AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films

Ronghuan Liu1,2Fan Fang1,2Pai Liu1,2Xijian Duan1,2Kai Wang1,2Xiao Wei Sun1,2( )
Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, and Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Graphical Abstract

This work reports for the first time on a quantum dot color conversion film with liquid encapsulated quantum dots. The liquid encapsulation method provides the quantum dots with self-healing capabilities, greatly enhancing their stability compared to traditional solid-state quantum dot encapsulation solutions.

Abstract

Encapsulation is a widely recognized method for enhancing the stability of colloidal quantum dots (CQDs). However, traditional encapsulation methods for solid-state materials expose encapsulated CQDs to risks such as ligand loss and poor dispersion. Additionally, these encapsulated CQDs still face the risk of aging due to surface ligand bond breakage under high-energy radiation. In this study, we found that quantum dots in solution exhibited enhanced ultraviolet (UV) tolerance compared to their counterparts in solid form under an inert atmosphere. We attribute this enhancement to improved ligand retention and self-healing of quantum dots in solution. Herein, we introduce a novel method for fabricating liquid-encapsulated quantum dot (LEQD) color conversion films. This technique leverages the self-healing capability of ligands in liquid-state quantum dots to enhance the UV and thermal stability of the quantum dot color conversion films. Experimental results demonstrate that LEQD films exhibit better resistance to UV radiation and high temperatures than solid-encapsulated quantum dot (SEQD) color conversion films. After 400 h of exposure to 100 mW blue light-emitting device (LED) light at 60 °C and 90% humidity, the brightness of LEQD film retained 90% of its initial level. This liquid-state quantum dot encapsulation approach offers a promising pathway for developing more durable quantum dot color conversion films.

Electronic Supplementary Material

Download File(s)
6971_ESM.pdf (1.4 MB)

References

[1]

Aniskevich, Y.; Radchanka, A.; Antanovich, A.; Prudnikau, A.; Quick, M. T.; Achtstein, A. W.; Jo, J. H.; Ragoisha, G.; Artemyev, M.; Streltsov, E. Electrophoretically-deposited CdSe quantum dot films for electrochromic displays and smart windows. ACS Appl. Nano Mater. 2021, 4, 6974–6984.

[2]

Chang, K. P.; Wu, C. J.; Lo, C. W.; Lin, Y. S.; Yen, C. C.; Wuu, D. S. Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays. Mater. Sci. Semicond. Process. 2022, 148, 106790.

[3]

Lee, H.; Lee, S. Gram-scale synthesis of core–gradient shell CdSe/Cd1– x Zn x Se1– y S y /ZnS quantum dots with R/G/B emission using eco-friendly hydrolyzed cooking oils: Implications for display applications. ACS Appl. Nano Mater. 2021, 4, 11573–11581.

[4]

Midelet, C.; Petit, G.; Raffy, S.; Hallez, Y.; Marinho, S. M.; Pousthomis, M.; D'Amico, M.; Guérin, F.; Palleau, E.; Ressier, L. On the in situ 3D electrostatic directed assembly of CdSe/CdZnS colloidal quantum nanoplatelets towards display applications. J. Colloid Interface Sci. 2023, 630, 924–933.

[5]

Jones, M.; Nedeljkovic, J.; Ellingson, R. J.; Nozik, A. J.; Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 2003, 107, 11346–11352.

[6]

Müller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Air-induced fluorescence bursts from single semiconductor nanocrystals. Appl. Phys. Lett. 2004, 85, 381–383.

[7]

Pechstedt, K.; Whittle, T.; Baumberg, J.; Melvin, T. Photoluminescence of colloidal CdSe/ZnS quantum dots: The critical effect of water molecules. J. Phys. Chem. C 2010, 114, 12069–12077.

[8]

Cordero, S. R.; Carson, P. J.; Estabrook, R. A.; Strouse, G. F.; Buratto, S. K. Photo-activated luminescence of CdSe quantum dot monolayers. J. Phys. Chem. B 2000, 104, 12137–12142.

[9]

Van Sark, W. G. J. H. M.; Frederix, P. L. T. M.; Bol, A. A.; Gerritsen, H. C.; Meijerink, A. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. 3.0.CO;2-T">ChemPhysChem 2002, 3, 871–879.

[10]

Guan, X. L.; Fan, H. T.; Jia, T. M.; Zhang, D. H.; Zhang, Y.; Lei, Z. Q.; Lai, S. J. A versatile synthetic approach to covalent binding of polymer brushes on CdSe/CdS quantum dots surface: Multitype modification of nanocrystals. Macromol. Chem. Phys. 2016, 217, 664–671.

[11]

Trindade, T.; Neves, M. C.; Barros, A. M. V. Preparation and optical properties of CdSe/polymer nanocomposites. Scr. Mater. 2000, 43, 567–571.

[12]

Fang, F.; Wen, Z. L.; Chen, W.; Wang, Z. J.; Sun, J. Y.; Liu, H. C.; Tang, H. D.; Hao, J. J.; Liu, P.; Xu, B. et al. Thermally processed quantum-dot polypropylene composite color converter film for displays. ACS Appl. Mater. Interfaces 2022, 14, 31160–31169.

[13]

Aubert, T.; Soenen, S. J.; Wassmuth, D.; Cirillo, M.; Van Deun, R.; Braeckmans, K.; Hens, Z. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long-term cell labeling. ACS Appl. Mater. Interfaces 2014, 6, 11714–11723.

[14]

Sung, T. W.; Lo, Y. L. Dual sensing of temperature and oxygen using PtTFPP-doped CdSe/SiO2 core-shell nanoparticles. Sensors Actuat. B: Chem. 2012, 173, 406–413.

[15]

Yang, H. C.; Liu, Y. Z.; Hao, J. J.; Tang, H. D.; Ding, S. H.; Wang, Z. J.; Fang, F.; Wu, D.; Zhang, W. D.; Liu, H. C. et al. Alloyed green-emitting CdZnSeS/ZnS quantum dots with dense protective layers for stable lighting and display applications. ACS Appl. Mater. Interfaces 2021, 13, 32217–32225.

[16]

Arachchige, I. U.; Brock, S. L. Sol–gel assembly of CdSe nanoparticles to form porous aerogel networks. J. Am. Chem. Soc. 2006, 128, 7964–7971.

[17]

Wakaoka, T.; Hirai, K.; Murayama, K.; Takano, Y.; Takagi, H.; Furukawa, S.; Kitagawa, S. Confined synthesis of CdSe quantum dots in the pores of metal-organic frameworks. J. Mater. Chem. C 2014, 2, 7173–7175.

[18]

Yu, M. N.; Saeed, M. H.; Zhang, S. F.; Wei, H. Y.; Gao, Y. Z.; Zou, C.; Zhang, L. Y.; Yang, H. Luminescence enhancement, encapsulation, and patterning of quantum dots toward display applications. Adv. Funct. Mater. 2022, 32, 2109472.

[19]

Greytak, A. B.; Allen, P. M.; Liu, W. H.; Zhao, J.; Young, E. R.; Popović, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 2012, 3, 2028–2034.

[20]

Ayele, D. W.; Chen, H. M.; Su, W. N.; Pan, C. J.; Chen, L. Y.; Chou, H. L.; Cheng, J. H.; Hwang, B. J.; Lee, J. F. Controlled synthesis of CdSe quantum dots by a microwave-enhanced process: A green approach for mass production. Chem. —Eur. J. 2011, 17, 5737–5744.

[21]

Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

[22]

Fan, X. K.; Mu, Z.; Chen, Z.; Zhan, Y. F.; Meng, F. Y.; Li, Y.; Xing, G. C.; Wong, W. Y. An efficient green-emitting quantum dot with near-unity quantum yield and suppressed Auger recombination for high-performance light-emitting diodes. Chem. Eng. J. 2023, 461, 142027.

[23]

Kim, T.; Yoon, C.; Song, Y. G.; Kim, Y. J.; Lee, K. Thermal stabilities of cadmium selenide and cadmium-free quantum dots in quantum dot-silicone nanocomposites. J. Lumin. 2016, 177, 54–58.

[24]

Hens, Z.; Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013, 25, 1211–1221.

[25]

Sher, C. W.; Lin, C. H.; Lin, H. Y.; Lin, C. C.; Huang, C. H.; Chen, K. J.; Li, J. R.; Wang, K. Y.; Tu, H. H.; Fu, C. C. et al. Correction: A high quality liquid-type quantum dot white light-emitting diode. Nanoscale 2018, 10, 6214.

[26]
Krivenkov, V. A.; Samokhvalov, P. S.; Linkov, P. A.; Prokhorov, S. D.; Martynov, I. L.; Chistyakov, A. A.; Nabiev, I. R. Effects of surface ligands and solvents on quantum dot photostability under pulsed UV laser irradiation. In Proceedings of the SPIE 9505, Quantum Optics and Quantum Information Transfer and Processing 2015, Prague, Czech Republic, 2015, pp 118–124.
[27]

Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201.

[28]

Krivenkov, V.; Samokhvalov, P.; Zvaigzne, M.; Martynov, I.; Chistyakov, A.; Nabiev, I. Ligand-mediated photobrightening and photodarkening of CdSe/ZnS quantum dot ensembles. J. Phys. Chem. C 2018, 122, 15761–15771.

[29]

Morshedian, H.; Abolhasani, M. Accelerated photostability studies of colloidal quantum dots. Sol. RRL 2023, 7, 2201119.

[30]

Chen, C. J.; Lin, C. C.; Lien, J. Y.; Wang, S. L.; Chiang, R. K. Preparation of quantum dot/polymer light conversion films with alleviated Forster resonance energy transfer redshift. J. Mater. Chem. C 2015, 3, 196–203.

[31]

Ramvall, P.; Tanaka, S.; Nomura, S.; Riblet, P.; Aoyagi, Y. Confinement induced decrease of the exciton-longitudinal optical phonon coupling in GaN quantum dots. Appl. Phys. Lett. 1999, 75, 1935–1937.

[32]

Wan, J. Z.; Brebner, J. L.; Leonelli, R.; Zhao, G.; Graham, J. T. Temperature dependence of free-exciton photoluminescence in crystalline GaTe. Phys. Rev. B 1993, 48, 5197–5201.

[33]

Hu, Z.; Shu, Y. F.; Qin, H. Y.; Hu, X. F.; Peng, X. G. Water effects on colloidal semiconductor nanocrystals: Correlation of photophysics and photochemistry. J. Am. Chem. Soc. 2021, 143, 18721–18732.

Nano Research
Pages 10127-10133
Cite this article:
Liu R, Fang F, Liu P, et al. Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films. Nano Research, 2024, 17(11): 10127-10133. https://doi.org/10.1007/s12274-024-6971-0
Topics:

863

Views

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 June 2024
Revised: 31 July 2024
Accepted: 15 August 2024
Published: 17 September 2024
© Tsinghua University Press 2024
Return