AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thermodynamically induced crystal restructuring to make CsPbCl3 single crystal films for weak light detection

Xiyan Pan1,2,§Tai An1,2,§Jie Sun1,2,§Hua Dong3Zhu Ma4Guangxing Liang5Yongbo Yuan6Yang Li7Wuqiang Wu8Yong Ding9Liming Ding1( )
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
School of Physics and Electronics, Central South University, Changsha 410083, China
School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212000, China
School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing 102206, China

§ Xiyan Pan, Tai An, and Jie Sun contributed equally to this work.

Show Author Information

Graphical Abstract

The CsPbCl3 microcrystal film was effectively converted into a single-crystal film using a thermodynamically-induced crystal restructuring method, enabling easy control over the thickness and area of the resulting single-crystal film. The self-powered ultraviolet detector, utilizing CsPbCl3 single-crystal films, demonstrated outstanding performance.

Abstract

CsPbCl3 perovskite is considered a highly promising material for ultraviolet (UV) photodetectors due to its exceptional thermal stability and excellent short-wavelength light response. However, its high lattice energy and low polarizability result in extremely low solubility in conventional solvents, making the synthesis of CsPbCl3 single crystals a significant challenge. In this study, we propose a novel thermodynamically induced crystal restructuring (TICR) process that can transform microcrystalline films (MCFs) into single crystal films (SCFs) within a short period. This method, for the first time, has successfully achieved the synthesis of centimeter-sized CsPbCl3 SCFs and the mechanism has been explored in depth using in-situ techniques. Furthermore, we report the first instance of a CsPbCl3 SCF UV photodiode, which exhibits a record-breaking on/off ratio of 3.32 × 107 and a detectivity of up to 1.15 × 1014 Jones under 0 V bias. It demonstrates excellent response even under weak light conditions of 10 nW·cm² and maintains outstanding stability with almost no performance degradation after 15 months. This study provides a novel approach for the synthesis of perovskite single crystals and holds significant potential for advancing the development of high-performance optoelectronic devices.

Electronic Supplementary Material

Download File(s)
6967_ESM.pdf (3.8 MB)

References

[1]

Li, G. R.; Wong, T. W.; Shih, B.; Guo, C. Y.; Wang, L. W.; Liu, J. Q.; Wang, T.; Liu, X. B.; Yan, J. Y.; Wu, B. S. et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 2023, 14, 7097.

[2]

Romano, V.; Agresti, A.; Verduci, R.; D’Angelo, G. Advances in perovskites for photovoltaic applications in space. ACS Energy Lett. 2022, 7, 2490–2514.

[3]

Zhang, X. J.; Chu, D. P.; Jia, B. X.; Zhao, Z. Q.; Pi, J. C.; Yang, Z.; Li, Y. H.; Hao, J. L.; Shi, R. X.; Dong, X. F. et al. Heterointerface design of perovskite single crystals for high-performance X-ray imaging. Adv. Mater. 2024, 36, 2305513.

[4]

Li, L. Y.; Yu, Y. T.; Li, P.; Liu, J. X.; Liang, L. H.; Wang, L. Y.; Ding, Y.; Han, X. C.; Ji, J. M.; Chen, S. L. et al. The universal growth of ultrathin perovskite single crystals. Adv. Mater. 2022, 34, 2108396.

[5]

Tang, X. B.; Wang, Z. J.; Wu, D.; Wu, Z. H.; Ren, Z. W.; Li, R. X.; Liu, P.; Mei, G. D.; Sun, J. Y.; Yu, J. H. et al. In situ growth mechanism for high-quality hybrid perovskite single-crystal thin films with high area to thickness ratio: Looking for the sweet spot. Adv. Sci. 2022, 9, 2104788.

[6]

Yang, Z.; Xu, Q.; Wang, X. D.; Lu, J. F.; Wang, H.; Li, F. T.; Zhang, L.; Hu, G. F.; Pan, C. F. Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: Low-temperature growth and application for high-performance photodetectors. Adv. Mater. 2018, 30, 1802110.

[7]

Nie, J. H.; Zhang, Y. M.; Li, L. J.; Zhang, Y. High-performance piezophototronic solar cells based on polarization modulation perovskite. Adv. Devices Instrum. 2023, 4, 0025.

[8]

Tian, W. J.; Song, P. Q.; Zhao, Y. P.; Shen, L. N.; Liu, K. K.; Zheng, L. F.; Luo, Y. J.; Tian, C. B.; Xie, L. Q.; Wei, Z. H. Monolithic bilayered In2O3 as an efficient interfacial material for high-performance perovskite solar cells. Interdiscip. Mater. 2022, 1, 526–536.

[9]

Xie, Y. M.; Yao, Q.; Xue, Q. F.; Zeng, Z. X.; Niu, T. Q.; Zhou, Y. Z.; Zhuo, M. P.; Tsang, S. W.; Yip, H. L.; Cao, Y. Subtle side chain modification of triphenylamine-based polymer hole-transport layer materials produces efficient and stable inverted perovskite solar cells. Interdiscip. Mater. 2022, 1, 281–293.

[10]

Pan, X. Y.; Zhang, J. Q.; Zhou, H.; Liu, R. H.; Wu, D. J.; Wang, R.; Shen, L. P.; Tao, L.; Zhang, J.; Wang, H. Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication. Nano-Micro Lett. 2021, 13, 70.

[11]

Liu, Y. C.; Zhang, Y. X.; Zhao, K.; Yang, Z.; Feng, J. S.; Zhang, X.; Wang, K.; Meng, L. N.; Ye, H. C.; Liu, M. et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 2018, 30, 1707314.

[12]

Huang, J. S.; Yuan, Y. B.; Shao, Y. C.; Yan, Y. F. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042.

[13]

Chen, Z. L.; Dong, Q. F.; Liu, Y.; Bao, C. X.; Fang, Y. J.; Lin, Y.; Tang, S.; Wang, Q.; Xiao, X.; Bai, Y. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 2017, 8, 1890.

[14]

Feng, J. G.; Gong, C.; Gao, H. F.; Wen, W.; Gong, Y. J.; Jiang, X. Y.; Zhang, B.; Wu, Y. C.; Wu, Y. S.; Fu, H. B. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron. 2018, 1, 404–410.

[15]

Li, Z. Q.; Liu, X. Y.; Zuo, C. L.; Yang, W.; Fang, X. S. Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors. Adv. Mater. 2021, 33, 2103010.

[16]

Chen, Y. X.; Ge, Q. Q.; Shi, Y.; Liu, J.; Xue, D. J.; Ma, J. Y.; Ding, J.; Yan, H. J.; Hu, J. S.; Wan, L. J. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 2016, 138, 16196–16199.

[17]

Yao, F.; Peng, J. L.; Li, R. M.; Li, W. J.; Gui, P. B.; Li, B. R.; Liu, C.; Tao, C.; Lin, Q. Q.; Fang, G. J. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals. Nat. Commun. 2020, 11, 1194.

[18]

Gui, P. B.; Zhou, H.; Yao, F.; Song, Z. H.; Li, B. R.; Fang, G. J. Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 2019, 15, 1902618.

[19]

He, Y. H.; Stoumpos, C. C.; Hadar, I.; Luo, Z. Z.; McCall, K. M.; Liu, Z. F.; Chung, D. Y.; Wessels, B. W.; Kanatzidis, M. G. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor. J. Am. Chem. Soc. 2021, 143, 2068–2077.

[20]

Li, X.; Liu, C.; Ding, F.; Lu, Z. Y.; Gao, P.; Huang, Z. W.; Dang, W. Q.; Zhang, L. Q.; Lin, X. H.; Ding, S. M. et al. Ultra-stable and sensitive ultraviolet photodetectors based on monocrystalline perovskite thin films. Adv. Funct. Mater. 2023, 33, 2213360.

[21]

Gu, Z. K.; Huang, Z. D.; Li, C.; Li, M. Z.; Song, Y. L. A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 2018, 4, 2390.

[22]

Chen, Y.; Zeng, H. B.; Ma, P. P.; Chen, G. Y.; Jian, J.; Sun, X.; Li, X. M.; Wang, H. Y.; Yin, W. J.; Jia, Q. X. et al. Overcoming the anisotropic growth limitations of free-standing single-crystal halide perovskite films. Angew. Chem., Int. Ed. 2021, 60, 2629–2636.

[23]

Bao, C. X.; Chen, Z. L.; Fang, Y. J.; Wei, H. T.; Deng, Y. H.; Xiao, X.; Li, L. L.; Huang, J. S. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 2017, 29, 03209.

[24]

Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S.; Yu, Y. G.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.

[25]

He, Y. H.; Matei, L.; Jung, H. J.; McCall, K. M.; Chen, M.; Stoumpos, C. C.; Liu, Z. F.; Peters, J. A.; Chung, D. Y.; Wessels, B. W. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 2018, 9, 1609.

[26]

Pan, W. C.; Yang, B.; Niu, G. D.; Xue, K. H.; Du, X. Y.; Yin, L. X.; Zhang, M. Y.; Wu, H. D.; Miao, X. S.; Tang, J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 2019, 31, 1904405.

[27]

Yan, J.; Zheng, Q.; Wang, S. P.; Tian, Y. Z.; Gong, W. Q.; Gao, F.; Qiu, J. J.; Li, L.; Yang, S. H.; Cao, M. S. Multifunctional organic–inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 2023, 35, 2300015.

[28]

Li, X. C.; Meng, Y.; Li, W. P.; Zhang, J.; Dang, C. Q.; Wang, H. Y.; Hung, S. W.; Fan, R.; Chen, F. R.; Zhao, S. et al. Multislip-enabled morphing of all-inorganic perovskites. Nat. Mater. 2023, 22, 1175–1181.

[29]

Schweizer, P.; Sharma, A.; Pethö, L.; Huszar, E.; Vogl, L. M.; Michler, J.; Maeder, X. Atomic scale volume and grain boundary diffusion elucidated by in situ STEM. Nat. Commun. 2023, 14, 7601.

[30]

Yu, X. P.; Liu, Z. Z.; Yang, X. Y.; Wang, Y. D.; Zhang, J. H.; Duan, J. L.; Liu, L. M.; Tang, Q. W. Crystal-plane controlled spontaneous polarization of inorganic perovskite toward boosting triboelectric surface charge density. ACS Appl. Mater. Interfaces 2021, 13, 26196–26203.

[31]

Roknuzzaman, M.; Ostrikov, K.; Wang, H. X.; Du, A. J.; Tesfamichael, T. Towards lead-free perovskite photovoltaics and optoelectronics by ab- initio simulations. Sci. Rep. 2017, 7, 14025.

[32]

Jin, S.; Huang, M.; Kwon, Y.; Zhang, L. N.; Li, B. W.; Oh, S.; Dong, J. C.; Luo, D.; Biswal, M.; Cunning, B. V. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 2018, 362, 1021–1025.

[33]

Al-Handawi, M. B.; Dushaq, G.; Commins, P.; Karothu, D. P.; Rasras, M.; Catalano, L.; Naumov, P. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 2022, 34, 2109374.

[34]

Xue, J.; Zhu, Z. F.; Xu, X. B.; Gu, Y.; Wang, S. L.; Xu, L. M.; Zou, Y. S.; Song, J. Z.; Zeng, H. B.; Chen, Q. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 2018, 18, 7628–7634.

[35]

Li, Z. Q.; Yan, T. T.; Fang, X. S. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 2023, 8, 587–603.

[36]

Fang, Y. J.; Armin, A.; Meredith, P.; Huang, J. S. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2018, 13, 1–4.

Nano Research
Pages 9775-9783
Cite this article:
Pan X, An T, Sun J, et al. Thermodynamically induced crystal restructuring to make CsPbCl3 single crystal films for weak light detection. Nano Research, 2024, 17(11): 9775-9783. https://doi.org/10.1007/s12274-024-6967-9
Topics:

342

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 July 2024
Revised: 09 August 2024
Accepted: 12 August 2024
Published: 13 September 2024
© Tsinghua University Press 2024
Return