Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Dynamic monitoring of blood pressure (BP) is beneficial to obtain comprehensive cardiovascular information of patients throughout the day. However, the clinical BP measurement method relies on wearing a bulky cuff, which limits the long-term monitoring and control of BP. In this work, a microcavity assisted graphene pressure sensor (MAGPS) for single-vessel local BP monitoring is designed to replace the cuff. The microcavity structure increases the working range of the sensor by gas pressure buffering. Therefore, the MAGPS achieves a wide linear response of 0–1050 kPa and sensitivity of 15.4 kPa−1. The large working range and the microcavity structure enable the sensor to fully meet the requirements of BP detection at the radial artery. A database of 228 BP data (60-s data fragment detected by MAGPS) and 11,804 pulse waves from 9 healthy subjects and 5 hypertensive subjects is built. Finally, the BP was detected and analyzed automatically by combining MAGPS and a two-stage convolutional neural network algorithm. For the BP detection method at local radial artery, the first stage algorithm first determines whether the subject has hypertension by the pulse wave. Then, the second stage algorithm can diagnose systolic and diastolic BP with the accuracy of 93.5% and 97.8% within a 10 mmHg error, respectively. This work demonstrates a new BP detection method based on single vessel, which greatly promotes the efficiency of BP detection.
Mills, K. T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237.
Fuchs, F. D.; Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292.
Faraco, G.; Iadecola, C. Hypertension: A harbinger of stroke and dementia. Hypertension 2013, 62, 810–817.
Zhou, B.; Carrillo-Larco, R. M.; Danaei, G.; Riley, L. M.; Paciorek, C. J.; Stevens, G. A.; Gregg, E. W.; Bennett, J. E.; Solomon, B.; Singleton, R. K. et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980.
Chow, C. K.; Teo, K. K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013, 310, 959–968.
Oliveria, S. A.; Chen, R. S.; McCarthy, B. D.; Davis, C. C.; Hill, M. N. Hypertension knowledge, awareness, and attitudes in a hypertensive population. J. Gen. Intern. Med. 2005, 20, 219–225.
Ettehad, D.; Emdin, C. A.; Kiran, A.; Anderson, S. G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 2016, 387, 957–967.
Scheer, B. V.; Perel, A.; Pfeiffer, U. J. Clinical review: Complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit. Care 2002, 6, 199.
Kwon, K.; Kim, J. U.; Won, S. M.; Zhao, J. Z.; Avila, R.; Wang, H. L.; Chun, K. S.; Jang, H.; Lee, K. H.; Kim, J. H. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 2023, 7, 1215–1228.
Chio, S. S.; Urbina, E. M.; LaPointe, J.; Tsai, J.; Berenson, G. S. Korotkoff sound versus oscillometric cuff sphygmomanometers: Comparison between auscultatory and DynaPulse blood pressure measurements. J. Am. Soc. Hypertens. 2011, 5, 12–20.
Babbs, C. F. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements. J. Am. Soc. Hypertens. 2015, 9, 935–950.e3.
Pickering, T. G.; James, G. D.; Boddie, C.; Harshfield, G. A.; Blank, S.; Laragh, J. H. How common is white coat hypertension. JAMA 1988, 259, 225–228.
Ma, Y. J.; Choi, J.; Hourlier-Fargette, A.; Xue, Y. G.; Chung, H. U.; Lee, J. Y.; Wang, X. F.; Xie, Z. Q.; Kang, D.; Wang, H. L. et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl. Acad. Sci. USA 2018, 115, 11144–11149.
Bramwell, J. C.; Hill, A. V. The velocity of pulse wave in man. Proc. Roy. Soc. B 1922, 93, 298–306.
Hughes, D. J.; Babbs, C. F.; Geddes, L. A.; Bourland, J. D. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrason. Imaging 1979, 1, 356–367.
Yi, Z. R.; Liu, Z. X.; Li, W. B.; Ruan, T.; Chen, X.; Liu, J. Q.; Yang, B.; Zhang, W. M. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv. Mater. 2022, 34, 2110291.
Yang, C. X.; Tavassolian, N. Pulse transit time measurement using seismocardiogram, photoplethysmogram, and acoustic recordings: Evaluation and comparison. IEEE J. Biomed. Health Inform. 2018, 22, 733–740.
Kireev, D.; Sel, K.; Ibrahim, B.; Kumar, N.; Akbari, A.; Jafari, R.; Akinwande, D. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 2022, 17, 864–870.
Ibrahim, B.; Jafari, R. Cuffless blood pressure monitoring from a wristband with calibration-free algorithms for sensing location based on bio-impedance sensor array and autoencoder. Sci. Rep. 2022, 12, 319.
Barvik, D.; Cerny, M.; Penhaker, M.; Noury, N. Noninvasive continuous blood pressure estimation from pulse transit time: A review of the calibration models. IEEE Rev. Biomed. Eng. 2021, 15, 138–151.
Lurbe, E.; Torro, I.; Garcia-Vicent, C.; Alvarez, J.; Fernández-Fornoso, J. A.; Redon, J. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension 2012, 60, 550–555.
Chandrasekhar, A.; Kim, C. S.; Naji, M.; Natarajan, K.; Hahn, J. O.; Mukkamala, R. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method. Sci. Transl. Med. 2018, 10, eaap8674.
Fortin, J.; Rogge, D. E.; Fellner, C.; Flotzinger, D.; Grond, J.; Lerche, K.; Saugel, B. A novel art of continuous noninvasive blood pressure measurement. Nat. Commun. 2021, 12, 1387.
Li, S.; Wang, H. M.; Ma, W.; Qiu, L.; Xia, K. L.; Zhang, Y.; Lu, H. J.; Zhu, M. J.; Liang, X. P.; Wu, X. E. et al. Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 2023, 9, eadh0615.
Sempionatto, J. R.; Lin, M. Y.; Yin, L.; De la Paz, E.; Pei, K. X.; Sonsa-Ard, T.; de Loyola Silva, A. N.; Khorshed, A. A.; Zhang, F. Y.; Tostado, N. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748.
Wang, C. H.; Li, X. S.; Hu, H. J.; Zhang, L.; Huang, Z. L.; Lin, M. Y.; Zhang, Z. R.; Yin, Z. N.; Huang, B.; Gong, H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687–695.
Mukherjee, R.; Ghosh, S.; Gupta, B.; Chakravarty, T. A literature review on current and proposed technologies of noninvasive blood pressure measurement. Telemed. e-Health 2018, 24, 185–193.
Panula, T.; Sirkiä, J. P.; Wong, D.; Kaisti, M. Advances in non-invasive blood pressure measurement techniques. IEEE Rev. Biomed. Eng. 2023, 16, 424–438.
Quan, X. N.; Liu, J. J.; Roxlo, T.; Siddharth, S.; Leong, W.; Muir, A.; Cheong, S. M.; Rao, A. Advances in non-invasive blood pressure monitoring. Sensors 2021, 21, 4273.
Wu, Q.; Qiao, Y. C.; Guo, R.; Naveed, S.; Hirtz, T.; Li, X. S.; Fu, Y. X.; Wei, Y. H.; Deng, G.; Yang, Y. et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 2020, 14, 10104–10114.
Barbeau, G. R.; Arsenault, F.; Dugas, L.; Simard, S.; Larivière, M. M. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: Comparison with the Allen’s test in 1010 patients. Am. Heart J. 2004, 147, 489–493.
Forouzanfar, M.; Dajani, H. R.; Groza, V. Z.; Bolic, M.; Rajan, S.; Batkin, I. Oscillometric blood pressure estimation: Past, present, and future. IEEE Rev. Biomed. Eng. 2015, 8, 44–63.
Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620.
Luo, S. D.; Hoang, P. T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531.
Dorin, B.; Parkinson, P.; Scully, P. Direct laser write process for 3D conductive carbon circuits in polyimide. J. Mater. Chem. C 2017, 5, 4923–4930.
Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.
Guan, H.; Meng, J. W.; Cheng, Z. Y.; Wang, X. Q. Processing natural wood into a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2020, 12, 46357–46365.
Hou, C.; Xu, Z. J.; Qiu, W.; Wu, R. H.; Wang, Y. N.; Xu, Q. C.; Liu, X. Y.; Guo, W. X. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 2019, 15, 1805084.
Huang, Y.; Chen, Y.; Fan, X. Y.; Luo, N. Q.; Zhou, S.; Chen, S. C.; Zhao, N.; Wong, C. P. Wood derived composites for high sensitivity and wide linear-range pressure sensing. Small 2018, 14, 1801520.
Li, P. Y.; Zheng, H. W.; Zhao, X.; Ding, R. J.; Xue, F. H.; Xiong, J. H.; Chen, Z.; Peng, Q. Y.; He, X. D. Wide range pressure sensor construction based on tension-compression conversion and gradient stiffness design strategy. Composites Part A 2022, 161, 107082.
Li, T. K.; Chen, L. L.; Yang, X.; Chen, X.; Zhang, Z. H.; Zhao, T. T.; Li, X. F.; Zhang, J. H. A flexible pressure sensor based on an MXene-textile network structure. J. Mater. Chem. C 2019, 7, 1022–1027.
Pang, Y.; Tian, H.; Tao, L. Q.; Li, Y. X.; Wang, X. F.; Deng, N. Q.; Yang, Y.; Ren, T. L. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 2016, 8, 26458–26462.
Qiao, Y. C.; Jian, J. M.; Tang, H.; Ji, S. R.; Liu, Y.; Liu, H. D.; Li, Y. F.; Li, X. S.; Han, F.; Liu, Z. Y. et al. An intelligent nanomesh-reinforced graphene pressure sensor with an ultra large linear range. J. Mater. Chem. A 2022, 10, 4858–4869.
Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.
Yin, Y. M.; Li, H. Y.; Xu, J.; Zhang, C.; Liang, F.; Li, X.; Jiang, Y.; Cao, J. W.; Feng, H. F.; Mao, J. N. et al. Facile fabrication of flexible pressure sensor with programmable lattice structure. ACS Appl. Mater. Interfaces 2021, 13, 10388–10396.
Zhang, W. G.; Xiao, Y.; Duan, Y.; Li, N.; Wu, L. L.; Lou, Y.; Wang, H.; Peng, Z. C. A high-performance flexible pressure sensor realized by overhanging cobweb-like structure on a micropost array. ACS Appl. Mater. Interfaces 2020, 12, 48938–48947.
Jung, H. C.; Moon, J. H.; Baek, D. H.; Lee, J. H.; Choi, Y. Y.; Hong, J. S.; Lee, S. H. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 2012, 59, 1472–1479.
Victor, A.; Ribeiro, J. E.; Araújo, F. F. Study of PDMS characterization and its applications in biomedicine: A review. J. Mech. Eng. Biomech. 2019, 4, 1–9.
Whelton, P. K.; Carey, R. M.; Aronow, W. S.; Casey, D. E. Jr.; Collins, K. J.; Dennison Himmelfarb, C.; DePalma, S. M.; Gidding, S.; Jamerson, K. A.; Jones, D. W. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol 2018, 71, e127–e248.
Yan, W. R.; Peng, R. C.; Zhang, Y. T.; Ho, D. Cuffless continuous blood pressure estimation from pulse morphology of photoplethysmograms. IEEE Access 2019, 7, 141970–141977.
Chen, H. Y.; Xu, S. Y.; Liu, H. D.; Liu, C.; Liu, H. F.; Chen, J. Y.; Huang, H. X.; Gong, H. Y.; Wu, J. Z.; Tang, H. et al. Nanomesh-YOLO: Intelligent colorimetry E-skin based on nanomesh and deep learning object detection algorithm. Adv. Funct. Mater 2024, 34, 2309798.
Yang, J. Z.; Yang, L.; Liu, W. Y.; Du, S.; Xu, L. S.; He, G. Y.; Avolio, A.; Yao, Y. D. Analysis of the radial pulse wave and its clinical applications: A survey. IEEE Access 2021, 9, 157940–157959.
Jiang, Z. X.; Guo, C. X.; Zhang, D. Pressure wrist pulse signal analysis by sparse decomposition using improved Gabor function. Comput. Methods Programs Biomed. 2022, 219, 106766.
Stergiou, G. S.; Alpert, B.; Mieke, S.; Asmar, R.; Atkins, N.; Eckert, S.; Frick, G.; Friedman, B.; Graßl, T.; Ichikawa, T. et al. A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) collaboration statement. Hypertension 2018, 71, 368–374.