AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Online First

Application of metal-based catalysts for Fenton reaction: from homogeneous to heterogeneous, from nanocrystals to single atom

Shangkun PeiSheng WangYuxin LuXiang Li( )Bo Wang( )
Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technologies Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China
Show Author Information

Graphical Abstract

Abstract

Nowadays, increasing emissions of hazardous chemicals cause serious environmental pollution. The advanced oxidation processes (AOPs), which produce numbers of reactive oxygen species (ROS), are one of the most widely used technologies for degrading refractory pollutants in aqueous phase. Among these, Fenton reaction including both homogeneous and heterogeneous processes, has received increasing attention for water treatment. In this review, various nanomaterials with different size such as nanocrystals, nanoparticles (e.g., iron-based minerals, bimetallic oxides, zero-valent iron, quantum dots) and metal-based single atom catalysts (SACs) applied in homogeneous and heterogeneous Fenton reactions, as well as the corresponding catalytic mechanisms will be systematically summarized. Several factors including the morphology, chemical composition, geometric/electronic structures influence the catalytical behavior simultaneously. Here, the recent research advancement including the advantages and further challenges in homogeneous and heterogeneous Fenton system will be introduced in detail. Furthermore, developments for different nanomaterials, from nanocrystals, nanoparticles (minerals, bimetallic oxides represented by Fe-based catalysts, and nanosized zero valent iron materials) to SACs will be discussed. Some representative catalysts for Fenton reaction and their applications will be presented. In addition, commonly-used supports (e.g., graphene oxide, g-C3N4, and carbon nanotubes) and metal-organic frameworks (MOFs)/derivatives and metal-support interaction for improving Fenton-like performance will be introduced. Finally, different types of catalysts for Fenton reaction are compared and their practical application and operational costs are summarized.

References

[1]

Hao, Y. Y.; Ma, H. R.; Wang, Q.; Ge, L. K.; Yang, Y. L.; Zhu, C. Refractory DOM in industrial wastewater: Formation and selective oxidation of AOPs. Chem. Eng. J. 2021, 406, 126857.

[2]

Zhang, W. H.; Wei, C. H.; Chai, X. S.; He, J. Y.; Cai, Y.; Ren, M.; Yan, B.; Peng, P. G.; Fu, J. M. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant. Chemosphere 2012, 88, 174–182.

[3]

Ahmed, M.; Mavukkandy, M. O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S. W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. npj Clean Water 2022, 5, 12.

[4]

Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

[5]

Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–910.

[6]

Haber, F.; Weiss, J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1934, 147, 332–351.

[7]

Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R. Reactions of ferrous and ferric ions with hydrogen peroxide. Nature 1949, 163, 692–694.

[8]

Eisenhauer, H. R. Oxidation of phenolic wastes. J. Water Pollut. Control Fed. 1964, 36, 1116–1128.

[9]

Huang, C. P.; Dong, C. D.; Tang, Z. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Manage. 1993, 13, 361–377.

[10]

Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50.

[11]

Pignatello, J. J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84.

[12]

Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131.

[13]

Scaria, J.; Nidheesh, P. V. Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes. Curr. Opin. Chem. Eng. 2022, 36, 100830.

[14]

Feijoo, S.; Yu, X. B.; Kamali, M.; Appels, L.; Dewil, R. Generation of oxidative radicals by advanced oxidation processes (AOPs) in wastewater treatment: A mechanistic, environmental and economic review. Rev. Environ. Sci. Biotechnol. 2023, 22, 205–248.

[15]

Bautista, P.; Mohedano, A. F.; Casas, J. A.; Zazo, J. A.; Rodriguez, J. J. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 2008, 83, 1323–1338.

[16]

Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572.

[17]

Benatti, C. T.; da Costa, A. C. S.; Tavares, C. R. G. Characterization of solids originating from the Fenton’s process. J. Hazard. Mater. 2009, 163, 1246–1253.

[18]

Zepp, R. G.; Faust, B. C.; Hoigne, J. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: The photo-Fenton reaction. Environ. Sci. Technol. 1992, 26, 313–319.

[19]

Poyatos, J. M.; Muñio, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F. Advanced oxidation processes for wastewater treatment: State of the art. Water Air Soil Pollut. 2010, 205, 187–204.

[20]

Vogelpohl, A. Applications of AOPs in wastewater treatment. Water Sci. Technol. 2007, 55, 207–211.

[21]

Sun, Y. F.; Pignatello, J. J. Photochemical reactions involved in the total mineralization of 2, 4-D by Fe3+/H2O2/UV. Environ. Sci. Technol. 1993, 27, 304–310.

[22]

Gogate, P. R.; Pandit, A. B. A review of imperative technologies for wastewater treatment II: Hybrid methods. Adv. Environ. Res. 2004, 8, 553–597.

[23]

Ruppert, G.; Bauer, R.; Heisler, G. The photo-Fenton reaction—An effective photochemical wastewater treatment process. J. Photochem. Photobiol. A: Chem. 1993, 73, 75–78.

[24]

Oturan, M. A.; Pinson, J. Hydroxylation by electrochemically generated OH. bul. Radicals. Mono- and polyhydroxylation of benzoic acid: Products and isomer distribution. J. Phys. Chem. 1995, 99, 13948–13954.

[25]

Brillas, E.; Mur, E.; Casado, J. Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 1996, 143, L49–L53.

[26]

Kurt, U.; Apaydin, O.; Gonullu, M. T. Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. J. Hazard. Mater. 2007, 143, 33–40.

[27]

Ting, W. P.; Lu, M. C.; Huang, Y. H. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). J. Hazard. Mater. 2008, 156, 421–427.

[28]

Brillas, E.; Casado, J. Aniline degradation by electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 2002, 47, 241–248.

[29]

Badellino, C.; Rodrigues, C. A.; Bertazzoli, R. Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid. J. Hazard. Mater. 2006, 137, 856–864.

[30]

Zhang, H.; Zhang, D.; Zhou, J. Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater. 2006, 135, 106–111.

[31]

Zhang, H.; Fei, C. Z.; Zhang, D. B.; Tang, F. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater. 2007, 145, 227–232.

[32]

Nidheesh, P. V.; Gandhimathi, R. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination 2012, 299, 1–15.

[33]

Thirugnanasambandham, K.; Sivakumar, V. Optimization of treatment of grey wastewater using electro-Fenton technique-modeling and validation. Process. Saf. Environ. Prot. 2015, 95, 60–68.

[34]

Alcocer, S.; Picos, A.; Uribe, A. R.; Pérez, T.; Peralta-Hernández, J. M. Comparative study for degradation of industrial dyes by electrochemical advanced oxidation processes with BDD anode in a laboratory stirred tank reactor. Chemosphere 2018, 205, 682–689.

[35]

Peralta-Hernández, J. M.; Meas-Vong, Y.; Rodríguez, F. J.; Chapman, T. W.; Maldonado, M. I.; Godínez, L. A. Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: Decolorization and destruction of orange II azo dye in dilute solution. Dyes Pigm. 2008, 76, 656–662.

[36]

Yan, Y. Q.; Wei, Z. S.; Duan, X. G.; Long, M. C.; Spinney, R.; Dionysiou, D. D.; Xiao, R. Y.; Alvarez, P. J. J. Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environ. Sci. Technol. 2023, 57, 12153–12179.

[37]

Expósito, A. J.; Monteagudo, J. M.; Díaz, I.; Durán, A. Photo-Fenton degradation of a beverage industrial effluent: Intensification with persulfate and the study of radicals. Chem. Eng. J. 2016, 306, 1203–1211.

[38]

Monteagudo, J. M.; Durán, A.; González, R.; Expósito, A. J. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl. Catal. B: Environ. 2015, 176–177, 120–129.

[39]

Sharma, J.; Mishra, I. M.; Dionysiou, D. D.; Kumar, V. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chem. Eng. J. 2015, 276, 193–204.

[40]

Khan, J. A.; He, X. X.; Shah, N. S.; Khan, H. M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D. D. Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5. Chem. Eng. J. 2014, 252, 393–403.

[41]

Yang, Z. C.; Qian, J. S.; Shan, C.; Li, H. C.; Yin, Y. Y.; Pan, B. C. Toward selective oxidation of contaminants in aqueous systems. Environ. Sci. Technol. 2021, 55, 14494–14514.

[42]
Wang, S.; Lu, Y. X.; Pei, S. K.; Li, X.; Wang, B. Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems. Nano Res., in press, DOI: 10.1007/s12274-024-6874-0.
[43]

Chen, Q.; Lü, F.; Zhang, H.; He, P. J. Where should Fenton go for the degradation of refractory organic contaminants in wastewater. Water Res. 2023, 229, 119479.

[44]

Schuler, R. H.; Albarran, G. The rate constants for reaction of ·OH radicals with benzene and toluene. Radiat. Phys. Chem. 2002, 64, 189–195.

[45]

Liu, D.; Gu, W. Y.; Zhou, L.; Wang, L. Z.; Zhang, J. L.; Liu, Y. D.; Lei, J. Y. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503.

[46]

Xavier, S.; Gandhimathi, R.; Nidheesh, P. V.; Ramesh, S. T. Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye magenta MB from aqueous solution. Desalin. Water Treat. 2015, 53, 109–118.

[47]

Jain, B.; Singh, A. K.; Kim, H.; Lichtfouse, E.; Sharma, V. K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 2018, 16, 947–967.

[48]

Gou, Y. J.; Chen, P.; Yang, L.; Li, S. J.; Peng, L.; Song, S. X.; Xu, Y. F. Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review. Chemosphere 2021, 270, 129481.

[49]

Bautista, P.; Mohedano, A. F.; Gilarranz, M. A.; Casas, J. A.; Rodriguez, J. J. Application of Fenton oxidation to cosmetic wastewaters treatment. J. Hazard. Mater. 2007, 143, 128–134.

[50]

Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

[51]

Ogata, F.; Nakamura, T.; Kawasaki, N. Improvement of the homogeneous Fenton reaction for degradation of methylene blue and acid orange II. Chem. Pharm. Bull. 2018, 66, 585–588.

[52]

Peng, J. B.; Shi, H. H.; Li, J. H.; Wang, L. H.; Wang, Z. Y.; Gao, S. X. Bicarbonate enhanced removal of triclosan by copper(II) catalyzed Fenton-like reaction in aqueous solution. Chem. Eng. J. 2016, 306, 484–491.

[53]

Fiorentino, A.; Cucciniello, R.; Di Cesare, A.; Fontaneto, D.; Prete, P.; Rizzo, L.; Corno, G.; Proto, A. Disinfection of urban wastewater by a new photo-Fenton like process using Cu-iminodisuccinic acid complex as catalyst at neutral pH. Water Res. 2018, 146, 206–215.

[54]

Lim, C. L.; Morad, N.; Teng, T. T.; Ismail, N. Treatment of Terasil red R dye wastewater using H2O2/pyridine/Cu(II) system. J. Hazard. Mater. 2009, 168, 383–389.

[55]

Chen, F. Y.; Zhao, X.; Liu, H. J.; Qu, J. H. Enhanced destruction of Cu(CN)32− by H2O2 under alkaline conditions in the presence of EDTA/pyrophosphate. Chem. Eng. J. 2014, 253, 478–485.

[56]

Lima, M. J.; Silva, C. G.; Silva, A. M. T.; Lopes, J. C. B.; Dias, M. M.; Faria, J. L. Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chem. Eng. J. 2017, 310, 342–351.

[57]

Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B: Environ. 2017, 209, 358–371.

[58]

Zhang, T.; Pan, Z. L.; Wang, J. Y.; Qian, X. F.; Yamashita, H.; Bian, Z. F.; Zhao, Y. X. Homogeneous carbon dot-anchored Fe(III) catalysts with self-regulated proton transfer for recyclable Fenton chemistry. JACS Au 2023, 3, 516–525.

[59]

He, D. Q.; Wang, L. F.; Jiang, H.; Yu, H. Q. A Fenton-like process for the enhanced activated sludge dewatering. Chem. Eng. J. 2015, 272, 128–134.

[60]

Poerschmann, J.; Trommler, U.; Górecki, T. Aromatic intermediate formation during oxidative degradation of bisphenol A by homogeneous sub-stoichiometric Fenton reaction. Chemosphere 2010, 79, 975–986.

[61]

Almazán-Sánchez, P. T.; Linares-Hernández, I.; Martínez-Miranda, V.; Lugo-Lugo, V.; Guadalupe Fonseca-Montes de Oca, R. M. Wastewater treatment of methyl methacrylate (MMA) by Fenton’s reagent and adsorption. Catal. Today 2014, 220–222, 39–48.

[62]

Yuan, Y.; Lai, B.; Tang, Y. Y. Combined Fe0/air and Fenton process for the treatment of dinitrodiazophenol (DDNP) industry wastewater. Chem. Eng. J. 2016, 283, 1514–1521.

[63]

Patil, P. N.; Gogate, P. R. Degradation of dichlorvos using hybrid advanced oxidation processes based on ultrasound. J. Water Process Eng. 2015, 8, e58–e65.

[64]

Cai, Q. Q.; Lee, B. C. Y.; Ong, S. L.; Hu, J. Y. Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment—Recent advances, challenges and perspective. Water Res. 2021, 190, 116692.

[65]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[66]

Hou, L. W.; Wang, L. G.; Royer, S.; Zhang, H. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 2016, 302, 458–467.

[67]

Aghdasinia, H.; Khataee, A.; Sheikhi, M.; Takhtfiroozeh, P. Pilot plant fluidized-bed reactor for degradation of basic blue 3 in heterogeneous Fenton process in the presence of natural magnetite. Environ. Prog. Sustain. Energy 2017, 36, 1039–1048.

[68]

Zhang, Y. L.; Zhang, K.; Dai, C. M.; Zhou, X. F.; Si, H. P. An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution. Chem. Eng. J. 2014, 244, 438–445.

[69]

Minella, M.; Marchetti, G.; De Laurentiis, E.; Malandrino, M.; Maurino, V.; Minero, C.; Vione, D.; Hanna, K. Photo-Fenton oxidation of phenol with magnetite as iron source. Appl. Catal. B: Environ. 2014, 154–155, 102–109.

[70]

Zhong, Y. H.; Liang, X. L.; He, Z. S.; Tan, W.; Zhu, J. X.; Yuan, P.; Zhu, R. L.; He, H. P. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: From the perspective of hydroxyl radical generation. Appl. Catal. B: Environ. 2014, 150–151, 612–618.

[71]

Júnior, I. L.; Millet, J. M. M.; Aouine, M.; do Carmo Rangel, M. The role of vanadium on the properties of iron based catalysts for the water gas shift reaction. Appl. Catal. A: Gen. 2005, 283, 91–98.

[72]

Liang, X. L.; Zhu, S. Y.; Zhong, Y. H.; Zhu, J. X.; Yuan, P.; He, H. P.; Zhang, J. The remarkable effect of vanadium doping on the adsorption and catalytic activity of magnetite in the decolorization of methylene blue. Appl. Catal. B: Environ. 2010, 97, 151–159.

[73]

Xia, Q. X.; Jiang, Z. H.; Li, D. Q.; Wang, J. K.; Yao, Z. P. Green synthesis of a dendritic Fe3O4@FeO composite modified with polar C-groups for Fenton-like oxidation of phenol. J. Alloys Compd. 2018, 746, 453–461.

[74]

Nidheesh, P. V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Adv. 2015, 5, 40552–40577.

[75]

Ruales-Lonfat, C.; Barona, J. F.; Sienkiewicz, A.; Bensimon, M.; Vélez-Colmenares, J.; Benítez, N.; Pulgarín, C. Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Appl. Catal. B: Environ. 2015, 166–167, 497–508.

[76]

Pradhan, G. K.; Sahu, N.; Parida, K. M. Fabrication of S, N co-doped α-Fe2O3 nanostructures: Effect of doping, OH radical formation, surface area, [110] plane and particle size on the photocatalytic activity. RSC Adv. 2013, 3, 7912–7920.

[77]

Thomas, N.; Dionysiou, D. D.; Pillai, S. C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404, 124082.

[78]

Liu, H. T.; Tong, M. L.; Zhu, K. L.; Liu, H.; Chen, R. F. Preparation and photo-Fenton degradation activity of α-Fe2O3 nanorings obtained by adding H2PO4, SO42−, and citric acid. Chem. Eng. J. 2020, 382, 123010.

[79]

Zhang, Y. M.; Zhang, N. S.; Wang, T. T.; Huang, H. T.; Chen, Y.; Li, Z. S.; Zou, Z. G. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Appl. Catal. B: Environ. 2019, 245, 410–419.

[80]

Zhu, Y. P.; Zhu, R. L.; Xi, Y. F.; Xu, T. Y.; Yan, L. X.; Zhu, J. X.; Zhu, G. Q.; He, H. P. Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light. Chem. Eng. J. 2018, 346, 567–577.

[81]

Xu, T. Y.; Zhu, R. L.; Zhu, G. Q.; Zhu, J. X.; Liang, X. L.; Zhu, Y. P.; He, H. P. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH. Appl. Catal. B: Environ. 2017, 212, 50–58.

[82]

Xu, T. Y.; Zhu, R. L.; Liu, J.; Zhou, Q.; Zhu, J. X.; Liang, X. L.; Xi, Y. F.; He, H. P. Fullerol modification ferrihydrite for the degradation of acid red 18 under simulated sunlight irradiation. J. Mol. Catal. A: Chem. 2016, 424, 393–401.

[83]

Qian, X. F.; Wu, Y. W.; Kan, M.; Fang, M. Y.; Yue, D. T.; Zeng, J.; Zhao, Y. X. FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants. Appl. Catal. B: Environ. 2018, 237, 513–520.

[84]

Hou, X. J.; Huang, X. P.; Jia, F. L.; Ai, Z. H.; Zhao, J. C.; Zhang, L. Z. Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants. Environ. Sci. Technol. 2017, 51, 5118–5126.

[85]

Li, Y.; Chen, J. M.; Zhong, J.; Yang, B.; Yang, Z. Q.; Shih, K.; Feng, Y. Acceleration of traces of Fe3+-activated peroxymonosulfate by natural pyrite: A novel cocatalyst for improving Fenton-like processes. Chem. Eng. J. 2022, 435, 134893.

[86]

He, D. L.; Chen, Y. F.; Situ, Y.; Zhong, L.; Huang, H. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: An integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light. Appl. Surf. Sci. 2017, 425, 862–872.

[87]

Sheydaei, M.; Aber, S.; Khataee, A. Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. J. Mol. Catal. A: Chem. 2014, 392, 229–234.

[88]

Huang, M.; Fang, G. D.; Chen, N.; Zhou, D. M. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite. J. Hazard. Mater. 2022, 429, 128380.

[89]

Kifle, G. A.; Huang, Y.; Xiang, M. H.; Wang, W. B.; Wang, C.; Li, C. Y.; Li, H. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review. Chem. Eng. J. 2022, 442, 136187.

[90]

Zhao, H. B.; Huang, X. T.; Wang, J.; Li, Y. N.; Liao, R.; Wang, X. X.; Qiu, X.; Xiong, Y. M.; Qin, W. Q.; Qiu, G. Z. Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite. Miner. Eng. 2017, 109, 153–161.

[91]

Barhoumi, N.; Olvera-Vargas, H.; Oturan, N.; Huguenot, D.; Gadri, A.; Ammar, S.; Brillas, E.; Oturan, M. A. Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl. Catal. B: Environ. 2017, 209, 637–647.

[92]

Sun, Y.; Yang, Z. X.; Tian, P. F.; Sheng, Y. Y.; Xu, J.; Han, Y. F. Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Appl. Catal. B: Environ. 2019, 244, 1–10.

[93]

Huang, X. T.; Zhu, T. H.; Duan, W. J.; Liang, S.; Li, G.; Xiao, W. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type. J. Hazard. Mater. 2020, 381, 120998.

[94]

Wang, H. X.; Liao, B.; Hu, M. Y.; Ai, Y. L.; Wen, L. J.; Yang, S.; Ye, Z.; Qin, J.; Liu, G. Heterogeneous activation of peroxymonosulfate by natural chalcopyrite for efficient remediation of groundwater polluted by aged landfill leachate. Appl. Catal. B: Environ. 2022, 300, 120744.

[95]
Kharisov, B. I.; Kharissova, O. V.; Rasika Dias, H. V.; Ortiz Méndez, U.; de la Fuente, I. G.; Peña, Y.; Vázquez Dimas, A. Iron-based nanomaterials in the catalysis. In Advanced Catalytic Materials —Photocatalysis and Other Current Trends. Norena, L.; Wang, J. A., Eds.; InTech: Rijeka, 2016.
[96]

Mandal, S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J. K. Uses of K2S2O8 in metal-catalyzed and metal-free oxidative transformations. ACS Catal. 2018, 8, 5085–5144.

[97]

Ruan, Y.; Kong, L. J.; Zhong, Y. W.; Diao, Z. H.; Shih, K.; Hou, L. A.; Wang, S. A.; Chen, D. Y. Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater. J. Clean. Prod. 2021, 321, 128924.

[98]

Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62.

[99]

Jiang, S. F.; Wang, L. L.; Hu, W. F.; Tian, K.; Jiang, H. Preparation of flower-like CuFe2O4 by a self-templating method for high-efficient activation of peroxymonosulfate to degrade carbamazepine. Ind. Eng. Chem. Res. 2021, 60, 11045–11055.

[100]

Dong, Z. T.; Niu, C. G.; Guo, H.; Niu, H. Y.; Liang, S.; Liang, C.; Liu, H. Y.; Yang, Y. Y. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: Built-in electric field dominated radical and non-radical process. Chem. Eng. J. 2021, 426, 130850.

[101]

Zhang, L.; Zhang, B. F.; Liu, Y. X.; Wang, Z. N.; Hussain Shah, J.; Ge, R. L.; Zhou, W. H.; Kubuki, S.; Wang, J. H. Modulation of reaction pathway of Prussian blue analogues derived Zn-Fe double oxides towards organic pollutants oxidation. Chem. Eng. J. 2023, 454, 140103.

[102]

Huang, G. X.; Wang, C. Y.; Yang, C. W.; Guo, P. C.; Yu, H. Q. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe. Environ. Sci. Technol. 2017, 51, 12611–12618.

[103]

Sun, Y. Q.; Ma, C. B.; Wu, D.; Liu, X. M.; Li, N.; Fan, X. B.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Peng, W. C. Coating CoFe2O4 shell on Fe particles to increase the utilization efficiencies of Fe and peroxymonosulfate for low-cost Fenton-like reactions. Water Res. 2023, 244, 120542.

[104]

Liu, D. D.; Jiang, L. P.; Chen, D. Q.; Hao, Z. K.; Deng, B. W.; Sun, Y. Y.; Liu, X.; Jia, B. Y.; Chen, L. M.; Liu, H. T. Photocatalytic self-Fenton degradation of ciprofloxacin over S-scheme CuFe2O4/ZnIn2S4 heterojunction: Mechanism insight, degradation pathways and DFT calculations. Chem. Eng. J. 2024, 482, 149165.

[105]

Gao, Y.; Zhu, W. H.; Liu, J. W.; Lin, P.; Zhang, J. F.; Huang, T. L.; Liu, K. Q. Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal. Appl. Catal. B: Environ. 2021, 295, 120273.

[106]

Lin, N. P.; Gong, Y. S.; Wang, R. T.; Wang, Y.; Zhang, X. D. Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms. J. Hazard. Mater. 2022, 424, 127637.

[107]

Wang, J. Q.; Guo, H. G.; Liu, Y.; Li, W.; Yang, B. Peroxymonosulfate activation by porous BiFeO3 for the degradation of bisphenol AF: Non-radical and radical mechanism. Appl. Surf. Sci. 2020, 507, 145097.

[108]

Nie, Y. L.; Zhang, L. L.; Li, Y. Y.; Hu, C. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. J. Hazard. Mater. 2015, 294, 195–200.

[109]

Wu, Y. J.; She, T. T.; Wang, Y. H.; Xu, Z.; Huang, T.; Ji, Q. Y.; Song, H. O.; Yang, S. G.; Li, S. Y.; Yan, S. C. et al. Enhancing cationic superexchange interaction via adjustive lattice distortion in cobalt-based perovskite for improved Fenton-like decontamination. Appl. Catal. B: Environ. 2024, 343, 123569.

[110]

He, Z.; Chen, M. S.; Xu, M.; Zhou, Y. T.; Zhang, Y. Q.; Hu, G. Z. LaCo0.5Ni0.5O3 perovskite for efficient sulfafurazole degradation via peroxymonosulfate activation: Catalytic mechanism of interfacial structure. Appl. Catal. B: Environ. 2023, 335, 122883.

[111]

Zhang, X.; Sun, H. W.; Shi, Y. B.; Ling, C. C.; Li, M. Q.; Liang, C.; Jia, F. L.; Liu, X.; Zhang, L. Z.; Ai, Z. H. Oxalated zero valent iron enables highly efficient heterogeneous Fenton reaction by self-adapting pH and accelerating proton cycle. Water Res. 2023, 235, 119828.

[112]

Fu, F. L.; Dionysiou, D. D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205.

[113]

He, J.; Yang, X. F.; Men, B.; Wang, D. S. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. J. Environ. Sci. 2016, 39, 97–109.

[114]

Blanco, L.; Hermosilla, D.; Merayo, N.; Blanco, Á. Assessing the use of zero-valent iron microspheres to catalyze Fenton treatment processes. J. Taiwan Inst. Chem. Eng. 2016, 69, 54–60.

[115]

Xu, L. J.; Wang, J. L. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011, 186, 256–264.

[116]

Mondal, S. K.; Saha, A. K.; Sinha, A. Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. J. Clean. Prod. 2018, 171, 1203–1214.

[117]

Zha, S.; Cheng, Y.; Gao, Y.; Chen, Z. L.; Megharaj, M.; Naidu, R. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem. Eng. J. 2014, 255, 141–148.

[118]

Chen, Y. Y.; Zhang, M. L.; Chen, T. T.; Zhang, G. B.; Xu, H.; Sun, H. W.; Zhang, L. Z. Facile fabrication of rGO/PPy/nZVI catalytic microreactor for ultrafast removal of p-nitrophenol from water. Appl. Catal. B: Environ. 2023, 324, 122270.

[119]

Du, Q.; Li, G. X.; Zhang, S. S.; Song, J. P.; Zhao, Y.; Yang, F. High-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal. J. Hazard. Mater. 2020, 383, 121170.

[120]

Dong, Z. C.; Xu, Y. Y.; Wu, C.; Chao, J.; Tian, C.; Lin, Z. Efficient removal of natural organo-chromium(III) through self-circulating decomplex and immobilization with nanoscale zero-valent iron. Nano Res. 2024, 17, 364–371.

[121]

Cheng, Q.; Li, Q. R.; Huang, X. J.; Li, X. Q.; Wang, Y. Y.; Liu, W. Z.; Lin, Z. The high efficient Sb(III) removal by cauliflower like amorphous nanoscale zero-valent iron (A-nZVI). J. Hazard. Mater. 2022, 436, 129056.

[122]

Díez, A. M.; Moreira, M. M.; Pazos, M.; Sanromán, M. A.; Albergaria, T.; Delerue-Matos, C. Pesticide abatement using environmentally friendly nano zero valent particles as photo-Fenton catalyst. Sep. Purif. Technol. 2024, 336, 126179.

[123]

Zhou, C. D.; Sui, M.; Guo, Y. L.; Du, S. H. Enhancing Fenton-like reaction through a multifunctional molybdenum disulfide film coating on nano zero valent iron surface (MoS2@nZVI): Collaboration of radical and non-radical pathways. Sci. Total Environ. 2024, 920, 170818.

[124]

Qu, J. H.; Li, Z. R.; Bi, F. X.; Zhang, X. B.; Zhang, B.; Li, K. G.; Wang, S. Q.; Sun, M. Z.; Ma, J.; Zhang, Y. A multiple Kirkendall strategy for converting nanosized zero-valent iron to highly active Fenton-like catalyst for organics degradation. Proc. Natl. Acad. Sci. USA 2023, 120, e2304552120.

[125]

Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X. W.; Diniz da Costa, J. C. Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci. Rep. 2014, 4, 4594.

[126]

Lin, J. K.; Tian, W. J.; Guan, Z. Y.; Zhang, H. Y.; Duan, X. G.; Wang, H.; Sun, H. Q.; Fang, Y. F.; Huang, Y. P.; Wang, S. B. Functional carbon nitride materials in photo-Fenton-like catalysis for environmental remediation. Adv. Funct. Mater. 2022, 32, 2201743.

[127]

Yang, Z. C.; Yu, A. Q.; Shan, C.; Gao, G. D.; Pan, B. C. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water Res. 2018, 137, 37–46.

[128]

Han, S. C.; Hu, L. F.; Liang, Z. Q.; Wageh, S.; Al-Ghamdi, A. A.; Chen, Y. S.; Fang, X. S. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719–5727.

[129]

Divyapriya, G.; Nidheesh, P. V. Importance of graphene in the electro-Fenton process. ACS Omega 2020, 5, 4725–4732.

[130]

Liu, Z. M.; Zhang, P.; Zhao, X. Y. Combined treatment process of Fenton-like and peroxymonosulfate catalyzed by Fe(III)-reduced graphene oxide for efficient removal of isoprothiolane: Fe(III)/Fe(II) cycle and mechanism study. J. Environ. Chem. Eng. 2023, 11, 110656.

[131]

Boruah, P. K.; Sharma, B.; Karbhal, I.; Shelke, M. V.; Das, M. R. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J. Hazard. Mater. 2017, 325, 90–100.

[132]

Xu, Y. S.; Dai, S. Q.; Li, B.; Xia, Q.; Li, S. R.; Peng, W. C. Protective strategy to boost the stability of aminated graphene in Fenton-like reactions. Environ. Sci. Technol. 2021, 55, 14828–14835.

[133]

Gong, B.; Ku, C.; Yu, H. Q.; Sit, P. H. L. Predicting the mechanisms for H2O2 activation and phenol oxidation catalyzed by modified graphene-based systems using density functional theory. ACS Appl. Mater. Interfaces 2022, 14, 35682–35693.

[134]

Zheng, X. L.; Cheng, H. Y.; Yang, J. W.; Chen, D. L.; Jian, R. K.; Lin, L. X. One-pot solvothermal preparation of Fe3O4-urushiol-graphene hybrid nanocomposites for highly improved Fenton reactions. ACS Appl. Nano Mater. 2018, 1, 2754–2762.

[135]

Hu, J. S.; Zhang, P. F.; An, W. J.; Liu, L.; Liang, Y. H.; Cui, W. Q. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B: Environ. 2019, 245, 130–142.

[136]

Ma, J. Q.; Yang, Q. F.; Wen, Y. Z.; Liu, W. P. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range. Appl. Catal. B: Environ. 2017, 201, 232–240.

[137]

Li, D.; Li, H. M.; Wen, Q.; Gao, C. Y.; Song, F.; Zhou, J. Investigation on photo-assisted Fenton-like mechanism of single-atom Mn-N-Fe-N-Ni charge transfer bridge across six-membered cavity of graphitic carbon nitride. Adv. Funct. Mater. 2024, 34, 2313631.

[138]

Chen, L.; He, X. X.; Gong, Z. H.; Li, J. L.; Liao, Y.; Li, X. T.; Ma, J. Significantly improved photocatalysis-self-Fenton degradation performance over g-C3N4 via promoting Fe(III)/Fe(II) cycle. Rare Metals 2022, 41, 2429–2438.

[139]

Wang, Y. J.; Song, H. M.; Chen, J.; Chai, S. N.; Shi, L. M.; Chen, C. W.; Wang, Y. B.; He, C. A novel solar photo-Fenton system with self-synthesizing H2O2: Enhanced photo-induced catalytic performances and mechanism insights. Appl. Surf. Sci. 2020, 512, 145650.

[140]

Shi, H.; He, Y.; Li, Y. B.; Luo, P. Y. Unraveling the synergy mechanism between photocatalysis and peroxymonosulfate activation on a Co/Fe bimetal-doped carbon nitride. ACS Catal. 2023, 13, 8973–8986.

[141]

Jing, M. Y.; Zhao, H.; Jian, L.; Pan, C. S.; Dong, Y. M.; Zhu, Y. F. Coral-like B-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. J. Hazard. Mater. 2023, 449, 131017.

[142]

Guo, T.; Wang, K.; Zhang, G. K.; Wu, X. Y. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl. Surf. Sci. 2019, 469, 331–339.

[143]

An, B. Y.; Liu, J. L.; Zhu, B. J.; Liu, F.; Jiang, G. F.; Duan, X. G.; Wang, Y. Q.; Sun, J. Returnable MoS2@carbon nitride nanotube composite hollow spheres drive photo-self-Fenton-PMS system for synergistic catalytic and photocatalytic tetracycline degradation. Chem. Eng. J. 2023, 478, 147344.

[144]

Cheng, R. L.; Ren, J.; Wang, H. R.; Liang, H. G.; Tsiakaras, P. Photo-induced CO2 cycloaddition and tetracycline degradation over novel FeO x modified defective graphitic carbon nitride composite. Appl. Catal. B: Environ. Energy 2024, 352, 124024.

[145]

Zhu, B. J.; Wang, Y. T.; Li, C. X.; Gao, F.; Liu, F.; Jiang, G. F.; Zhang, H. Q.; Duan, X. G. Construction of catalytic ozonation synergistic photo-self-Fenton system and analysis of synergistic catalysis and reaction mechanism activated by modified carbon nitride. Appl. Catal. B: Environ. 2024, 342, 123408.

[146]

Xia, W.; Li, S.; Wu, G. Y.; Ma, J. Y. Recycling waste iron-rich algal flocs as cost-effective biochar activator for heterogeneous Fenton-like reaction towards tetracycline degradation: Important role of iron species and moderately defective structures. J. Hazard. Mater. 2023, 460, 132377.

[147]

Yao, Y. J.; Chen, H.; Qin, J. C.; Wu, G. D.; Lian, C.; Zhang, J.; Wang, S. B. Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction. Water Res. 2016, 101, 281–291.

[148]

Liu, T. C.; Xiao, S. Z.; Li, N.; Chen, J. B.; Zhou, X. F.; Qian, Y. J.; Huang, C. H.; Zhang, Y. L. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat. Commun. 2023, 14, 2881.

[149]

Gao, X.; Yang, Z. C.; Zhang, W.; Pan, B. C. Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment. Nat. Commun. 2024, 15, 2808.

[150]

Wang, F. X.; Zhang, Z. W.; Zhang, Z. C.; Li, K. X.; Li, Y.; Chu, H. Y.; Wang, C. C.; Wang, J. F.; Chen, L.; Liu, W. et al. Prussian blue analogue nanospheres immobilized on self-floating biochar for micropollutant degradation via photo-Fenton process. Chem. Eng. J. 2024, 487, 150506.

[151]

Qi, H. Q.; Pan, G. F.; Shi, X. L.; Sun, Z. R. Cu-Fe-FeC3@nitrogen-doped biochar microsphere catalyst derived from CuFe2O4@chitosan for the efficient removal of amoxicillin through the heterogeneous electro-Fenton process. Chem. Eng. J. 2022, 434, 134675.

[152]

Guimarães, V.; Teixeira, A. R.; Lucas, M. S.; Silva, A. M. T.; Peres, J. A. Pillared interlayered natural clays as heterogeneous photocatalysts for H2O2-assisted treatment of a winery wastewater. Sep. Purif. Technol. 2019, 228, 115768.

[153]

Baloyi, J.; Ntho, T.; Moma, J. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Adv. 2018, 8, 5197–5211.

[154]

Aleksić, M.; Kušić, H.; Koprivanac, N.; Leszczynska, D.; Božić, A. L. Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water-the application of zeolite assisted AOPs. Desalination 2010, 257, 22–29.

[155]

Zhang, X. H.; Ma, D. Z.; Zhu, X. B. Insights into bicarbonate enhanced heterogeneous Fenton catalyzed by Co/Cu/zeolite for degradation of rhodamine B. Environ. Eng. Res. 2023, 29, 230095.

[156]

Wang, X. P.; Liu, W.; Qin, J. Y.; Lei, L. C. Improvement of H2O2 utilization by the persistent heterogeneous Fenton reaction with the Fe3O4-zeolite-cyclodextrin composite. Ind. Eng. Chem. Res. 2020, 59, 2192–2202.

[157]

Mu, S. Q.; Chen, X. L.; Jiang, G. B.; Chen, W. M. Fenton oxidation system for treating petroleum-contaminated solid waste: Advances and prospects. Sci. Total Environ. 2023, 893, 164793.

[158]

Wang, F. X.; Wang, C. C.; Du, X. D.; Li, Y.; Wang, F.; Wang, P. Efficient removal of emerging organic contaminants via photo-Fenton process over micron-sized Fe-MOF sheet. Chem. Eng. J. 2022, 429, 132495.

[159]

Wang, J. W.; Li, H.; Xia, P.; Liu, H. B.; Chen, X.; Ye, Z. H.; He, Q.; Sirés, I. Confined MOF pyrolysis within mesoporous SiO2 core–shell nanoreactors for superior activity and stability of electro-Fenton catalysts. Chem. Eng. J. 2024, 483, 149230.

[160]

Chen, J. Y.; Qin, C. C.; Mou, Y.; Cao, Y. X.; Chen, H. Y.; Yuan, X. Z.; Wang, H. Linker regulation of iron-based MOFs for highly effective Fenton-like degradation of refractory organic contaminants. Chem. Eng. J. 2023, 459, 141588.

[161]

Li, W. Q.; Wang, Y. X.; Chen, J. Q.; Hou, N. N.; Li, Y. M.; Liu, X. C.; Ding, R. R.; Zhou, G. N.; Li, Q.; Zhou, X. G. et al. Boosting photo-Fenton process enabled by ligand-to-cluster charge transfer excitations in iron-based metal organic framework. Appl. Catal. B: Environ. 2022, 302, 120882.

[162]

Du, A. F.; Fu, H. F.; Wang, P.; Wang, C. C. Enhanced photo-Fenton activity and stability for sulfamethoxazole degradation by FeS2@TiO2 heterojunction derived from MIL-125. Chemosphere 2023, 322, 138221.

[163]

Wang, T. Y.; Zhao, C.; Meng, L. H.; Li, Y. J.; Wang, D. W.; Wang, C. C. Fe–O–P bond in MIL-88A(Fe)/BOHP heterojunctions as a highway for rapid electron transfer to enhance photo-Fenton abatement of enrofloxacin. Appl. Catal. B: Environ. 2023, 334, 122832.

[164]

Wu, L.; Wang, C. C.; Chu, H. Y.; Yi, X. H.; Wang, P.; Zhao, C.; Fu, H. F. Bisphenol A cleanup over MIL-100(Fe)/CoS composites: Pivotal role of Fe–S bond in regenerating Fe2+ ions for boosted degradation performance. Chemosphere 2021, 280, 130659.

[165]

Liu, G. C.; Yi, X. H.; Chu, H. Y.; Wang, C. C.; Gao, Y.; Wang, F.; Wang, F. X.; Wang, P.; Wang, J. F. Floating MIL-88A(Fe)@expanded perlites catalyst for continuous photo-Fenton degradation toward tetracyclines under artificial light and real solar light. J. Hazard. Mater. 2024, 472, 134420.

[166]

Zhou, Y. T.; Abazari, R.; Chen, J.; Tahir, M.; Kumar, A.; Ikreedeegh, R. R.; Rani, E.; Singh, H.; Kirillov, A. M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coord. Chem. Rev. 2022, 451, 214264.

[167]

Chen, L. Y.; Wang, H. F.; Li, C. X.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403.

[168]

Zhang, Y. F.; Wei, J.; Xing, L. Y.; Li, J. M.; Xu, M. D.; Pan, G. P.; Li, J. Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation. Sep. Purif. Technol. 2022, 282, 120124.

[169]

Li, W. Q.; Xia, S. Q.; Wang, Z. Y.; Zhang, B.; Li, B. D.; Zhang, L. J.; Qian, K.; Ma, J.; He, X. Covalency competition triggers Fe-Co synergistic catalysis for boosted Fenton-like reactions. Appl. Catal. B: Environ. 2023, 325, 122358.

[170]

Wen, J. F.; Liu, X.; Liu, L. N.; Ma, X. R.; Fakhri, A.; Gupta, V. K. Bimetal cobalt-iron based organic frameworks with coordinated sites as synergistic catalyst for Fenton catalysis study and antibacterial efficiency. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 610, 125683.

[171]

Roy, D.; Neogi, S.; De, S. Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53(Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation. Chem. Eng. J. 2022, 430, 133069.

[172]

Tang, J. T.; Wang, J. L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem. Eng. J. 2019, 375, 122007.

[173]

Wu, Y.; Li, X. M.; Zhao, H.; Yao, F. B.; Cao, J.; Chen, Z.; Ma, F. Y.; Wang, D. B.; Yang, Q. 2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism. Chemosphere 2022, 287, 132061.

[174]

Wu, X. C.; Zhao, Q. S.; Guo, F.; Xia, G. S.; Tan, X. J.; Lv, H. Y.; Feng, Z. X.; Wu, W. T.; Zheng, J. T.; Wu, M. B. Porous g-C3N4 and α-FeOOH bridged by carbon dots as synergetic visible-light-driven photo-Fenton catalysts for contaminated water remediation. Carbon 2021, 183, 628–640.

[175]

Wu, P. F.; Zhou, C. L.; Li, Y. P.; Zhang, M. H.; Tao, P. X.; Liu, Q. L.; Cui, W. Q. Flower-like FeOOH hybridized with carbon quantum dots for efficient photo-Fenton degradation of organic pollutants. Appl. Surf. Sci. 2021, 540, 148362.

[176]

Zhang, Z. Y.; Yang, C.; Song, X. Y.; Yu, Q. L.; Zhao, Z. Q.; Zhao, H. M.; Zhang, Y. B. Embedding carbon quantum dots in cell envelops to accelerate electron transfer for microbial advanced oxidation. Chem. Eng. J. 2024, 483, 149102.

[177]

Zhang, T.; Wen, Y. C.; Pan, Z. L.; Kuwahara, Y.; Mori, K.; Yamashita, H.; Zhao, Y. X.; Qian, X. F. Overcoming acidic H2O2/Fe(II/III) redox-induced low H2O2 utilization efficiency by carbon quantum dots Fenton-like catalysis. Environ. Sci. Technol. 2022, 56, 2617–2625.

[178]

Zhu, Y. J.; Quan, Z. P.; Zhang, B. L.; Zheng, J. H.; Wang, J.; Zhang, X. X.; Zhang, C.; Yang, T.; He, X.; Qu, S. N. et al. Enhanced performance of carbon dots and Mn3O4 composite by phosphate in peroxymonosulfate activation. Appl. Catal. B: Environ. Energy 2024, 351, 123954.

[179]

Xu, H. L.; He, Y. W.; Yang, W. X.; Zou, C. H.; Liu, X. Y.; Lu, F. S.; Xia, H. Strongly coupled Fe3O4 quantum dots-3D N-enriched carbon aerogel towards boosting peroxydisulfate activation by electron redistribution of multiple active sites. Appl. Surf. Sci. 2023, 635, 157669.

[180]

Liu, M. G.; Xia, H.; Yang, W. X.; Liu, X. Y.; Xiang, J.; Wang, X. M.; Hu, L. S.; Lu, F. S. Novel Cu-Fe bi-metal oxide quantum dots coupled g-C3N4 nanosheets with H2O2 adsorption–activation trade-off for efficient photo-Fenton catalysis. Appl. Catal. B: Environ. 2022, 301, 120765.

[181]

Xi, J. H.; Xia, H.; Ning, X. M.; Zhang, Z.; Liu, J.; Mu, Z. J.; Zhang, S. T.; Du, P. Y.; Lu, X. Q. Carbon-intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation. Small 2019, 15, 1902744.

[182]

Liang, X. Y.; Wang, D.; Zhao, Z. Y.; Li, T.; Gao, Y. W.; Hu, C. Coordination number dependent catalytic activity of single-atom cobalt catalysts for Fenton-like reaction. Adv. Funct. Mater. 2022, 32, 2203001.

[183]

Liu, Y. H.; Kong, C.; Liu, L. Y.; Jiang, X. Y.; Liu, C.; Liu, F.; Sun, J.; Wang, Y. Q. Progress in copper-based supported heterogeneous electro-Fenton catalysts. Chem. Eng. J. 2024, 486, 150217.

[184]

Park, E. J.; Lee, K. M.; Kim, T.; Lee, D.; Kim, M. S.; Lee, C. Trivalent copper ion-mediated dual oxidation in the copper-catalyzed Fenton-like system in the presence of histidine. Environ. Sci. Technol. 2024, 58, 10852–10862.

[185]

Koo, S.; Park, O. K.; Kim, J.; Han, S. I.; Yoo, T. Y.; Lee, N.; Kim, Y. G.; Kim, H.; Lim, C.; Bae, J. S. et al. Enhanced chemodynamic therapy by Cu-Fe peroxide nanoparticles: Tumor microenvironment-mediated synergistic Fenton reaction. ACS Nano 2022, 16, 2535–2545.

[186]

Tian, X. J.; Xu, H.; Zhou, F. F.; Gong, X. Y.; Tan, S. W.; He, Y. J. An intelligent cupreous nanoplatform with self-supplied H2O2 and Cu2+/Cu+ conversion to boost cuproptosis and chemodynamic combined therapy. Chem. Mater. 2024, 36, 815–828.

[187]

Xiao, C.; Li, X.; Li, Q. T.; Hu, Y. Y.; Cheng, J. H.; Chen, Y. C. Ni-doped FeC2O4 for efficient photo-Fenton simultaneous degradation of organic pollutants and reduction of Cr(VI): Accelerated Fe(III)/Fe(II) cycle, enhanced stability and mechanism insight. J. Clean. Prod. 2022, 340, 130775.

[188]

Mao, Y. S.; Wang, P. F.; Zhang, D. P.; Xia, Y. G.; Li, Y.; Zeng, W. L.; Zhan, S. H.; Crittenden, J. C. Accelerating FeIII-aqua complex reduction in an efficient solid–liquid-interfacial Fenton reaction over the Mn-CNH co-catalyst at near-neutral pH. Environ. Sci. Technol. 2021, 55, 13326–13334.

[189]

Li, Y. C.; Wang, C.; Pan, S.; Zhao, X.; Liu, N. Mn doping improves in-situ H2O2 generation and activation in electro-Fenton process by Fe/Mn@CC cathode using high-temperature shock technique. Chemosphere 2022, 307, 136074.

[190]

He, Y. Z.; Qin, H.; Wang, Z. W.; Wang, H.; Zhu, Y.; Zhou, C. Y.; Zeng, Y.; Li, Y. C.; Xu, P.; Zeng, G. M. Fe-Mn oxycarbide anchored on N-doped carbon for enhanced Fenton-like catalysis: Importance of high-valent metal-oxo species and singlet oxygen. Appl. Catal. B: Environ. 2024, 340, 123204.

[191]

Wang, J. L.; Dai, X. C.; Wang, H. L.; Liu, H. L.; Rabeah, J.; Brückner, A.; Shi, F.; Gong, M.; Yang, X. J. Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nat. Commun. 2021, 12, 6840.

[192]

Zheng, Y. Y.; Wang, L. H.; Zhang, L. Y.; Zhang, H.; Zhu, W. C. One-pot hydrothermal synthesis of hierarchical porous manganese silicate microspheres as excellent Fenton-like catalysts for organic dyes degradation. Nano Res. 2022, 15, 2977–2986.

[193]

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

[194]

Liang, Z. Y.; Yan, Q. Y.; Ou, H. S.; Li, D. W.; Zhang, Y. Y.; Zhang, J. L.; Zeng, L. X.; Xing, M. Y. Effective green treatment of sewage sludge from Fenton reactions: Utilizing MoS2 for sustainable resource recovery. Proc. Natl. Acad. Sci. USA 2024, 121, e2317394121.

[195]

Zhai, C. Y.; Chen, Y. P.; Huang, X. X.; Isaev, A. B.; Zhu, M. S. Recent progress on single-atom catalysts in advanced oxidation processes for water treatment. Environ. Funct. Mater. 2022, 1, 219–229.

[196]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[197]

Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

[198]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[199]

Wang, L. G.; Su, H.; Tan, G. Y.; Xin, J. J.; Wang, X. G.; Zhang, Z.; Li, Y. P.; Qiu, Y.; Li, X. H.; Li, H. S. et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation. Adv. Mater. 2024, 36, 2302642.

[200]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Materials Today Catalysis 2023, 2, 100009.

[201]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[202]

Xue, Z. H.; Luan, D. Y.; Zhang, H.; Lou, X. W. Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92–133.

[203]

Huang, B. K.; Wu, Z. L.; Zhou, H. Y.; Li, J. Y.; Zhou, C. Y.; Xiong, Z. K.; Pan, Z. C.; Yao, G.; Lai, B. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J. Hazard. Mater. 2021, 412, 125253.

[204]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[205]

Guo, J. R.; Gao, B. Y.; Li, Q.; Wang, S. B.; Shang, Y. N.; Duan, X. G.; Xu, X. Size-dependent catalysis in Fenton-like chemistry: From nanoparticles to single Atoms. Adv. Mater. 2024, 36, 2403965.

[206]

Cai, T.; Teng, Z. Z.; Wen, Y. J.; Zhang, H. Y.; Wang, S. B.; Fu, X. J.; Song, L.; Li, M.; Lv, J. W.; Zeng, Q. Y. Single-atom site catalysts for environmental remediation: Recent advances. J. Hazard. Mater. 2022, 440, 129772.

[207]

Huang, B. K.; Wu, Z. L.; Wang, X. H.; Song, X. Y.; Zhou, H. Y.; Zhang, H.; Zhou, P.; Liu, W.; Xiong, Z. K.; Lai, B. Coupled surface-confinement effect and pore engineering in a single-Fe-atom catalyst for ultrafast Fenton-like reaction with high-valent iron-oxo complex oxidation. Environ. Sci. Technol. 2023, 57, 15667–15679.

[208]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[209]

Yin, Y.; Shi, L.; Li, W. L.; Li, X. N.; Wu, H.; Ao, Z. M.; Tian, W. J.; Liu, S. M.; Wang, S. B.; Sun, H. Q. Boosting Fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400.

[210]

Yang, J. R.; Zeng, D. Q.; Zhang, Q. G.; Cui, R. F.; Hassan, M.; Dong, L. Q.; Li, J.; He, Y. L. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants. Appl. Catal. B: Environ. 2020, 279, 119363.

[211]

Yu, X. Y.; Liu, H. Z.; Huang, Y. X.; Li, C. L.; Kuang, L. N.; Zhong, J. Y.; Zhu, S.; Gou, Y. T.; Wang, Y. H.; Zhang, Y. Q. et al. A green edge-hosted zinc single-site heterogeneous catalyst for superior Fenton-like activity. Proc. Natl. Acad. Sci. USA 2023, 120, e2221228120.

[212]

Wang, G. L.; Nie, X. W.; Ji, X. J.; Quan, X.; Chen, S.; Wang, H. Z.; Yu, H. T.; Guo, X. W. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: The synergism between Co and N. Environ. Sci.: Nano 2019, 6, 399–410.

[213]

Shang, Y. N.; Liu, X. N.; Li, Y. W.; Gao, Y.; Gao, B. Y.; Xu, X.; Yue, Q. Y. Boosting Fenton-like reaction by reconstructed single Fe atom catalyst for oxidizing organics: Synergistic effect of conjugated π–π sp2 structured carbon and isolated Fe-N4 sites. Chem. Eng. J. 2022, 446, 137120.

[214]

Zhu, Z. S.; Wang, Y. T.; Duan, X. G.; Wang, P. T.; Zhong, S.; Ren, S. Y.; Xu, X.; Gao, B. Y.; Vongsvivut, J.; Wang, S. B. Atomic-level engineered cobalt catalysts for Fenton-like reactions: Synergy of single atom metal sites and nonmetal-bonded functionalities. Adv. Mater. 2024, 36, 2401454.

[215]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[216]

Zou, Y. B.; Hu, J. H.; Li, B.; Lin, L.; Li, Y.; Liu, F. F.; Li, X. Y. Tailoring the coordination environment of cobalt in a single-atom catalyst through phosphorus doping for enhanced activation of peroxymonosulfate and thus efficient degradation of sulfadiazine. Appl. Catal. B: Environ. 2022, 312, 121408.

[217]

Zhang, W.; Li, M.; Luo, J. W.; Zhang, G.; Lin, L.; Sun, F. Y.; Li, M.; Dong, Z. J.; Li, X. Y. Modulating the coordination environment of Co single-atom catalysts through Sulphur doping to efficiently enhance peroxymonosulfate activation for degradation of carbamazepine. Chem. Eng. J. 2023, 474, 145377.

[218]

Qi, Y. F.; Li, J.; Zhang, Y. Q.; Cao, Q.; Si, Y. M.; Wu, Z. R.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Appl. Catal. B: Environ. 2021, 286, 119910.

[219]

Shang, Y. N.; Kan, Y. J.; Xu, X. Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system. Chin. Chem. Lett. 2023, 34, 108278.

[220]

Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.

[221]

Wu, Q. Y.; Wang, J.; Wang, Z. W.; Xu, Y. L.; Xing, Z. H.; Zhang, X. Y.; Guan, Y. T.; Liao, G. F.; Li, X. Z. High-loaded single Cu atoms decorated on N-doped graphene for boosting Fenton-like catalysis under neutral pH. J. Mater. Chem. A 2020, 8, 13685–13693.

[222]

Wang, L. X.; Rao, L. J.; Ran, M. X.; Shentu, Q. K.; Wu, Z. L.; Song, W. K.; Zhang, Z. W.; Li, H.; Yao, Y. Y.; Lv, W. Y. et al. A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions. Nat. Commun. 2023, 14, 7841.

[223]

Gao, Y.; Yang, C. D.; Zhou, M.; He, C.; Cao, S. J.; Long, Y. P.; Li, S.; Lin, Y.; Zhu, P. X.; Cheng, C. Transition metal and metal-N x codoped MOF-derived Fenton-like catalysts: A comparative study on single atoms and nanoparticles. Small 2020, 16, 2005060.

[224]

Gu, C. H.; Wang, S.; Zhang, A. Y.; Liu, C.; Jiang, J.; Yu, H. Q. Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis. Proc. Natl. Acad. Sci. USA 2023, 120, e2311585120.

[225]

Song, X. Y.; Diao, S. Y.; He, W. J.; Yang, J.; Wang, L. L.; Qin, G.; Li, Y.; Chen, Q. Design of active dual atom Ni-Co-2H-MoS2 catalyst: Synergistic effect of Ni-adsorption and co-catalysis for activating peroxymonosulfate. Sep. Purif. Technol. 2024, 333, 125927.

[226]

Wang, F.; Gao, Y.; Fu, H. F.; Liu, S. S.; Wei, Y. W.; Wang, P.; Zhao, C.; Wang, J. F.; Wang, C. C. Almost 100% electron transfer regime over Fe-Co dual-atom catalyst toward pollutants removal: Regulation of peroxymonosulfate adsorption mode. Appl. Catal. B: Environ. 2023, 339, 123178.

[227]

Wei, Y.; Miao, J.; Alvarez, P. J. J.; Long, M. C. How to accurately assess the intrinsic activity of catalysts in peroxy activation. Environ. Sci. Technol. 2022, 56, 10557–10559.

[228]

Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manage. 2011, 92, 749–755.

[229]

Ribeiro, J. P.; Marques, C. C.; Portugal, I.; Nunes, M. I. Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: Optimisation of operating conditions and cost assessment. J. Environ. Chem. Eng. 2020, 8, 104032.

[230]

Lin, R. Y.; Li, Y.; Yong, T. Z.; Cao, W. X.; Wu, J. S.; Shen, Y. F. Synergistic effects of oxidation, coagulation and adsorption in the integrated Fenton-based process for wastewater treatment: A review. J. Environ. Manage. 2022, 306, 114460.

[231]

Pourehie, O.; Saien, J. Homogeneous solar Fenton and alternative processes in a pilot-scale rotatable reactor for the treatment of petroleum refinery wastewater. Process Saf. Environ. Prot. 2020, 135, 236–243.

[232]

Fenoll, J.; Flores, P.; Hellín, P.; Martínez, C. M.; Navarro, S. Photodegradation of eight miscellaneous pesticides in drinking water after treatment with semiconductor materials under sunlight at pilot plant scale. Chem. Eng. J. 2012, 204–206, 54–64.

[233]

Babaei, A. A.; Ghanbari, F. COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: Biodegradability improvement and cost evaluation. J. Water Reuse Desalin. 2016, 6, 484–494.

[234]

Huang, M. J.; Li, Y. S.; Zhang, C. Q.; Cui, C.; Huang, Q. Q.; Li, M. K.; Qiang, Z. M.; Zhou, T.; Wu, X. H.; Yu, H. Q. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc. Natl. Acad. Sci. USA 2022, 119, e2202682119.

[235]

Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

[236]

Chen, F.; Sun, Y. J.; Huang, X. T.; Bai, C. W.; Zhang, Z. Q.; Duan, P. J.; Chen, X. J.; Yang, Q.; Yu, H. Q. Embedding electronic perpetual motion into single-atom catalysts for persistent Fenton-like reactions. Proc. Natl. Acad. Sci. USA 2024, 121, e2314396121.

Nano Research
Cite this article:
Pei S, Wang S, Lu Y, et al. Application of metal-based catalysts for Fenton reaction: from homogeneous to heterogeneous, from nanocrystals to single atom. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6973-y
Topics:

241

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 July 2024
Revised: 15 August 2024
Accepted: 17 August 2024
Published: 03 September 2024
© Tsinghua University Press 2024
Return