AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Facile fabrication of large-area hierarchical plasmonic cavities with broadband plasmon resonance for enhanced photocatalytic hydrogen evolution

Yang Li1,2,3,§Jiaoyan Li1,§Chunhua Lu1,2,3( )Jiahui Kou1,2,3( )Zhongzi Xu1,2,3
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China

§ Yang Li and Jiaoyan Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO2 across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO2, this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO2 under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.

Electronic Supplementary Material

Download File(s)
6964_ESM.pdf (10 MB)

References

[1]

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Norskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2016, 16, 70–81.

[2]

Dai, B. Y.; Fang, J. J.; Yu, Y. R.; Sun, M. L.; Huang, H. M.; Lu, C. H.; Kou, J. H.; Zhao, Y. J.; Xu, Z. Z. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2020, 32, 1906361.

[3]

Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z. H.; Xiao, X.; Watanabe, T.; Yamada, T. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 2019, 18, 827–832.

[4]

Song, Y. M.; Zheng, X. L.; Yang, Y. Q.; Liu, Y. H.; Li, J.; Wu, D. X.; Liu, W. F.; Shen, Y. J.; Tian, X. L. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution. Adv. Mater. 2024, 36, 2305835.

[5]

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

[6]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[7]

Yang, M. Q.; Gao, M. M.; Hong, M. H.; Ho, G. W. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, 1802894.

[8]

Wang, X. N.; Wang, F. L.; Sang, Y. H.; Liu, H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700473.

[9]

Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

[10]

Guo, H.; Niu, C. G.; Huang, D. W.; Tang, N.; Liang, C.; Zhang, L.; Wen, X. J.; Yang, Y.; Wang, W. J.; Zeng, G. M. Integrating the plasmonic effect and p–n heterojunction into a novel Ag/Ag2O/PbBiO2Br photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient visible/NIR light photocatalysis. Chem. Eng. J. 2019, 360, 349–363.

[11]

Xu, R.; Wen, L. Y.; Wang, Z. J.; Zhao, H. P.; Xu, S. P.; Mi, Y.; Xu, Y.; Sommerfeld, M.; Fang, Y. G.; Lei, Y. Three-dimensional plasmonic nanostructure design for boosting photoelectrochemical activity. ACS Nano 2017, 11, 7382–7389.

[12]

Li, H. D.; Ali, W.; Wang, Z. C.; Mideksa, M. F.; Wang, F.; Wang, X. L.; Wang, L.; Tang, Z. Y. Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy 2019, 63, 103873.

[13]

Wu, B. H.; Liu, W. T.; Chen, T. Y.; Perng, T. P.; Huang, J. H.; Chen, L. J. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy 2016, 27, 412–419.

[14]

Hu, L. S.; Li, Y.; Peng, X.; Zheng, W. R.; Xu, W.; Zhu, J. Y.; Lee, L. Y. S.; Chu, P. K.; Wong, K. Y. TiO2 film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 417, 127900.

[15]

Yang, Y. L.; Li, F.; Chen, J.; Fan, J. J.; Xiang, Q. J. Single Au atoms anchored on amino-group-enriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem, 2020, 13, 1979–1985.

[16]

Cao, Y. T.; Fung, V.; Yao, Q. F.; Chen, T. K.; Zang, S. Q.; Jiang, D. E.; Xie, J. P. Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nat. Commun. 2020, 11, 5498.

[17]

Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274–5309.

[18]

Jung, Y.; Hwang, I.; Yu, J.; Lee, J.; Choi, J. H.; Jeong, J. H.; Jung, J. Y.; Lee, J. Fano metamaterials on nanopedestals for plasmon-enhanced infrared spectroscopy. Sci. Rep. 2019, 9, 7834.

[19]

Hou, W. B.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

[20]

Miller, M. M.; Lazarides, A. A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556–21565.

[21]

Kim, H. J.; Lee, S. H.; Upadhye, A. A.; Ro, I.; Tejedor-Tejedor, M. I.; Anderson, M. A.; Kim, W. B.; Huber, G. W. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 2014, 8, 10756–10765.

[22]

Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043.

[23]

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

[24]

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

[25]

Khan, A. U.; Zhou, Z. P.; Krause, J.; Liu, G. L. Poly(vinylpyrrolidone)-free multistep synthesis of silver nanoplates with Plasmon resonance in the near infrared range. Small 2017, 13, 1701715.

[26]

Yu, H. K.; Peng, Y. S.; Yang, Y.; Li, Z. Y. Plasmon-enhanced light-matter interactions and applications. npj Comput. Mater. 2019, 5, 45.

[27]

Chang, C. C.; Kort-Kamp, W. J. M.; Nogan, J.; Luk, T. S.; Azad, A. K.; Taylor, A. J.; Dalvit, D. A. R.; Sykora, M.; Chen, H. T. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 2018, 18, 7665–7673.

[28]

Lee, D.; Go, M.; Kim, M.; Jang, J.; Choi, C.; Kim, J. K.; Rho, J. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsyst. Nanoeng. 2021, 7, 14.

[29]

Li, Y.; Lin, C. J.; Li, K. Q.; Chi, C.; Huang, B. L. Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting. Nano Lett. 2022, 22, 5659–5666.

[30]

Li, Y.; Li, D. Z.; Zhou, D.; Chi, C.; Yang, S. H.; Huang, B. L. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL 2018, 2, 1800057.

[31]

Chen, K.; Adato, R.; Altug, H. Dual-band perfect absorber for multispectral Plasmon-enhanced infrared spectroscopy. ACS Nano 2012, 6, 7998–8006.

[32]

Chou, C. C.; Tsao, K. Y.; Wu, C. C.; Yang, H. T.; Chen, C. M. Improved power conversion efficiency for dye-sensitized solar cells using a subwavelength-structured antireflective coating. Appl. Surf. Sci. 2015, 328, 198–204.

[33]

Cheng, L. Z.; Tang, T.; Yang, H. K.; Hao, F. Q.; Wu, G.; Lyu, F.; Bu, Y.; Zhao, Y. L.; Zhao, Y.; Liu, G. et al. The twisting of dome-like metamaterial from brittle to ductile. Adv. Sci. 2021, 8, 2002701.

[34]

Güell-Grau, P.; Pi, F.; Villa, R.; Eskilson, O.; Aili, D.; Nogués, J.; Sepúlveda, B.; Alvarez, M. Elastic plasmonic-enhanced Fabry-Pérot cavities with ultrasensitive stretching tunability. Adv. Mater. 2022, 34, 2106731.

[35]

Shi, Y. J.; Liu, W.; Liu, S. D.; Yang, T. Y.; Dong, Y. M.; Sun, D. G.; Li, G. Y. Strong coupling between plasmonic surface lattice resonance and photonic microcavity modes. Photonics 2022, 9, 84.

[36]

Yao, H. Y.; Chen, N. C.; Chang, T. H.; Winful, H. G. Frequency-dependent cavity lifetime and apparent superluminality in fabry-pérot-like interferometers. Phys. Rev. A 2012, 86, 053832.

[37]

Wang, T.; Peumans, P. Designing a metallic nanoconcentrator for a lateral multijunction photovoltaic Cell. J. Appl. Phys. 2011, 109, 114301.

[38]

Wu, L.; Bai, P.; Li, E. P. Designing surface plasmon resonance of subwavelength hole arrays by studying absorption. J. Opt. Soc. Am. B 2012, 29, 521–528.

[39]

Hartelt, M.; Terekhin, P. N.; Eul, T.; Mahro, A. K.; Frisch, B.; Prinz, E.; Rethfeld, B.; Stadtmüller, B.; Aeschlimann, M. Energy and momentum distribution of surface plasmon-induced hot carriers isolated via spatiotemporal separation. ACS Nano 2021, 15, 19559–19569.

[40]

Xue, M. Q.; Zhang, Z.; Zhu, N.; Wang, F. F.; Zhao, X. S.; Cao, T. B. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Langmuir 2009, 25, 4347–4351.

[41]

Mastai, Y.; Polarz, S.; Antonietti, M. Silica-carbon nanocomposites-a new concept for the design of solar absorbers. 3.0.CO;2-A">Adv. Funct. Mater. 2002, 12, 197–202.

[42]

Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241.

[43]

Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.

[44]

Ruan, X. W.; Li, S. J.; Huang, C. X.; Zheng, W. T.; Cui, X. Q.; Ravi, S. K. Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: Emerging trends in a classical yet contemporary photocatalyst. Adv. Mater. 2024, 36, 2305285.

[45]

Tay, Q.; Chen, Z. Effective charge separation towards enhanced photocatalytic activity via compositing reduced graphene oxide with two-phase anatase/brookite TiO2. Int. J. Hydrogen Energy 2016, 41, 10590–10597.

[46]

Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018, 1, 656–665.

Nano Research
Cite this article:
Li Y, Li J, Lu C, et al. Facile fabrication of large-area hierarchical plasmonic cavities with broadband plasmon resonance for enhanced photocatalytic hydrogen evolution. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6964-z
Topics:

91

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 June 2024
Revised: 26 July 2024
Accepted: 11 August 2024
Published: 29 August 2024
© Tsinghua University Press 2024
Return