AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Processing of molybdenum industrial waste into sustainable and efficient nanocatalysts for water electrolysis reactions

Federico Ursino1,2Giacometta Mineo1Antonino Scandurra1,2,3Mario Scuderi4Angelo Forestan5Catya Alba5Riccardo Reitano1Antonio Terrasi1,2Salvo Mirabella1,2( )
Dipartimento di Fisica e Astronomia "Ettore Majorana", Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy
CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), Via Santa Sofia 64, 95125 Catania, Italy
CNR-IMM, Sede Principale, Strada VIII, 95121 Catania, Italy
R & D Spirit Srl-Soc. Unipersonale, Via dei Laghi 67, 36072 Vicenza, Italy
Show Author Information

Graphical Abstract

This work investigates the conversion of recycled industrial waste into molybdenum based nanostructures active for water splitting reactions.

Abstract

The increasing need for sustainable energy and the transition from a linear to a circular economy pose great challenges to the materials science community. In this view, the chance of producing efficient nanocatalysts for water splitting using industrial waste as starting material is attractive. Here, we report low-cost processes to convert Mo-based industrial waste powder into efficient catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). pH controlled hydrothermal processing of Mo-based industrial waste powder leads to pure orthorhombic MoO3 nanobelts (50–200 nm wide, 10 μm long) with promising OER performances at 10 mA·cm−2 with an overpotential of 324 mV and Tafel slope of 45 mV·dec−1 in alkaline electrolyte. Indeed, MoS2/MoO3 nanostructures were obtained after sulfurization during hydrothermal processes of the MoO3 nanobelts. HER tests in acidic environment show a promising overpotential of 208 mV at 10 mA·cm−2 and a Tafel slope of 94 mV·dec−1. OER and HER performances of nanocatalysts obtained from Mo industrial waste powder are comparable or better than Mo-based nanocatalysts obtained from pure commercial Mo reagent. This work shows the great potential of reusing industrial waste for energy applications, opening a promising road to join waste management and efficient and sustainable nanocatalysts for water splitting.

Electronic Supplementary Material

Download File(s)
6972_ESM.pdf (1.9 MB)

References

[1]

Wei, M.; McMillan, C. A.; De La Rue Du Can, S. Electrification of industry: Potential, challenges and outlook. Curr. Sustain. Renew. Energy Rep. 2019, 6, 140–148.

[2]

Oliveira, A. M.; Beswick, R. R.; Yan, Y. S. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 2021, 33, 100701.

[3]

Leal Filho, W.; Kotter, R.; Özuyar, P. G.; Abubakar, I. R.; Eustachio, J. H. P. P.; Matandirotya, N. R. Understanding rare earth elements as critical raw materials. Sustainability 2023, 15, 1919.

[4]

Agnihotri, A. S.; Varghese, A.; Nidhin, M. Transition metal oxides in electrochemical and bio sensing: A state-of-art review. Appl. Surf. Sci. Adv. 2021, 4, 100072.

[5]

De Castro, I. A.; Datta, R. S.; Ou, J. Z.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-Zadeh, K. Molybdenum oxides-from fundamentals to functionality. Adv. Mater. 2017, 29, 1701619.

[6]
European Commission. RMIS —Raw Materials Information System [Online]. https://rmis.jrc.ec.europa.eu/ (accessed Sep 4, 2024).
[7]

Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Wang, C.; Gao, L. G.; Ma, T. L. One-dimensional MoO2-Co2Mo3O8@C nanorods: A novel and highly efficient oxygen evolution reaction catalyst derived from metal-organic framework composites. Chem. Commun. 2018, 54, 2739–2742.

[8]

Kim, K. H.; Hong, D.; Kim, M. G.; Choi, W.; Min, T.; Kim, Y. M.; Choi, Y. H. Improving electrocatalytic activity of MoO3 for the oxygen evolution reaction by incorporation of Li ions. ACS Mater. Lett. 2023, 5, 1196–1201.

[9]

Chen, Y.; Liu, Y. D.; Li, L.; Sakthivel, T.; Guo, Z. X.; Dai, Z. F. Intensifying the supported ruthenium metallic bond to boost the interfacial hydrogen spillover toward pH-universal hydrogen evolution catalysis. Adv. Funct. Mater. 2024, 34, 2401452.

[10]

Lai, B.; Singh, S. C.; Bindra, J. K.; Saraj, C. S.; Shukla, A.; Yadav, T. P.; Wu, W.; McGill, S. A.; Dalal, N. S.; Srivastava, A. et al. Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS2 nanosheets in acidic and alkaline electrolytes. Mater. Today Chem. 2019, 14, 100207.

[11]

Duraisamy, S.; Ganguly, A.; Sharma, P. K.; Benson, J.; Davis, J.; Papakonstantinou, P. One-step hydrothermal synthesis of phase-engineered MoS2/MoO3 electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater. 2021, 4, 2642–2656.

[12]

Julien, C.; Khelfa, A.; Hussain, O. M.; Nazri, G. A. Synthesis and characterization of flash-evaporated MoO3 thin films. J. Cryst. Growth 1995, 156, 235–244.

[13]

Guo, Y. Z.; Robertson, J. Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 2014, 105, 222110.

[14]

Kodan, N.; Singh, A. P.; Vandichel, M.; Wickman, B.; Mehta, B. R. Favourable band edge alignment and increased visible light absorption in β-MoO3/α-MoO3 oxide heterojunction for enhanced photoelectrochemical performance. Int. J. Hydrogen Energy 2018, 43, 15773–15783.

[15]

Omeiza, L. A.; Abdalla, A. M.; Wei, B.; Dhanasekaran, A.; Subramanian, Y.; Afroze, S.; Reza, M. S.; Bakar, S. A.; Azad, A. K. Nanostructured electrocatalysts for advanced applications in fuel cells. Energies 2023, 16, 1876.

[16]

Chithambararaj, A.; Bose, A. C. Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J. Alloys Compd. 2011, 509, 8105–8110.

[17]

Cai, L. L.; Rao, P. M.; Zheng, X. L. Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays. Nano Lett. 2011, 11, 872–877.

[18]

Lupan, O.; Cretu, V.; Deng, M.; Gedamu, D.; Paulowicz, I.; Kaps, S.; Mishra, Y. K.; Polonskyi, O.; Zamponi, C.; Kienle, L. et al. Versatile growth of freestanding orthorhombic α-molybdenum trioxide nano- and microstructures by rapid thermal processing for gas nanosensors. J. Phys. Chem. C 2014, 118, 15068–15078.

[19]

Chen, Y. P.; Lu, C. L.; Xu, L.; Ma, Y.; Hou, W. H.; Zhu, J. J. Single-crystalline orthorhombic molybdenum oxide nanobelts: Synthesis and photocatalytic properties. CrystEngComm 2010, 12, 3740.

[20]

Xu, H. P.; Liu, C. H.; Srinivasakannan, C.; Chen, M. H.; Wang, Q.; Li, L. B.; Dai, Y. Hydrothermal synthesis of one-dimensional α-MoO3 nanomaterials and its unique sensing mechanism for ethanol. Arabian J. Chem. 2022, 15, 104083.

[21]

Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726.

[22]

Chen, G. Y.; Lu, B. C.; Cui, X. Y.; Xiao, J. R. Effects of deposition and annealing temperature on the structure and optical band gap of MoS2 films. Materials 2020, 13, 5515.

[23]

Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T’-MoS2-and 1T’-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

[24]

Soni, A.; Das, P. K.; Hashmi, A. W.; Yusuf, M.; Kamyab, H.; Chelliapan, S. Challenges and opportunities of utilizing municipal solid waste as alternative building materials for sustainable development goals: A review. Sustain. Chem. Pharm. 2022, 27, 100706.

[25]

Scaglia, M.; Cornelio, A.; Zanoletti, A.; La Corte, D.; Biava, G.; Alessandri, I.; Forestan, A.; Alba, C.; Depero, L. E.; Bontempi, E. Microwave-assisted recovery of spent LiCoO2 battery from the corresponding black mass. Batteries 2023, 9, 536.

[26]

Shen, H. C.; Yang, Z. H.; Bao, Y. X.; Xia, X. N.; Wang, D. Impact of urban mining on energy efficiency: Evidence from China. Sustainability 2022, 14, 15039.

[27]

Martín-Sómer, M.; Moreno-SanSegundo, J.; Álvarez-Fernández, C.; Van Grieken, R.; Marugán, J. High-performance low-cost solar collectors for water treatment fabricated with recycled materials, open-source hardware and 3D-printing technologies. Sci. Total Environ. 2021, 784, 147119.

[28]

Wang, R.; Feng, L. L.; Yang, W. R.; Zhang, Y. Y.; Zhang, Y. L.; Bai, W.; Liu, B.; Zhang, W.; Chuan, Y.; Zheng, Z. G. et al. Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. Nanoscale Res. Lett. 2017, 12, 575.

[29]

Niu, S. Q.; Li, S. W.; Du, Y. C.; Han, X. J.; Xu, P. How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 2020, 5, 1083–1087.

[30]

Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.

[31]

Fattakhova, Z. A.; Zakharova, G. S. Molybdenum oxide-based composites. Russian J. Inorg. Chem. 2022, 67, 2090–2098.

[32]

Nardello, V.; Marko, J.; Vermeersch, G.; Aubry, J. M. 90Mo NMR and kinetic studies of peroxomolybdic intermediates involved in the catalytic disproportionation of hydrogen peroxide by molybdate ions. Inorg. Chem. 1995, 34, 4950–4957.

[33]

Segawa, K.; Ooga, K.; Kurusu, Y. Molybdenum peroxo complex. Structure and thermal behavior. Bull. Chem. Soc. Jpn 1984, 57, 2721–2724.

[34]

Xia, X. B.; Guan, W. J.; Zhang, G. Q.; Zhou, Q.; Li, Q. G.; Cao, Z. Y.; Zeng, L.; Wu, S. X. Formation and stability of molybdenum and tungsten species in peroxy solution. J. Solution Chem. 2023, 52, 551–569.

[35]

Guan, X.; Ren, Y. B.; Chen, S. F.; Yan, J. F.; Wang, G.; Zhao, H. Y.; Zhao, W.; Zhang, Z. Y.; Deng, Z. H.; Zhang, Y. Y. et al. Charge separation and strong adsorption-enhanced MoO3 visible light photocatalytic performance. J. Mater. Sci. 2020, 55, 5808–5822.

[36]

De Melo, O.; González, Y.; Climent-Font, A.; Galán, P.; Ruediger, A.; Sánchez, M.; Calvo-Mola, C.; Santana, G.; Torres-Costa, V. Optical and electrical properties of MoO2 and MoO3 thin films prepared from the chemically driven isothermal close space vapor transport technique. J. Phys.: Condens. Matter 2019, 31, 295703.

[37]

Yang, J.; Xiao, X.; Chen, P.; Zhu, K.; Cheng, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Creating oxygen-vacancies in MoO3-nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 2019, 58, 455–465.

[38]
Tauc, J. Amorphous and Liquid Semiconductors; Springer: Boston, 1974.
[39]

Muralikrishna, S.; Manjunath, K.; Samrat, D.; Reddy, V.; Ramakrishnappa, T.; Nagaraju, D. H. Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 2015, 5, 89389–89396.

[40]

Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.

[41]

Joensen, P.; Crozier, E. D.; Alberding, N.; Frindt, R. F. A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J. Phys. C: Solid State Phys. 1987, 20, 4043–4053.

[42]

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

[43]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

[44]

Li, X. H.; Guo, S. H.; Su, J.; Ren, X. G.; Fang, Z. Y. Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing. ACS Appl. Mater. Interfaces 2020, 12, 28474–28483.

[45]

Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J. C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3· xH2O molybdenum trioxide hydrates. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 1995, 51, 1323–1344.

[46]

Veprek, S.; Sarott, F. A.; Iqbal, Z. Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon. Phys. Rev. B 1987, 36, 3344–3350.

[47]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[48]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[49]

Mineo, G.; Bruno, L.; Bruno, E.; Mirabella, S. WO3 nanorods decorated with very small amount of Pt for effective hydrogen evolution reaction. Nanomaterials 2023, 13, 1071.

[50]

Zhang, M.; Li, R. Q.; Hu, D.; Huang, X. F.; Liu, Y. Q.; Yan, K. Porous molybdenum trioxide as a bifunctional electrocatalyst for oxygen and hydrogen evolution. J. Electroanal. Chem. 2019, 836, 102–106.

[51]

Wang, Y.; Lu, F.; Su, K.; Zhang, N.; Zhang, Y. H.; Wang, M.; Wang, X. Engineering Mo–O–C interface in MoS2@rGO via charge transfer boosts hydrogen evolution. Chem. Eng. J. 2020, 399, 126018.

[52]

Liu, Y. D.; Li, L.; Wang, L.; Li, N.; Zhao, X. X.; Chen, Y.; Sakthivel, T.; Dai, Z. F. Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis. Nat. Commun. 2024, 15, 2851.

[53]
Chen, Y.; Liu, Y. D.; Li, L.; Sakthive, T.; Guo, Z. X.; Dai, Z. F. Asymmetric bond delta-polarization at the interfacial Se–Ru–O bridge for efficient pH-robust water electrolysis. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202406587.
Nano Research
Pages 9585-9593
Cite this article:
Ursino F, Mineo G, Scandurra A, et al. Processing of molybdenum industrial waste into sustainable and efficient nanocatalysts for water electrolysis reactions. Nano Research, 2024, 17(11): 9585-9593. https://doi.org/10.1007/s12274-024-6972-z
Topics:

478

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 July 2024
Revised: 01 August 2024
Accepted: 15 August 2024
Published: 12 September 2024
© The Author(s) 2024
Return