AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Colloidal II-VI nanoplatelets for optoelectronic devices: Progress and perspectives

An Hu1,2Li Ma1Xiaoyu Yang1,2Yige Yao2Yunke Zhu2Jingjing Qiu2Shuang Wang3Changjun Lu1( )Yunan Gao2,4,5,6( )
Leyard Optoelectronic Co., Ltd, Beijing 100091, China
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing 100875, China
Frontiers Science Center for Nano-optoelectronics, Beijing 100871, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
Show Author Information

Graphical Abstract

Colloidal II-VI nanoplatelets (NPLs) have vast potential in high-performance optoelectronic devices. This review emphasizes that the control of the symmetrical shell growth of NPLs is critical for the practical utilization of the advantages of NPLs in these devices.

Abstract

Colloidal II-VI nanoplatelets (NPLs) are solution-processable two-dimensional (2D) quantum dots that have vast potential in high-performance optoelectronic applications, including light-emitting diodes, sensors, and lasers. Superior properties, such as ultrapure emission, giant oscillator strength transition, and directional dipoles, have been demonstrated in these NPLs, which can improve the efficiency of light-emitting diodes and lower the threshold of lasers. In this review, we present an overview of the current progress and propose perspectives on the most well-studied II-VI NPLs that are suitable for the optoelectronic applications. We emphasize that the control of the symmetrical shell growth of NPLs is critical for the practical utilization of the advantages of NPLs in these devices.

References

[1]

Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

[2]

Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

[3]

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

[4]

Sanderson, K.; Castelvecchi, D. Tiny “Quantum Dot” particles win chemistry Nobel. Nature 2023, 622, 227–228.

[5]

Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941.

[6]

Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.

[7]

Huang, L.; Ye, Z. K.; Yang, L.; Li, J. Z.; Qin, H. Y.; Peng, X. G. Synthesis of colloidal quantum dots with an ultranarrow photoluminescence peak. Chem. Mater. 2021, 33, 1799–1810.

[8]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[9]

Ahn, N.; Livache, C.; Pinchetti, V.; Jung, H.; Jin, H.; Hahm, D.; Park, Y. S.; Klimov, V. I. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 2023, 617, 79–85.

[10]

Chen, D. D.; Gao, Y.; Chen, Y. Y.; Ren, Y.; Peng, X. G. Structure identification of two-dimensional colloidal semiconductor nanocrystals with atomic flat basal planes. Nano Lett. 2015, 15, 4477–4482.

[11]

Zhang, J.; Sun, Y.; Ye, S.; Song, J.; Qu, J. L. Heterostructures in two-dimensional CdSe nanoplatelets: Synthesis, optical properties, and applications. Chem. Mater. 2020, 32, 9490–9507.

[12]

Pun, A. B.; Mazzotti, S.; Mule, A. S.; Norris, D. J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters. Acc. Chem. Res. 2021, 54, 1545–1554.

[13]

Bai, B.; Zhang, C. X.; Dou, Y. J.; Kong, L. M.; Wang, L.; Wang, S.; Li, J.; Zhou, Y.; Liu, L.; Liu, B. Q. et al. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chem. Soc. Rev. 2023, 52, 318–360.

[14]

Diroll, B. T.; Guzelturk, B.; Po, H.; Dabard, C.; Fu, N. Y.; Makke, L.; Lhuillier, E.; Ithurria, S. 2D II-VI semiconductor nanoplatelets: From material synthesis to optoelectronic integration. Chem. Rev. 2023, 123, 3543–3624.

[15]

Vaxenburg, R.; Rodina, A.; Shabaev, A.; Lifshitz, E.; Efros, A. L. Nonradiative auger recombination in semiconductor nanocrystals. Nano Lett. 2015, 15, 2092–2098.

[16]

Pelton, M.; Andrews, J. J.; Fedin, I.; Talapin, D. V.; Leng, H. X.; O’Leary, S. K. Nonmonotonic dependence of auger recombination rate on shell thickness for CdSe/CdS core/shell nanoplatelets. Nano Lett. 2017, 17, 6900–6906.

[17]

Philbin, J. P.; Brumberg, A.; Diroll, B. T.; Cho, W.; Talapin, D. V.; Schaller, R. D.; Rabani, E. Area and thickness dependence of auger recombination in nanoplatelets. J. Chem. Phys. 2020, 153, 054104.

[18]

Li, Q. Y.; Lian, T. Q. Area- and thickness-dependent biexciton auger recombination in colloidal CdSe nanoplatelets: Breaking the “universal volume scaling law”. Nano Lett. 2017, 17, 3152–3158.

[19]

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Dahlberg, P. D.; Engel, G. S.; Schaller, R. D.; Talapin, D. V. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 9475–9485.

[20]

Taghipour, N.; Delikanli, S.; Shendre, S.; Sak, M.; Li, M. J.; Isik, F.; Tanriover, I.; Guzelturk, B.; Sum, T. C.; Demir, H. V. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nat. Commun. 2020, 11, 3305.

[21]

Geiregat, P.; Rodá, C.; Tanghe, I.; Singh, S.; Di Giacomo, A.; Lebrun, D.; Grimaldi, G.; Maes, J.; Van Thourhout, D.; Moreels, I. et al. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light: Sci. Appl. 2021, 10, 112.

[22]

Hens, Z.; Moreels, I. Light absorption by colloidal semiconductor quantum dots. J. Mater. Chem. 2012, 22, 10406–10415.

[23]

Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

[24]

Park, Y. S.; Lim, J.; Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 2019, 18, 249–255.

[25]

Erdem, T.; Soran-Erdem, Z.; Isik, F.; Shabani, F.; Yazici, A. F.; Mutlugün, E.; Gaponik, N.; Demir, H. V. Color enrichment solids of spectrally pure colloidal quantum wells for wide color span in displays. Adv. Opt. Mater. 2022, 10, 2200161.

[26]

Jung, H.; Ahn, N.; Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655.

[27]

Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Wiederrecht, G. P. Anisotropic photoluminescence from isotropic optical transition dipoles in semiconductor nanoplatelets. Nano Lett. 2018, 18, 4647–4652.

[28]

Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157.

[29]

Scott, R.; Heckmann, J.; Prudnikau, A. V.; Antanovich, A.; Mikhailov, A.; Owschimikow, N.; Artemyev, M.; Climente, J. I.; Woggon, U.; Grosse, N. B. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 2017, 12, 1155–1160.

[30]

Yoon, D. E.; Kim, W. D.; Kim, D.; Lee, D.; Koh, S.; Bae, W. K.; Lee, D. C. Origin of shape-dependent fluorescence polarization from CdSe nanoplatelets. J. Phys. Chem. C 2017, 121, 24837–24844.

[31]

Cunningham, P. D.; Souza, J. B.; Fedin, I.; She, C. X.; Lee, B.; Talapin, D. V. Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology. ACS Nano 2016, 10, 5769–5781.

[32]

Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

[33]

Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 2013, 13, 3321–3328.

[34]

Zhu, Y. K.; Deng, Y. Z.; Bai, P.; Wu, X. N.; Yao, Y. G.; Liu, Q. Y.; Qiu, J. J.; Hu, A.; Tang, Z. Y.; Yu, W. J. et al. Highly efficient light-emitting diodes based on self-assembled colloidal quantum wells. Adv. Mater. 2023, 35, 2305382.

[35]

Califano, M.; Gómez-Campos, F. M. Universal trapping mechanism in semiconductor nanocrystals. Nano Lett. 2013, 13, 2047–2052.

[36]

Rowland, C. E.; Fedin, I.; Zhang, H.; Gray, S. K.; Govorov, A. O.; Talapin, D. V.; Schaller, R. D. Picosecond energy transfer and multiexciton transfer outpaces auger recombination in binary CdSe nanoplatelet solids. Nat. Mater. 2015, 14, 484–489.

[37]

Guzelturk, B.; Erdem, O.; Olutas, M.; Kelestemur, Y.; Demir, H. V. Stacking in colloidal nanoplatelets: Tuning excitonic properties. ACS Nano 2014, 8, 12524–12533.

[38]

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

[39]

Hou, X. Q.; Kang, J.; Qin, H. Y.; Chen, X. W.; Ma, J. L.; Zhou, J. H.; Chen, L. P.; Wang, L. J.; Wang, L. W.; Peng, X. G. Engineering auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 2019, 10, 1750.

[40]

García-Santamaría, F.; Brovelli, S.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Crooker, S. A.; Klimov, V. I. Breakdown of volume scaling in auger recombination in CdSe/CdS heteronanocrystals: The role of the core–shell interface. Nano Lett. 2011, 11, 687–693.

[41]

Bae, W. K.; Padilha, L. A.; Park, Y. S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano 2013, 7, 3411–3419.

[42]

Endres, E. J.; Bairan Espano, J. R.; Koziel, A.; Peng, A. R.; Shults, A. A.; Macdonald, J. E. Controlling phase in colloidal synthesis. ACS Nanosci. Au 2024, 4, 158–175.

[43]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[44]

Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “Giant” core/shell nanocrystal quantum dots. J. Am. Chem. Soc. 2012, 134, 9634–9643.

[45]

Galland, C.; Ghosh, Y.; Steinbrück, A.; Hollingsworth, J. A.; Htoon, H.; Klimov, V. I. Lifetime blinking in nonblinking nanocrystal quantum dots. Nat. Commun. 2012, 3, 908.

[46]

Bradshaw, L. R.; Knowles, K. E.; McDowall, S.; Gamelin, D. R. Nanocrystals for luminescent solar concentrators. Nano Lett. 2015, 15, 1315–1323.

[47]

Lorenzon, M.; Christodoulou, S.; Vaccaro, G.; Pedrini, J.; Meinardi, F.; Moreels, I.; Brovelli, S. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes. Nat. Commun. 2015, 6, 6434.

[48]

Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

[49]

Lim, J.; Park, Y. S.; Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49.

[50]

Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

[51]

Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.

[52]

Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V. I. Colloidal semiconductor nanocrystal lasers and laser diodes. Chem. Rev. 2023, 123, 8251–8296.

[53]

Cragg, G. E.; Efros, A. L. Suppression of auger processes in confined structures. Nano Lett. 2010, 10, 313–317.

[54]

Climente, J. I.; Movilla, J. L.; Planelles, J. Auger recombination suppression in nanocrystals with asymmetric electron–hole confinement. Small 2012, 8, 754–759.

[55]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[56]

Kim, W. D.; Kim, D.; Yoon, D. E.; Lee, H.; Lim, J.; Bae, W. K.; Lee, D. C. Pushing the efficiency envelope for semiconductor nanocrystal-based electroluminescence devices using anisotropic nanocrystals. Chem. Mater. 2019, 31, 3066–3082.

[57]

Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

[58]

Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 2024, 36, 2212220.

[59]

Vashchenko, A. A.; Vitukhnovskii, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vasiliev, R. B.; Sokolikova, M. S. Organic light-emitting diode with an emitter based on a planar layer of CdSe semiconductor nanoplatelets. JETP Lett. 2014, 100, 86–90.

[60]

Liu, J. W.; Guillemeney, L.; Abécassis, B.; Coolen, L. Long range energy transfer in self-assembled stacks of semiconducting nanoplatelets. Nano Lett. 2020, 20, 3465–3470.

[61]

Guzelturk, B.; Olutas, M.; Delikanli, S.; Kelestemur, Y.; Erdem, O.; Demir, H. V. Nonradiative energy transfer in colloidal CdSe nanoplatelet films. Nanoscale 2015, 7, 2545–2551.

[62]

Singh, S.; Tomar, R.; Ten Brinck, S.; De Roo, J.; Geiregat, P.; Martins, J. C.; Infante, I.; Hens, Z. Colloidal CdSe nanoplatelets, a model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals. J. Am. Chem. Soc. 2018, 140, 13292–13300.

[63]

Bai, P.; Hu, A.; Deng, Y. Z.; Tang, Z. Y.; Yu, W. J.; Hao, Y. L.; Yang, S.; Zhu, Y. K.; Xiao, L. X.; Jin, Y. Z. et al. CdSe/CdSeS nanoplatelet light-emitting diodes with ultrapure green color and high external quantum efficiency. J. Phys. Chem. Lett. 2022, 13, 9051–9057.

[64]

Hu, A.; Bai, P.; Zhu, Y. K.; Tang, Z. Y.; Xiao, L. X.; Gao, Y. M. Controlled core/crown growth enables blue-emitting colloidal nanoplatelets with efficient and pure photoluminescence. Small 2022, 18, 2204120.

[65]

Fan, F. J.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G. et al. Colloidal CdSe1– x S x nanoplatelets with narrow and continuously-tunable electroluminescence. Nano Lett. 2015, 15, 4611–4615.

[66]

Zhang, F. J.; Wang, S. J.; Wang, L.; Lin, Q. L.; Shen, H. B.; Cao, W. R.; Yang, C. C.; Wang, H. Z.; Yu, L.; Du, Z. L. et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale 2016, 8, 12182–12188.

[67]

Liu, B. Q.; Sharma, M.; Yu, J. H.; Shendre, S.; Hettiarachchi, C.; Sharma, A.; Yeltik, A.; Wang, L.; Sun, H. D.; Dang, C. N. et al. Light-emitting diodes with Cu-doped colloidal quantum wells: From ultrapure green, tunable dual-emission to white light. Small 2019, 15, 1901983.

[68]

Chen, Z. Y.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B. Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 2014, 24, 295–302.

[69]

Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

[70]

Kelestemur, Y.; Shynkarenko, Y.; Anni, M.; Yakunin, S.; De Giorgi, M. L.; Kovalenko, M. V. Colloidal CdSe quantum wells with graded shell composition for low-threshold amplified spontaneous emission and highly efficient electroluminescence. ACS Nano 2019, 13, 13899–13909.

[71]

Liu, B. Q.; Altintas, Y.; Wang, L.; Shendre, S.; Sharma, M.; Sun, H. D.; Mutlugun, E.; Demir, H. V. Record high external quantum efficiency of 19.2% achieved in light-emitting diodes of colloidal quantum wells enabled by hot-injection shell growth. Adv. Mater. 2020, 32, 1905824.

[72]

Qu, J. L.; Rastogi, P.; Gréboval, C.; Livache, C.; Dufour, M.; Chu, A.; Chee, S. S.; Ramade, J.; Xu, X. Z.; Ithurria, S. et al. Nanoplatelet-based light-emitting diode and its use in all-nanocrystal LiFi-like communication. ACS Appl. Mater. Interfaces 2020, 12, 22058–22065.

[73]

Liang, X.; Durmusoglu, E. G.; Lunina, M.; Hernandez-Martinez, P. L.; Valuckas, V.; Yan, F.; Lekina, Y.; Sharma, V. K.; Yin, T. T.; Ha, S. T. et al. Near-unity emitting, widely tailorable, and stable exciton concentrators built from doubly gradient 2D semiconductor nanoplatelets. ACS Nano 2023, 17, 19981–19992.

[74]

Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 Nm thick CdSe nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861–6864.

[75]

Son, J. S.; Park, K.; Kwon, S. G.; Yang, J.; Choi, M. K.; Kim, J.; Yu, J. H.; Joo, J.; Hyeon, T. Dimension-controlled synthesis of CdS nanocrystals: From 0D quantum dots to 2D nanoplates. Small 2012, 8, 2394–2402.

[76]

Morrison, P. J.; Loomis, R. A.; Buhro, W. E. Synthesis and growth mechanism of lead sulfide quantum platelets in lamellar mesophase templates. Chem. Mater. 2014, 26, 5012–5019.

[77]

Wang, Y. Y.; Zhang, Y.; Wang, F. D.; Giblin, D. E.; Hoy, J.; Rohrs, H. W.; Loomis, R. A.; Buhro, W. E. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 2014, 26, 2233–2243.

[78]

Wang, Y. Y.; Zhou, Y.; Zhang, Y.; Buhro, W. E. Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.

[79]

Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

[80]

Cunningham, P. D.; Coropceanu, I.; Mulloy, K.; Cho, W.; Talapin, D. V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: A connection between clusters, nanowires, and two-dimensional nanoplatelets. ACS Nano 2020, 14, 3847–3857.

[81]

Riedinger, A.; Ott, F. D.; Mule, A.; Mazzotti, S.; Knüsel, P. N.; Kress, S. J. P.; Prins, F.; Erwin, S. C.; Norris, D. J. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater. 2017, 16, 743–748.

[82]

Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

[83]

Gerdes, F.; Navío, C.; Juárez, B. H.; Klinke, C. Size, shape, and phase control in ultrathin CdSe nanosheets. Nano Lett. 2017, 17, 4165–4171.

[84]

Park, H.; Chung, H.; Kim, W. Synthesis of ultrathin wurtzite ZnSe nanosheets. Mater. Lett. 2013, 99, 172–175.

[85]

Pang, Y. P.; Zhang, M. Y.; Chen, D. C.; Chen, W.; Wang, F.; Anwar, S. J.; Saunders, M.; Rowles, M. R.; Liu, L. H.; Liu, S. M. et al. Why do colloidal wurtzite semiconductor nanoplatelets have an atomically uniform thickness of eight monolayers. J. Phys. Chem. Lett. 2019, 10, 3465–3471.

[86]

Sun, H. C.; Wang, F. D.; Buhro, W. E. Tellurium precursor for nanocrystal synthesis: Tris(dimethylamino)phosphine telluride. ACS Nano 2018, 12, 12393–12400.

[87]

Chen, Y. Y.; Chen, D. D.; Li, Z.; Peng, X. G. Symmetry-breaking for formation of rectangular CdSe two-dimensional nanocrystals in zinc-blende structure. J. Am. Chem. Soc. 2017, 139, 10009–10019.

[88]

Christodoulou, S.; Climente, J. I.; Planelles, J.; Brescia, R.; Prato, M.; Martín-Garciá, B.; Khan, A. H.; Moreels, I. Chloride-induced thickness control in CdSe nanoplatelets. Nano Lett. 2018, 18, 6248–6254.

[89]

Knüsel, P. N.; Riedinger, A.; Rossinelli, A. A.; Ott, F. D.; Mule, A. S.; Norris, D. J. Experimental evidence for two-dimensional ostwald ripening in semiconductor nanoplatelets. Chem. Mater. 2020, 32, 3312–3319.

[90]

Ott, F. D.; Riedinger, A.; Ochsenbein, D. R.; Knüsel, P. N.; Erwin, S. C.; Mazzotti, M.; Norris, D. J. Ripening of semiconductor nanoplatelets. Nano Lett. 2017, 17, 6870–6877.

[91]

Riedinger, A.; Mule, A. S.; Knüsel, P. N.; Ott, F. D.; Rossinelli, A. A.; Norris, D. J. Identifying reactive organo-selenium precursors in the synthesis of CdSe nanoplatelets. Chem. Commun. 2018, 54, 11789–11792.

[92]

Bertrand, G. H. V.; Polovitsyn, A.; Christodoulou, S.; Khan, A. H.; Moreels, I. Shape control of zincblende CdSe nanoplatelets. Chem. Commun. 2016, 52, 11975–11978.

[93]

Yoon, D. E.; Lee, J.; Yeo, H.; Ryou, J.; Lee, Y. K.; Kim, Y. H.; Lee, D. C. Atomistics of asymmetric lateral growth of colloidal zincblende CdSe nanoplatelets. Chem. Mater. 2021, 33, 4813–4820.

[94]

Bose, S.; Song, Z. G.; Fan, W. J.; Zhang, D. H. Effect of lateral size and thickness on the electronic structure and optical properties of quasi two-dimensional CdSe and CdS nanoplatelets. J. Appl. Phys. 2016, 119, 143107.

[95]

Achtstein, A. W.; Antanovich, A.; Prudnikau, A.; Scott, R.; Woggon, U.; Artemyev, M. Linear absorption in CdSe nanoplates: Thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 2015, 119, 20156–20161.

[96]

Yao, Y. G.; Bao, X. T.; Zhu, Y. K.; Sui, X.; Hu, A.; Bai, P.; Wang, S. F.; Yang, H.; Liu, X. F.; Gao, Y. N. Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets. Nano Res. 2023, 16, 10420–10428.

[97]

Schlenskaya, N. N.; Yao, Y. Z.; Mano, T.; Kuroda, T.; Garshev, A. V.; Kozlovskii, V. F.; Gaskov, A. M.; Vasiliev, R. B.; Sakoda, K. Scroll-like alloyed CdS x Se1− x nanoplatelets: Facile synthesis and detailed analysis of tunable optical properties. Chem. Mater. 2017, 29, 579–586.

[98]

Geiregat, P.; Tomar, R.; Chen, K.; Singh, S.; Hodgkiss, J. M.; Hens, Z. Thermodynamic equilibrium between excitons and excitonic molecules dictates optical gain in colloidal CdSe quantum wells. J. Phys. Chem. Lett. 2019, 10, 3637–3644.

[99]

Li, Q. Y.; Lian, T. Q. A model for optical gain in colloidal nanoplatelets. Chem. Sci. 2018, 9, 728–734.

[100]

Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

[101]

Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. Near-edge ligand stripping and robust radiative exciton recombination in CdSe/CdS core/crown nanoplatelets. J. Phys. Chem. Lett. 2020, 11, 3339–3344.

[102]

Kelestemur, Y.; Guzelturk, B.; Erdem, O.; Olutas, M.; Gungor, K.; Demir, H. V. Platelet-in-box colloidal quantum wells: CdSe/CdS@CdS core/crown@shell heteronanoplatelets. Adv. Funct. Mater. 2016, 26, 3570–3579.

[103]

Hu, A.; Bai, P.; Zhu, Y. K.; Song, Z. G.; Wang, R. T.; Zheng, J. C.; Yao, Y. G.; Zhang, Q.; Ding, Z. P.; Gao, P. et al. Green CdSe/CdSeS core/alloyed-crown nanoplatelets achieve unity photoluminescence quantum yield over a broad emission range. Adv. Opt. Mater. 2022, 10, 2200469.

[104]

Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

[105]

Hazarika, A.; Fedin, I.; Hong, L.; Guo, J. L.; Srivastava, V.; Cho, W.; Coropceanu, I.; Portner, J.; Diroll, B. T.; Philbin, J. P. et al. Colloidal atomic layer deposition with stationary reactant phases enables precise synthesis of “digital” II-VI nano-heterostructures with exquisite control of confinement and strain. J. Am. Chem. Soc. 2019, 141, 13487–13496.

[106]

Altintas, Y.; Quliyeva, U.; Gungor, K.; Erdem, O.; Kelestemur, Y.; Mutlugun, E.; Kovalenko, M. V.; Demir, H. V. Highly stable, near-unity efficiency atomically flat semiconductor nanocrystals of CdSe/ZnS hetero-nanoplatelets enabled by ZnS-shell hot-injection growth. Small 2019, 15, 1804854.

[107]

Rossinelli, A. A.; Rojo, H.; Mule, A. S.; Aellen, M.; Cocina, A.; De Leo, E.; Schäublin, R.; Norris, D. J. Compositional grading for efficient and narrowband emission in CdSe-based core/shell nanoplatelets. Chem. Mater. 2019, 31, 9567–9578.

[108]

Yoon, D. E.; Yeo, S.; Lee, H.; Cho, H.; Wang, N. F.; Kim, G. M.; Bae, W. K.; Lee, Y. K.; Park, Y. S.; Lee, D. C. Pushing the emission envelope for full-color realization of colloidal semiconductor core/shell nanoplatelets. Chem. Mater. 2022, 34, 9190–9199.

[109]

Rossinelli, A. A.; Riedinger, A.; Marqués-Gallego, P.; Knüsel, P. N.; Antolinez, F. V.; Norris, D. J. High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets. Chem. Commun. 2017, 53, 9938–9941.

[110]

İzmir, M.; Sharma, A.; Shendre, S.; Durmusoglu, E. G.; Sharma, V. K.; Shabani, F.; Baruj, H. D.; Delikanli, S.; Sharma, M.; Demir, H. V. Blue-emitting CdSe nanoplatelets enabled by sulfur-alloyed heterostructures for light-emitting diodes with low turn-on voltage. ACS Appl. Nano Mater. 2022, 5, 1367–1376.

[111]

Gao, Y. N.; Weidman, M. C.; Tisdale, W. A. CdSe nanoplatelet films with controlled orientation of their transition dipole moment. Nano Lett. 2017, 17, 3837–3843.

[112]

Momper, R.; Zhang, H.; Chen, S.; Halim, H.; Johannes, E.; Yordanov, S.; Braga, D.; Blülle, B.; Doblas, D.; Kraus, T. et al. Kinetic control over self-assembly of semiconductor nanoplatelets. Nano Lett. 2020, 6, 4102–4110.

[113]

Erdem, O.; Foroutan, S.; Gheshlaghi, N.; Guzelturk, B.; Altintas, Y.; Demir, H. V. Thickness-tunable self-assembled colloidal nanoplatelet films enable ultrathin optical gain media. Nano Lett. 2020, 20, 6459–6465.

[114]

Bai, P.; Hu, A.; Liu, Y.; Jin, Y. Z.; Gao, Y. N. Printing and in situ assembly of CdSe/CdS nanoplatelets as uniform films with unity in-plane transition dipole moment. J. Phys. Chem. Lett. 2020, 11, 4524–4529.

[115]

Petersen, N.; Girard, M.; Riedinger, A.; Valsson, O. The crucial role of solvation forces in the steric stabilization of nanoplatelets. Nano Lett. 2022, 22, 9847–9853.

[116]

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

[117]

Shen, Y. T.; Liang, L. J.; Zhang, S. Q.; Huang, D. S.; Zhang, J.; Xu, S. P.; Liang, C. Y.; Xu, W. Q. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale 2018, 10, 1622–1630.

[118]

Bi, Y. H.; Cao, S.; Yu, P.; Du, Z. T.; Wang, Y. J.; Zheng, J. J.; Zou, B. S.; Zhao, J. L. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 2023, 19, 2303247.

[119]

Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

[120]

Dai, L. W.; Lesyuk, R.; Karpulevich, A.; Torche, A.; Bester, G.; Klinke, C. From wurtzite nanoplatelets to zinc blende nanorods: Simultaneous control of shape and phase in ultrathin ZnS nanocrystals. J. Phys. Chem. Lett. 2019, 10, 3828–3835.

[121]

Dai, L. W.; Strelow, C.; Kipp, T.; Mews, A.; Benkenstein, I.; Eifler, D.; Vuong, T. H.; Rabeah, J.; McGettrick, J.; Lesyuk, R. et al. Colloidal manganese-doped ZnS nanoplatelets and their optical properties. Chem. Mater. 2021, 33, 275–284.

[122]

Dai, L. W.; Torche, A.; Strelow, C.; Kipp, T.; Vuong, T. H.; Rabeah, J.; Oldenburg, K.; Bester, G.; Mews, A.; Klinke, C. et al. Role of magnetic coupling in photoluminescence kinetics of Mn2+-doped ZnS nanoplatelets. ACS Appl. Mater. Interfaces 2022, 14, 18806–18815.

[123]

Basalaeva, L. S.; Grafova, V. P.; Duda, T. A.; Kurus, N. N.; Vasiliev, R. B.; Milekhin, A. G. Phonons of atomically thin ZnSe nanoplatelets grown by the colloidal method. J. Phys. Chem. C 2023, 127, 13112–13119.

[124]

Wang, F.; Zhang, M. Y.; Chen, W.; Javaid, S.; Yang, H.; Wang, S.; Yang, X. Y.; Zhang, L. C.; Buntine, M. A.; Li, C. S. et al. Atomically thin heavy-metal-free ZnTe nanoplatelets formed from magic-size nanoclusters. Nanoscale Adv. 2020, 2, 3316–3322.

[125]

Dai, L. W.; Strelow, C.; Lesyuk, R.; Klinke, C.; Kipp, T.; Mews, A. Mn 2+-doped ZnSe/ZnS core/shell nanoplatelets as low-toxic UV-to-vis light-converters with enhanced optical properties. ACS Appl. Nano Mater. 2023, 6, 11124–11134.

[126]

Karan, N. S.; Sarkar, S.; Sarma, D. D.; Kundu, P.; Ravishankar, N.; Pradhan, N. Thermally controlled cyclic insertion/ejection of dopant ions and reversible zinc blende/wurtzite phase changes in ZnS nanostructures. J. Am. Chem. Soc. 2011, 133, 1666–1669.

[127]

Bouet, C.; Laufer, D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Patriarche, G.; Dubertret, B. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chem. Mater. 2014, 26, 3002–3008.

[128]

Es, M. S.; Colak, E.; Irfanoglu, A.; Kelestemur, Y. Direct synthesis of zinc-blende ZnSe nanoplatelets. ACS Omega 2024, 9, 27438–27445.

[129]

Huang, B.; Huang, Y. H.; Zhang, H. C.; Lu, X. M.; Gao, X. M.; Zhuang, S. L. Electrochemical control over the optical properties of II-VI colloidal nanoplatelets by tailoring the station of extra charge carriers. ACS Appl. Mater. Interfaces 2023, 15, 21354–21363.

[130]

Ashokan, A.; Han, J.; Hutchison, J. A.; Mulvaney, P. Spectroelectrochemistry of CdSe/Cd x Zn1− x S nanoplatelets. ACS Nano 2023, 17, 1247–1254.

[131]

Dede, D.; Taghipour, N.; Quliyeva, U.; Sak, M.; Kelestemur, Y.; Gungor, K.; Demir, H. V. Highly stable multicrown heterostructures of type-II nanoplatelets for ultralow threshold optical gain. Chem. Mater. 2019, 31, 1818–1826.

[132]

Geuchies, J. J.; Dijkhuizen, R.; Koel, M.; Grimaldi, G.; du Fossé, I.; Evers, W. H.; Hens, Z.; Houtepen, A. J. Zero-threshold optical gain in electrochemically doped nanoplatelets and the physics behind it. ACS Nano 2022, 16, 18777–18788.

Nano Research
Pages 10412-10425
Cite this article:
Hu A, Ma L, Yang X, et al. Colloidal II-VI nanoplatelets for optoelectronic devices: Progress and perspectives. Nano Research, 2024, 17(12): 10412-10425. https://doi.org/10.1007/s12274-024-6965-y
Topics:

388

Views

0

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 30 May 2024
Revised: 23 July 2024
Accepted: 12 August 2024
Published: 14 September 2024
© Tsinghua University Press 2024
Return