AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Hollow porous FeCo/Cu/CNTs composite microspheres with excellent microwave absorption performance

Xiaowei Liu1Linhe Yu1Guozhen Zhu1( )Zhipeng Wang1( )Gangjie Lian2,3Xuhui Xiong2Wenbin You2( )Renchao Che2,4,5( )
School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
Nanchang University, Nanchang 330031, China
School of Materials Science & Engineering, Tongii University, Shanghai 201804, China
College of Physics, Donghua University, Shanghai 201620, China
Show Author Information

Graphical Abstract

Abstract

Magnetic/dielectric composite materials with numerous heterointerfaces are highly promising functional materials, which are widely applied in the fields of electromagnetic wave absorption. Constructing heterogeneous structure is beneficial to further enhance the microwave absorption performance of composite materials. However, the process of constructing multi-heterogeneous interfaces is extremely complex. In this work, hollow porous FeCo/Cu/CNTs composite microspheres are prepared by the simple spray drying method and subsequently two-step annealing treatment, which possess abundant heterogeneous interfaces, unique three-dimensional conductive network and magnetic coupling network. This unique structure is beneficial to improving the ability of dielectric loss and magnetic loss, and then achieving an excellent microwave absorption performance. The prepared FeCo/Cu/CNTs-1 composite microspheres maintain a minimum reflection loss (RL) of –48.1 dB and a maximum effective absorption bandwidth of 5.76 GHz at a thickness of 1.8 mm. Generally, this work provides a new idea for designing multi-heterogeneous of microwave absorbing materials.

Electronic Supplementary Material

Download File(s)
6963_ESM.pdf (868.7 KB)

References

[1]

Jia, H. X.; Duan, Y. P.; Wang, M.; Chen, W.; Dou, C. X.; Di, J. R. 1D CNTs assembled MOF-derived hollow CoSe2@N-doped carbon constructed high-efficiency electromagnetic wave absorbers. Carbon 2023, 215, 118400.

[2]

Li, S. X.; Sun, Y. J.; Jiang, X. Z.; Yu, H. Y. Spongy ternary nano-composites with optimized impedance matching and synergistic effect for broadband and strong microwave absorption. J. Colloid Interface Sci. 2023, 652, 1197–1207.

[3]

Li, Z. C.; Liang, J.; Wei, Z. H.; Cao, X.; Shan, J. H.; Li, C. W.; Chen, X. Y.; Zhou, D.; Xing, R. Z.; Luo, C. J. et al. Lightweight foam-like nitrogen-doped carbon nanotube complex achieving highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 168, 114–123.

[4]

Luo, J. H.; Yan, W. X.; Li, X. P.; Shu, P. C.; Mei, J.; Shi, Y. F. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 207–217.

[5]

Peng, G. Y.; Zhou, J. T.; Tao, J. Q.; Wang, W. Z.; Liu, J.; Yao, J. R.; Liu, Y. J.; Yao, Z. J. Magnetic nanoparticle-modified hollow double-shell SiC@C@FeCo with excellent electromagnetic wave Absorption. Nano Res. 2024, 17, 3164–3174.

[6]

Su, Z.; Yi, S.; Zhang, W. Y.; Xu, X. X.; Zhang, Y. Y.; Zhou, S. H.; Niu, B.; Long, D. H. Ultrafine vacancy-rich Nb2O5 semiconductors confined in carbon nanosheets boost dielectric polarization for high-attenuation microwave absorption. Nano-Micro Lett. 2023, 15, 183.

[7]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[8]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
[9]
Xiao, J. X.; Zhan, B. B.; He, M. K.; Qi, X. S.; Gong, X.; Yang, J. L.; Qu, Y. P.; Ding, J. F.; Zhong, W.; Gu, J. W. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316722.
[10]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[11]

Liu, Z.; Wang, B.; Wei, S. C.; Huang, W.; Wang, Y. J.; Liang, Y.; Wang, X. Y. Novel preparation of FeCo alloy/graphene foam composites for efficient microwave absorption. Carbon 2023, 215, 118452.

[12]

Wang, Z. Y.; Tao, J. Q.; Zhang, X. F.; Wei, B.; Yao, Z. J.; Jiang, H.; Liu, J.; Zhou, J. T.; Tao, X. W. Constructing FeCo@C core-shell structure with strong polarization behavior towards excellent microwave absorption performance. Mater. Chem. Phys. 2023, 300, 127553.

[13]

Tan, R. Y.; Zhou, F. K.; Chen, P.; Zhang, B. S.; Zhou, J. T. PANI/FeCo@C composite microspheres with broadband microwave absorption performance. Compos. Sci. Technol. 2022, 218, 109143.

[14]

Cui, X. J.; Jiang, Q. R.; Wang, C. S.; Wang, S. H.; Jiang, Z. Y.; Li, X. A.; Deng, D. H. Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance. Mater. Today Nano 2021, 16, 100138.

[15]

Li, X.; Huang, C.; Wang, Z. L.; Xiang, Z.; Lu, W. Enhanced electromagnetic wave absorption of layered FeCo@carbon nanocomposites with a low filler loading. J. Alloys Compd. 2021, 879, 160465.

[16]

Zhu, B. S.; Li, Y. Y.; Tian, Y. M.; Wang, K. Y.; Wang, Y. K.; Wen, G.; Liang, L. P.; Zhang, K. W.; Li, G. M. Rational design of FeCo/C/FA by recycling of fly ash for electromagnetic pollution. Colloid Surf. A 2021, 627, 127127.

[17]

Kong, L.; Zhang, S. Y.; Liu, Y. J.; Wu, H. J.; Fan, X. M.; Cao, Y. F.; Huang, J. F. Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials. Carbon 2023, 207, 198–206.

[18]

Shi, T.; Yao, Y.; Li, Y.; Lu, S. T.; Qin, W.; Wu, X. H. Inner phase hybridization engineering of core-shell structure confined in graphene scroll for boosting electromagnetic wave absorption. Chem. Eng. J. 2023, 455, 140683.

[19]

Wang, F.; Wang, Z. H.; Li, Y. H.; Guan, S. J.; Wei, S.; Liu, D.; Meng, X. X. Preparation of the urchin-like structured Ti3C2@CNTs for high-performance lithium storage and microwave absorbers. J. Alloys Compd. 2023, 968, 171925.

[20]

Liu, P. P.; Li, Y.; Tang, Z. D.; Lv, J. J.; Cheng, P.; Diao, X. M.; Jiang, Y.; Chen, X.; Wang, G. Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS2@CNTs. J. Energy Chem. 2023, 84, 41–49.

[21]

Shang, K. X.; Miao, C.; Chen, Z. H.; Ouyang, J. Light-weight FeCo/CNTs/HNTs triple-phase magnetic composites for high-performance microwave absorption. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 648, 129121.

[22]

Cao, Y.; Farouk, N.; Mortezaei, N.; Yumashev, A. V.; Akhtar, M. N.; Arabmarkadeh, A. Investigation on microwave absorption characteristics of ternary MWCNTs/CoFe2O4/FeCo nanocomposite coated with conductive PEDOT-polyaniline Co-polymers. Ceram. Int. 2021, 47, 12244–12251.

[23]

Han, Z.; Li, D.; Wang, X. W.; Zhang, Z. D. Microwave response of FeCo/carbon nanotubes composites. J. Appl. Phys. 2011, 109, 07A301.

[24]

Yang, B.; Wu, Y.; Li, X. P.; Yu, R. H. Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers. Mater. Des. 2017, 136, 13–22.

[25]

Bai, H. T.; Yin, P. F.; Lu, X.; Zhang, L. M.; Wu, W. J.; Feng, X.; Wang, J.; Dai, J. W. Recent advances of magnetism-based microwave absorbing composites: An insight from perspective of typical morphologies. J. Mater. Sci.: Mater. Electron. 2021, 32, 25577–25602.

[26]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[27]

Li, C.; Deng, L. W.; He, J.; Peng, S.; Huang, S. X.; Qiu, L. L. Multi-interfacial TiO2/carbon fibers encapsulated with needle-like FeCo2O4 for excellent microwave absorption. Appl. Surf. Sci. 2023, 629, 157417.

[28]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[29]

Liu, Z. L.; Su, S. L.; Zhao, Y. M.; Wang, L. H.; Wang, Y. D. Multi-morphology composite: Particle & petal-shaped ZnFe2O4/flower-shaped ZnO@porous biomass carbon with excellent broadband microwave absorption performance. Carbon 2023, 215, 118448.

[30]

Sun, Q. H.; He, X.; Wu, B. S.; Zhang, H. Y.; Li, J. Y.; Mahmood, N.; Jian, X. Robust carbon bridge to construct double-shell FeCo@C@Al2O3 heterogeneous structure with dual-function for extraordinary microwave absorption and anti-corrosion. Appl. Surf. Sci. 2023, 635, 157626.

[31]
He, Z. Z.; Sun, R.; Xu, H. X.; Geng, W. C.; Liu, P. B. Metal-organic-frameworks derived hollow carbon derivatives: Controllable configurations and optimized microwave absorption. Carbon 2024 , 219 118853.
[32]

Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

[33]

Li, W.; Li, X. C.; Gong, W.; Chen, P. A.; Zhu, Y. L.; Zhu, B. Q. Construction of multiple heterogeneous interface and its effect on microwave absorption of SiBCN ceramics. Ceram. Int. 2020, 46, 7823–7832.

[34]

Peng, C. Y.; Wang, R. C.; Yao, C.; Qiu, J. F.; Liu, X.; Wang, Q.; Wang, W. Nest-like hollow Cu-doped Co/CoO/C microspheres derived from spherical Co-ZIF with controllable microwave absorption performance. Appl. Surf. Sci. 2023, 641, 158496.

[35]

Chang, Q.; Xie, Z. J.; Shi, B.; Wu, H. J. Symbiotic strategy of Cu on CuFe2O4 realizing high-efficiency electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 645, 841–849.

[36]

Wu, H.; Huang, F. Z.; Wang, B. J.; Wang, S. P.; Nie, W. B.; Li, S. K.; Liu, F. H.; Zhang, H. Decorating CoNi alloy-encapsulated Carbon nanotube hollow nanocages to enable dielectric loss for highly efficient microwave absorption. ACS Appl. Nano Mater. 2022, 5, 13187–13197.

[37]

Li, J. J.; Lan, D.; Cheng, Y. H.; Jia, Z. R.; Liu, P. B.; Shi, X. T.; Guo, H.; Feng, A. L.; Feng, X.; Wu, G. L. et al. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: An effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol. 2024, 196, 60–70.

[38]

Wu, N. N.; Zhao, B. B.; Lian, Y. Y.; Liu, S. S.; Xian, Y.; Gu, J. W.; Wu, G. L. Metal organic frameworks derived Ni x Se y @NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 2024, 226, 119215.

[39]

Chen, X. L.; Lan, D.; Zhou, L. T.; Zeng, Z.; Liu, Y. K.; Du, S. X.; Zou, Z. Y.; Wu, G. L. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int. 2024, 50, 24549–24557.

[40]

Hao, Z. W.; Zhou, J.; Lin, S. N.; Lan, D.; Li, H. Y.; Wang, H.; Liu, D.; Gu, J. W.; Wang, X. B.; Wu, G. L. Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 2024, 228, 119323.

[41]

Zhang, Q. L.; Lan, D.; Deng, S. L.; Gu, J. W.; Wang, Y. Q.; Ren, J. W.; Wu, G. L.; Jia, Z. R. Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption. Carbon 2024, 226, 119233.

[42]
Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405523.
[43]

Dong, Y. H.; Lan, D.; Xu, S.; Gu, J. W.; Jia, Z. R.; Wu, G. L. Controllable fiberization engineering of cobalt anchored mesoporous hollow carbon spheres for positive feedback to electromagnetic wave absorption. Carbon 2024, 228, 119339.

[44]

Gao, Z. G.; Lan, D.; Ren, X. Y.; Jia, Z. R.; Wu, G. L. Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 2024, 48, 101922.

[45]

Cao, X. L.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 187.

Nano Research
Cite this article:
Liu X, Yu L, Zhu G, et al. Hollow porous FeCo/Cu/CNTs composite microspheres with excellent microwave absorption performance. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6963-0
Topics:
Part of a topical collection:

121

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 July 2024
Revised: 10 August 2024
Accepted: 11 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return