiang, X. Y.; Guo, H. X.; Zhang, L. F.; Dryden, G. et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol. Ther. 2014, 22, 522–534.

[135]

Masters, S. L.; Simon, A.; Aksentijevich, I.; Kastner, D. L. Horror Autoinflammaticus: The molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 2009, 27, 621–668.

[136]

Heneka, M. T.; Kummer, M. P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T. C. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493, 674–678

[137]

Liu, B. L.; Lu, Y. Z.; Chen, X. Y.; Muthuraj, P. G.; Li, X. Z.; Pattabiraman, M.; Zempleni, J.; Kachman, S. D.; Natarajan, S. K.; Yu, J. J. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients 2020, 12, 477.

[138]

Gao, H. N.; Guo, H. Y.; Zhang, H.; Xie, X. L.; Wen, P. C.; Ren, F. Z. Yak-milk-derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment. J. Dairy Sci. 2019, 102, 985–996.

[139]

Takakura, H.; Nakao, T.; Narita, T.; Horinaka, M.; Nakao-Ise, Y.; Yamamoto, T.; Iizumi, Y.; Watanabe, M.; Sowa, Y.; Oda, K. et al. Citrus limon L-derived nanovesicles show an inhibitory effect on cell growth in p53-inactivated colorectal cancer cells via the macropinocytosis pathway. Biomedicines 2022, 10, 1352

[140]

Raimondo, S.; Saieva, L.; Cristaldi, M.; Monteleone, F.; Fontana, S.; Alessandro, R. Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of Citrus limon-derived nanovesicles. J. Proteomics 2018, 173, 1–11.

[141]

Zhang, L.; He, F. J.; Gao, L. N.; Cong, M. H.; Sun, J.; Xu, J. L.; Wang, Y. T.; Hu, Y.; Asghar, S.; Hu, L. H. et al. Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile. Int. J. Nanomed. 2021, 16, 1575–1586.

[142]

Kim, J.; Zhu, Y.; Chen, S. H.; Wang, D. D.; Zhang, S. Y.; Xia, J. X.; Li, S. Y.; Qiu, Q. J.; Lee, H.; Wang, J. X. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation. J. Nanobiotechnol. 2023, 21, 253.

[143]

Jia, G.; Han, Y.; An, Y. L.; Ding, Y. A.; He, C.; Wang, X. H.; Tang, Q. S. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316.

[144]

Kennedy, O. J.; Roderick, P.; Buchanan, R.; Fallowfield, J. A.; Hayes, P. C.; Parkes, J. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: A systematic review and dose-response meta-analysis. BMJ Open 2017, 7, e013739.

[145]

Li, J. P.; Song, Y. L.; Wang, Y. P.; Luo, J. P.; Yu, W. J. MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells. Mol. Cell. Biochem. 2013, 380, 277–282.

[146]

Yao, Q.; Gutierrez, D. C.; Hoang, N. H.; Kim, D.; Wang, R. N.; Hobbs, C.; Zhu, L. Efficient codelivery of paclitaxel and curcumin by novel bottlebrush copolymer-based micelles. Mol. Pharm. 2017, 14, 2378–2389.

[147]

Zhu, N.; Zhang, D. Y.; Wang, W. Y.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.

[148]

Ghasemiyeh, P.; Mohammadi-Samani, S. Lessons we learned during the past four challenging years in the COVID-19 era: Pharmacotherapy, long COVID complications, and vaccine development. Virol. J. 2024, 21, 98.

[149]

Jiang, L. L.; Driedonks, T. A. P.; Jong, W. S. P.; Dhakal, S.; Bart van den Berg van Saparoea, H.; Sitaras, I.; Zhou, R. F.; Caputo, C.; Littlefield, K.; Lowman, M. et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J. Extracell. Vesicles 2022, 11, e12192.

[150]

Kalarikkal, S. P.; Sundaram, G. M. Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol. Appl. Pharmacol. 2021, 414, 115425.

[151]

Zhou, L. K.; Zhou, Z.; Jiang, X. M.; Zheng, Y. S.; Chen, X.; Fu, Z.; Xiao, G. F.; Zhang, C. Y.; Zhang, L. K.; Yi, Y. X. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020, 6, 54.

[152]

Shahagadkar, P.; Shah, H.; Palani, A.; Munirathinam, G. Berry derived constituents in suppressing viral infection: Potential avenues for viral pandemic management. Clin. Nutr. ESPEN 2021, 46, 14–20.

[153]

Cai, Q.; Qiao, L. L.; Wang, M.; He, B. Y.; Lin, F. M.; Palmquist, J.; Huang, S. D.; Jin, H. L. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 2018, 360, 1126–1129.

[154]

Chu, M. P.; Wang, H.; Bian, L. J.; Huang, J. H.; Wu, D. P.; Zhang, R. T.; Fei, F. L.; Chen, Y. G.; Xia, J. Z. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia. Stem Cell Rev Rep. 2022, 18, 2152–2163.

[155]

Zhang, X. Y.; Pan, Z.; Wang, Y. X.; Liu, P. J.; Hu, K. Taraxacum officinale-derived exosome-like nanovesicles modulate gut metabolites to prevent intermittent hypoxia-induced hypertension. Biomed. Pharmacother. 2023, 161, 114572

[156]

Qiu, C.; Zhao, Z. Y.; Xu, C. J.; Yuan, R. R.; Ha, Y. X.; Tu, Q. C.; Zhang, H. Q.; Mu, Z.; Xin, Q. L.; Tian, Y. et al. Nebulized milk exosomes loaded with siTGF-β1 ameliorate pulmonary fibrosis by inhibiting EMT pathway and enhancing collagen permeability. J. Nanobiotechnol. 2024, 22, 434.

[157]

Filler, R.; Yeganeh, M.; Li, B.; Lee, C.; Alganabi, M.; Hock, A.; Biouss, G.; Balsamo, F.; Lee, D.; Miyake, H. et al. Bovine milk-derived exosomes attenuate NLRP3 inflammasome and NF-κB signaling in the lung during neonatal necrotizing enterocolitis. Pediatr. Surg. Int. 2023, 39, 211.

[158]

Li, H. M.; Ma, K.; Dou, H.; Liu, L. J.; Qian, Y.; Li, S. S.; Chen, J. J.; Han, S. P.; Gu, X. Q.; Yin, J. CircABPD1 alleviates oxidative lung injury of bronchopulmonary dysplasia through regulating miR-330-3p/HIF1α axis. Int. J. Biochem. Cell Biol. 2023, 163, 106464.

[159]

Hao, D. C.; Xiao, P. G. Impact of drug metabolism/pharmacokinetics and their relevance upon traditional medicine-based cardiovascular drug research. Curr. Drug Metab. 2019, 20, 556–574.

[160]

Liu, T. J., Qiu, Z. D, Qiu, Y., Chen, Y. J, Hu, S., Liu, D. A preliminary study on protective mechanism of ginseng root exosomes against doxorubicin induced myocardial injury. Chin. Tradit. Herb. Drugs. 2021, 51, 3514–3521.

[161]

Zhao, W. J.; Bian, Y. P.; Wang, Q. H.; Yin, F.; Yin, L.; Zhang, Y. L.; Liu, J. H. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol. Sin. 2022, 43, 645–658.

[162]

Perut, F.; Roncuzzi, L.; Avnet, S.; Massa, A.; Zini, N.; Sabbadini, S.; Giampieri, F.; Mezzetti, B.; Baldini, N. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules 2021, 11, 87.

[163]

Kilasoniya, A.; Garaeva, L.; Shtam, T.; Spitsyna, A.; Putevich, E.; Moreno-Chamba, B.; Salazar-Bermeo, J.; Komarova, E.; Malek, A.; Valero, M. et al. Potential of plant exosome vesicles from grapefruit ( Citrus × paradisi) and tomato ( Solanum lycopersicum) juices as functional ingredients and targeted drug delivery vehicles. Antioxidants 2023, 12, 943.

[164]

Kim, M. K.; Choi, Y. C.; Cho, S. H.; Choi, J. S.; Cho, Y. W. The antioxidant effect of small extracellular vesicles derived from Aloe vera peels for wound healing. Tissue Eng. Regen. Med. 2021, 18, 561–571.

[165]

Baldini, N.; Torreggiani, E.; Roncuzzi, L.; Perut, F.; Zini, N.; Avnet, S. Exosome-like nanovesicles isolated from Citrus limon L. exert antioxidative effect. Curr. Pharm. Biotechnol. 2018, 19, 877–885.

[166]

Díaz-García, D.; Filipoá, A.; Garza-Veloz, I.; Martinez-Fierro, M. L. A beginner's introduction to skin stem cells and wound healing. Int. J. Mol. Sci. 2021, 22, 11030.

[167]

Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314–321.

[168]

Wilkinson, H. N.; Hardman, M. J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223.

[169]

Ahn, H.; Han, B. C.; Hong, E. J.; An, B. S.; Lee, E.; Lee, S. H.; Lee, G. S. Korean Red Ginseng attenuates ultraviolet-mediated inflammasome activation in keratinocytes. J. Ginseng Res. 2021, 45, 456–463.

[170]

Lee, G. Y.; Park, K. G.; Namgoong, S.; Han, S. K.; Jeong, S. H.; Dhong, E. S.; Kim, W. K. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis. Int. Wound J. 2016, 13, 42–46.

[171]

Shin, K. O.; Choe, S. J.; Uchida, Y.; Kim, I.; Jeong, Y.; Park, K. Ginsenoside Rb1 enhances keratinocyte migration by a sphingosine-1-phosphate-dependent mechanism. J. Med. Food 2018, 21, 1129–1136.

[172]

Cho, E. G.; Choi, S. Y.; Kim, H.; Choi, E. J.; Lee, E. J.; Park, P. J.; Ko, J.; Kim, K. P.; Baek, H. S. Panax ginseng-derived extracellular vesicles facilitate anti-senescence effects in human skin cells: An eco-friendly and sustainable way to use ginseng substances. Cells 2021, 10, 486

[173]

Kim, D. K.; Rhee, W. J. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics 2021, 13, 1203.

[174]

Suharta, S.; Barlian, A.; Hidajah, A. C.; Notobroto, H. B.; Ana, I. D.; Indariani, S.; Wungu, T. D. K.; Wijaya, C. H. Plant-derived exosome-like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J. Food Sci. 2021, 86, 2838–2850.

[175]

Hoefsmit, E. P.; Rozeman, E. A.; My Van, T.; Dimitriadis, P.; Krijgsman, O.; Conway, J. W.; da Silva, I. P.; van der Wal, J. E.; Ketelaars, S. L. C.; Bresser, K. et al. Comprehensive analysis of cutaneous and uveal melanoma liver metastases. J. Immunother. Cancer 2020, 8, e001501.

[176]

Rachmin, I.; Ostrowski, S. M.; Weng, Q. Y.; Fisher, D. E. Topical treatment strategies to manipulate human skin pigmentation. Adv. Drug Delivery Rev. 2020, 153, 65–71.

[177]

Lee, R.; Ko, H. J.; Kim, K.; Sohn, Y.; Min, S. Y.; Kim, J. A.; Na, D.; Yeon, J. H. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J. Extracell. Vesicles 2020, 9, 1703480.

[178]

Song, H. L.; Canup, B. S. B.; Ngo, V. L.; Denning, T. L.; Garg, P.; Laroui, H. Internalization of garlic-derived nanovesicles on liver cells is triggered by interaction with CD98. ACS Omega 2020, 5, 23118–23128.

[179]

Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S. J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019, 8, 92.

[180]

Nabavi, S.; Rafraf, M.; Somi, M. H.; Homayouni-Rad, A.; Asghari-Jafarabadi, M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J. Dairy Sci. 2014, 97, 7386–7393.

[181]

Malaguarnera, M.; Vacante, M.; Antic, T.; Giordano, M.; Chisari, G.; Acquaviva, R.; Mastrojeni, S.; Malaguarnera, G.; Mistretta, A.; Volti, G. L. et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci. 2012, 57, 545–553.

[182]

Yau, Y. F.; El-Nezami, H.; Galano, J. M.; Kundi, Z. M.; Durand, T.; Lee, J. C. Y. Lactobacillus rhamnosus GG and oat beta-glucan regulated fatty acid profiles along the gut-liver-brain axis of mice fed with high fat diet and demonstrated antioxidant and anti-inflammatory potentials. Mol. Nutr. Food Res. 2020, 64, 2000566.

[183]

Xu, F. Y.; Mu, J. Y.; Teng, Y.; Zhang, X. C.; Sundaram, K.; Sriwastva, M. K.; Kumar, A.; Lei, C.; Zhang, L. F.; Liu, Q. M. et al. Restoring oat nanoparticles mediated brain memory function of mice fed alcohol by sorting inflammatory dectin-1 complex into microglial exosomes. Small 2022, 18, 2105385.

[184]

Li, Y. H.; Cai, T.; Liu, H. N.; Liu, J.; Chen, S. Y.; Fan, H. D. Exosome-shuttled miR-126 mediates ethanol-induced disruption of neural crest cell-placode cell interaction by targeting SDF1. Toxicol. Sci. 2023, 195, 184–201.

[185]

Agirman, G.; Yu, K. B.; Hsiao, E. Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092.

[186]

Schepici, G.; Bramanti, P.; Mazzon, E. Efficacy of sulforaphane in neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 8637.

[187]

Deng, Z. B.; Rong, Y.; Teng, Y.; Mu, J. Y.; Zhuang, X. Y.; Samykutty, A.; Zhang, L. F.; Yan, J.; Miller, D.; Suttles, J. et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. J. Immunol. 2017, 198, 65.10.

[188]

Thei, L.; Imm, J.; Kaisis, E.; Dallas, M. L.; Kerrigan, T. L. Microglia in Alzheimer's disease: A role for ion channels. Front. Neurosci. 2018, 12, 676.

[189]

Miao, J. F.; Ma, H. X.; Yang, Y.; Liao, Y. P.; Lin, C.; Zheng, J. X.; Yu, M. L.; Lan, J. Microglia in Alzheimer's disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci. 2023, 15, 1201982.

[190]

Hansen, D. V.; Hanson, J. E.; Sheng, M. Microglia in Alzheimer's disease. J. Cell Biol. 2018, 217, 459–472.

[191]

Wu, J.; Gao, G.; Shi, F. J.; Xie, H.; Yang, Q.; Liu, D. D.; Qu, S. C.; Qin, H. F.; Zhang, C. Y.; Xu, G. T. et al. Activated microglia-induced neuroinflammatory cytokines lead to photoreceptor apoptosis in Aβ-injected mice. J. Mol. Med. 2021, 99, 713–728.

[192]

Erny, D.; Hrabě de Angelis, A. L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977.

[193]

Kumar, A.; Sundaram, K.; Teng, Y.; Mu, J. Y.; Sriwastva, M. K.; Zhang, L. F.; Hood, J. L.; Yan, J.; Zhang, X.; Park, J. W. et al. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics 2022, 12, 1388–1403.

[194]

Akao, Y.; Kuranaga, Y.; Heishima, K.; Sugito, N.; Morikawa, K.; Ito, Y.; Soga, T.; Ito, T. Plant hvu-MIR168-3p enhances expression of glucose transporter 1 (SLC2A1) in human cells by silencing genes related to mitochondrial electron transport chain complex I. J. Nutr. Biochem. 2022, 101, 108922.

[195]

Berger, E.; Colosetti, P.; Jalabert, A.; Meugnier, E.; Wiklander, O. P. B.; Jouhet, J.; Errazurig-Cerda, E.; Chanon, S.; Gupta, D.; Rautureau, G. J. P. et al. Use of nanovesicles from orange juice to reverse diet-induced gut modifications in diet-induced obese mice. Mol. Ther. Methods Clin. Dev. 2020, 18, 880–892.

[196]

Zhao, X.; Shi, A. H.; Ma, Q.; Yan, X. Y.; Bian, L. G.; Zhang, P. Y.; Wu, J. Z. Nanoparticles prepared from pterostilbene reduce blood glucose and improve diabetes complications. J. Nanobiotechnol. 2021, 19, 191.

[197]

Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N. M. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103.

[198]

Madav, Y.; Barve, K.; Prabhakar, B. Current trends in theranostics for rheumatoid arthritis. Eur. J. Pharm. Sci. 2020, 145, 105240.

[199]

Da Silva, M. S.; Rudkowska, I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol. Nutr. Food Res. 2015, 59, 1249–1263.

[200]

Arntz, O. J.; Pieters, B. C. H.; Oliveira, M. C.; Broeren, M. G. A.; Bennink, M. B.; de Vries, M.; van Lent, P. L. E. M.; Koenders, M. I.; van den Berg, W. B.; van der Kraan, P. M. et al. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol. Nutr. Food Res. 2015, 59, 1701–1712.

[201]

Sundaram, K.; Miller, D. P.; Kumar, A.; Teng, Y.; Sayed, M.; Mu, J. Y.; Lei, C.; Sriwastva, M. K.; Zhang, L. F.; Jun, Y. et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. Iscience 2019, 21, 308–327.

[202]

Mu, N.; Li, J.; Zeng, L.; You, J.; Li, R.; Qin, A. Q.; Liu, X. P.; Yan, F.; Zhou, Z. Plant-derived exosome-like nanovesicles: Current progress and prospects. Int. J. Nanomed. 2023, 18, 4987–5009.

[203]

Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17.

[204]

Hoppstädter, J.; Dembek, A.; Linnenberger, R.; Dahlem, C.; Barghash, A.; Fecher-Trost, C.; Fuhrmann, G.; Koch, M.; Kraegeloh, A.; Huwer, H. et al. Toll-like receptor 2 release by macrophages: An anti-inflammatory program induced by glucocorticoids and lipopolysaccharide. Front. Immunol. 2019, 10, 1634.

[205]

Kim, S. Q.; Kim, K. H. Emergence of edible plant-derived nanovesicles as functional food components and nanocarriers for therapeutics delivery: Potentials in human health and disease. Cells 2022, 11, 2232.

[206]

Batrakova, E. V.; Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Controlled Release 2015, 219, 396–405.

[207]

Liao, W.; Du, Y.; Zhang, C. H.; Pan, F. W.; Yao, Y.; Zhang, T.; Peng, Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019, 86, 1–14.

[208]

Seo, K.; Yoo, J. H.; Kim, J.; Min, S. J.; Heo, D. N.; Kwon, I. K.; Moon, H. J. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale 2023, 15, 5798–5808.

[209]

Niu, W. B.; Xiao, Q.; Wang, X. J.; Zhu, J. Q.; Li, J. H.; Liang, X. M.; Peng, Y. M.; Wu, C. T.; Lu, R. J.; Pan, Y. et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021, 21, 1484–1492.

[210]

Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R. C. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016, 371, 48–61.

[211]

Teng, Y.; Mu, J. Y.; Hu, X.; Samykutty, A.; Zhuang, X. Y.; Deng, Z. B.; Zhang, L. F.; Cao, P. X.; Yan, J.; Miller, D. et al. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget 2016, 7, 25683–25697.

[212]

Yan, W.; Tao, M. Y.; Jiang, B. F.; Yao, M. C.; Jun, Y. L.; Dai, W. J.; Tang, Z.; Gao, Y.; Zhang, L.; Chen, X. F. et al. Overcoming drug resistance in colon cancer by aptamer-mediated targeted co-delivery of drug and siRNA using grapefruit-derived nanovectors. Cell. Physiol. Biochem. 2018, 50, 79–91.

[213]

Zhang, M. Z.; Wang, X. Y.; Han, M. K.; Collins, J. F.; Merlin, D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine 2017, 12, 1927–1943.

[214]

Wang, Q. L.; Ren, Y.; Mu, J. Y.; Egilmez, N. K.; Zhuang, X. Y.; Deng, Z. B.; Zhang, L. F.; Yan, J.; Miller, D.; Zhang, H. G. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015, 75, 2520–2529.

[215]

Rezaie, J.; Feghhi, M.; Etemadi, T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun. Signaling 2022, 20, 145.

[216]

Zhao, F.; Li, G. Research progress on engineered exosomes in the treatment of liver cancer. J. Hepatopancreatob. Surg. 2023, 35, 697–700,705.

[217]

Vashisht, M.; Rani, P.; Onteru, S. K.; Singh, D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl. Biochem. Biotechnol. 2017, 183, 993–1007.

[218]

Sun, D. M.; Zhuang, X. Y.; Grizzle, W.; Miller, D.; Zhang, H. G. Abstract 4446: A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Cancer Res. 2011, 71, 4446.

[219]

Kim, M. S.; Haney, M. J.; Zhao, Y. L.; Mahajan, V.; Deygen, I.; Klyachko, N. L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O. et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016, 12, 655–664.

[220]

Wahlgren, J.; de L Karlson, T.; Brisslert, M.; Sani, F. V.; Telemo, E.; Sunnerhagen, P.; Valadi, H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucl. Acids Res. 2012, 40, e130.

[221]

Wan, Y.; Wang, L. X.; Zhu, C. D.; Zheng, Q.; Wang, G. X.; Tong, J. L.; Fang, Y.; Xia, Y. Q.; Cheng, G.; He, X. et al. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res. 2018, 78, 798–808.

[222]

Sato, Y. T.; Umezaki, K.; Sawada, S.; Mukai, S. A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep. 2016, 6, 21933.

[223]

Haney, M. J.; Klyachko, N. L.; Zhao, Y. L.; Gupta, R.; Plotnikova, E. G.; He, Z. J.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A. V. et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J. Control. Release 2015, 207, 18–30.

[224]

Mukherjee, A.; Waters, A. K.; Kalyan, P.; Achrol, A. S.; Kesari, S.; Yenugonda, V. M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomed. 2019, 14, 1937–1952.

[225]

Raimondo, S.; Nikolic, D.; Conigliaro, A.; Giavaresi, G.; Lo Sasso, B.; Giglio, R. V.; Chianetta, R.; Manno, M.; Raccosta, S.; Corleone, V. et al. Preliminary results of CitraVes™ effects on low density lipoprotein cholesterol and waist circumference in healthy subjects after 12 weeks: A pilot open-label study. Metabolites 2021, 11, 276.

[226]

Karamanidou, T.; Tsouknidas, A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int. J. Mol. Sci. 2022, 23, 191.

[227]

Théry, C.; Witwer, K. W.; Aikawa, E.; Jose Alcaraz, M.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750.

[228]

Hur, J. Y.; Lee, S.; Shin, W. R.; Kim, Y. H.; Ahn, J. Y. The emerging role of medical foods and therapeutic potential of medical food-derived exosomes. Nanoscale Adv. 2024, 6, 32–50.

[229]

de las Hazas, M. C. L.; Tomé-Carneiro, J.; del Pozo-Acebo, L.; del Saz-Lara, A.; Chapado, L. A.; Balaguer, L.; Rojo, E.; Espín, J. C.; Crespo, C.; Moreno, D. A. et al. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs. Pharmacol. Res. 2023, 198, 106999.

[230]

Greening, D. W.; Xu, R.; Ji, H.; Tauro, B. J.; Simpson, R. J. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol. 2015, 1295, 179–209.

[231]

Coughlan, C.; Bruce, K. D.; Burgy, O.; Boyd, T. D.; Michel, C. R.; Garcia-Perez, J. E.; Adame, V.; Anton, P.; Bettcher, B. M.; Chial, H. J. et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr. Protoc. Cell Biol. 2020, 88, e110.

[232]

Ou, X. Z.; Wang, H. R.; Tie, H. L.; Liao, J. P.; Luo, Y. Y.; Huang, W. J.; Yu, R. M.; Song, L. Y.; Zhu, J. H. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: Preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis. J. Nanobiotechnol. 2023, 21, 160.

[233]

Cieślik, M.; Nazimek, K.; Bryniarski, K. Extracellular vesicles-oral therapeutics of the future. Int. J. Mol. Sci. 2022, 23, 7554.

[234]

Zhang, M. Z.; Viennois, E.; Xu, C. L.; Merlin, D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 2016, 4, e1134415.

[235]

Orefice, N. S.; Di Raimo, R.; Mizzoni, D.; Logozzi, M.; Fais, S. Purposing plant-derived exosomes-like nanovesicles for drug delivery: Patents and literature review. Expert Opin. Ther. Pat. 2023, 33, 89–100.

[236]

Chen, Y. S.; Lin, E. Y.; Chiou, T. W.; Harn, H. J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med. J. 2020, 32, 113–120.

[237]

Barzin, M.; Bagheri, A. M.; Ohadi, M.; Abhaji, A. M.; Salarpour, S.; Dehghannoudeh, G. Application of plant-derived exosome-like nanoparticles in drug delivery. Pharm. Dev. Technol. 2023, 28, 383–402.

[238]

Chen, N. X.; Sun, J. F.; Zhu, Z. H.; Cribbs, A. P.; Xiao, B. Edible plant-derived nanotherapeutics and nanocarriers: Recent progress and future directions. Expert Opin. Drug Deliv. 2022, 19, 409–419.

[239]

Wang, H. M.; Wei, G. G.; Gao, M. Y.; Gu, X. Q.; Mao, S. R. Intranasal absorption of rivastigmine hydrogen tartrate and brain targeting evaluation. Acta Pharm. Sin. 2016, 51, 1616–1621.

[240]

Murphy, D. E.; de Jong, O. G.; Brouwer, M.; Wood, M. J.; Lavieu, G.; Schiffelers, R. M.; Vader, P. Extracellular vesicle-based therapeutics: Natural versus engineered targeting and trafficking. Exp. Mol. Med. 2019, 51, 1–12.

[241]

Elsharkasy, O. M.; Nordin, J. Z.; Hagey, D. W.; de Jong, O. G.; Schiffelers, R. M.; El Andaloussi, S.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how. Adv. Drug Deliv. Rev. 2020, 159, 332–343.

[242]

Cully, M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov. 2021, 20, 6–7.

[243]

Elgundi, Z.; Reslan, M.; Cruz, E.; Sifniotis, V.; Kayser, V. The state-of-play and future of antibody therapeutics. Adv. Drug Deliv. Rev. 2017, 122, 2–19.

[244]

Hansel, T. T.; Kropshofer, H.; Singer, T.; Mitchell, J. A.; George, A. J. T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338.

[245]

Robbins, P. D.; Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 2014, 14, 195–208.

[246]

Maroto, R.; Zhao, Y. X.; Jamaluddin, M.; Popov, V. L.; Wang, H. W.; Kalubowilage, M.; Zhang, Y. Q.; Luisi, J.; Sun, H.; Culbertson, C. T. et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell. Vesicles 2017, 6, 1359478.

[247]

Hu, K. D.; Yang, K. G.; Soumia, C.; Wu, M. Y.; Yan, C.; Li, X. Y.; Wang, Y. Proteomics analysis of Astragalus polysaccharide on TLR4-activated lung cancer cell-derived exosomes. China J. Chin. Mater. Med. 2022, 47, 5908–5915.

[248]

Gioia, C.; Lucchino, B.; Tarsitano, M. G.; Iannuccelli, C.; Di Franco, M. Dietary habits and nutrition in rheumatoid arthritis: Can diet influence disease development and clinical manifestations. Nutrients 2020, 12, 1456.

[249]

Hargreaves, S. M.; Raposo, A.; Saraiva, A.; Zandonadi, R. P. Vegetarian diet: An overview through the perspective of quality of life domains. Int. J. Environ. Res. Public Health 2021, 18, 4067.

[250]

Katz, D. L.; Meller, S. Can we say what diet is best for health. Annu. Rev. Public Health, 2014, 35, 83–103.

[251]

Trakman, G. L.; Fehily, S.; Basnayake, C.; Hamilton, A. L.; Russell, E.; Wilson-O'Brien, A.; Kamm, M. A. Diet and gut microbiome in gastrointestinal disease. J. Gastroenterol. Hepatol. 2022, 37, 237–245.

[252]

Dourado, E.; Ferro, M.; Sousa Guerreiro, C.; Fonseca, J. E. Diet as a modulator of intestinal microbiota in rheumatoid arthritis. Nutrients 2020, 12, 3504.

[253]

Castelli, G.; Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Cerio, A.; Dolo, V.; Pasquini, L.; Screnci, M.; Ottone, T.; Testa, U. et al. Ex vivo anti-leukemic effect of exosome-like grapefruit-derived nanovesicles from organic farming-the potential role of ascorbic acid. Int. J. Mol. Sci. 2023, 24, 15663.

Nano Research
Cite this article:
Yang B, Zhang M, Yue L, et al. Food-derived exosomes as the future of drug delivery. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6961-2
Topics:

144

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 June 2024
Revised: 09 August 2024
Accepted: 11 August 2024
Published: 05 September 2024
© Tsinghua University Press 2024
Return