AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Instability of colloidal lead halide perovskite nanocrystals: Causes, improvement, and evaluation

Thi Kim Tran TranHawi N. NyieraJing Zhao( )
55 North Eagleville Road, Department of Chemistry, University of Connecticut, Storrs, Connecticut, 06269, USA
Show Author Information

Graphical Abstract

Abstract

The instability of colloidal lead halide perovskite nanocrystals (NCs) presents a significant challenge for their application in optoelectronic devices. This review examines the primary causes of instability in these NCs and the proposed mechanisms of degradation. It also introduces the recently developed synthesis and surface passivation methods to address the instability issue of colloidal perovskite NCs. Specifically, we focus on the various types of ligands and precursors introduced during NC synthesis or post-treatment and how they impact the structural and optical properties of the perovskite NCs. This review also proposes a systematic approach to evaluating stability enhancement strategies by establishing key parameters and ranking them based on working and processing conditions. Finally, we discuss the issues that need to be addressed in future research to achieve practical application of lead halide perovskite NCs in advanced optoelectronic systems.

References

[1]

Hao, M. M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J. X.; Yuan, Y. B.; Zarrabi, N.; Cheng, N. Y.; Ghasemi, M.; Chen, P. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1– x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88.

[2]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[3]

Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

[4]

Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757.

[5]

du Fossé, I.; Mulder, J. T.; Almeida, G.; Spruit, A. G. M.; Infante, I.; Grozema, F. C.; Houtepen, A. J. Limits of defect tolerance in perovskite nanocrystals: Effect of local electrostatic potential on trap states. J. Am. Chem. Soc. 2022, 144, 11059–11063.

[6]

Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.

[7]

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

[8]

Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874.

[9]

Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

[10]

Levchuk, I.; Osvet, A.; Tang, X. F.; Brandl, M.; Perea, J. D.; Hoegl, F.; Matt, G. J.; Hock, R.; Batentschuk, M.; Brabec, C. J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 2017, 17, 2765–2770.

[11]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[12]

Li, Y. X.; Zhang, X. Y.; Huang, H.; Kershaw, S. V.; Rogach, A.L. Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today 2020, 32, 204–221.

[13]

Ng, C. K.; Wang, C. J.; Jasieniak, J. J. Synthetic evolution of colloidal metal halide perovskite nanocrystals. Langmuir 2019, 35, 11609–11628.

[14]

Swarnkar, A.; Mir, W. J.; Nag, A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites. ACS Energy Lett. 2018, 3, 286–289.

[15]

Lee, H.; Jeong, J. W.; So, M. G.; Jung, G. Y.; Lee, C. L. Design of chemically stable organic perovskite quantum dots for micropatterned light-emitting diodes through kinetic control of a cross-linkable ligand system. Adv. Mater. 2021, 33, 2007855.

[16]

Pan, J. Y.; Zhao, Z. H.; Fang, F.; Wang, L. X.; Wang, G. Z.; Liu, C. J.; Huang, Q. Q.; Sun, J. Y.; Huang, Y. L.; Mao, L. et al. A synergetic codoping strategy enabling performance improvement of pure-blue perovskite quantum dots light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2102569.

[17]

Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.

[18]

Chowdhury, T. A.; Zafar, M. A. B.; Islam, M. S. U.; Shahinuzzaman, M.; Islam, M. A.; Khandaker, M. U. Stability of perovskite solar cells: Issues and prospects. RSC Adv. 2023, 13, 1787–1810.

[19]

Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485.

[20]

Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst. B, 2008, B64, 702–707.

[21]

Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556.

[22]

Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

[23]

Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.

[24]

Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals. ACS Energy Lett. 2019, 4, 1610–1618.

[25]

Stoumpos, C. C.; Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802.

[26]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[27]

Shamsi, J.; Kubicki, D.; Anaya, M.; Liu, Y.; Ji, K. Y.; Frohna, K.; Grey, C. P.; Friend, R. H.; Stranks, S. D. Stable hexylphosphonate-capped blue-emitting quantum-confined CsPbBr3 nanoplatelets. ACS Energy Lett. 2020, 5, 1900–1907.

[28]

DuBose, J. T.; Christy, A.; Chakkamalayath, J.; Kamat, P. V. Transformation of perovskite nanoplatelets to large nanostructures driven by solvent polarity. ACS Mater. Lett. 2022, 4, 93–101.

[29]

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

[30]

Fiuza-Maneiro, N.; Sun, K.; López-Fernández, I.; Gómez-Graña, S.; Müller-Buschbaum, P.; Polavarapu, L. Ligand chemistry of inorganic lead halide perovskite nanocrystals. ACS Energy Lett. 2023, 8, 1152–1191.

[31]

Xing, K.; Cao, S.; Yuan, X.; Zeng, R. S.; Li, H. B.; Zou, B. S.; Zhao, J. L. Thermal and photo stability of all inorganic lead halide perovskite nanocrystals. Phys. Chem. Chem. Phys. 2021, 23, 17113–17128.

[32]

Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

[33]

Wu, Y.; Wei, C. T.; Li, X. M.; Li, Y. L.; Qiu, S. C.; Shen, W.; Cai, B.; Sun, Z. G.; Yang, D. D.; Deng, Z. T. et al. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 2018, 3, 2030–2037.

[34]

Paul, S.; Acharya, S. Postsynthesis transformation of halide perovskite nanocrystals. ACS Energy Lett. 2022, 7, 2136–2155.

[35]

Li, F. F.; Cao, L. Y.; Shi, S. S.; Gao, H.; Song, L.; Geng, C.; Bi, W. G.; Xu, S. Controlled growth of CH3NH3PbBr3 perovskite nanocrystals via a water-oil interfacial synthesis method. Angew. Chem., Int. Ed. 2019, 58, 17631–17635.

[36]

Zhang, X. F.; Gao, L.; Zhao, M.; Miao, Y. Q.; Wang, Z. Y.; Wang, C. Q.; Liu, P. Z; Xu, B. S.; Guo, J. J. Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes. Nanoscale 2020, 12, 6522–6528.

[37]

Geng, C.; Xu, S.; Zhong, H. Z.; Rogach, A. L.; Bi, W. G. Aqueous synthesis of methylammonium lead halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 9650–9654.

[38]

Cheng, S. J.; Zhong, H. Z. What happens when halide perovskites meet with water. J. Phys. Chem. Lett. 2022, 13, 2281–2290.

[39]

Hidalgo, J.; Kaiser, W.; An, Y.; Li, R. P.; Oh, Z.; Castro-Méndez, A.F.; LaFollette, D.K.; Kim, S.; Lai, B.; Breternitz, J. et al. Synergistic role of water and oxygen leads to degradation in formamidinium-based halide perovskites. J. Am. Chem. Soc. 2023, 145, 24549–24557.

[40]

Leguy, A. M. A.; Hu, Y. H.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407.

[41]

Wang, R. T.; Xu, A. F.; Li, W. Q.; Li, Y. N.; Xu, G. Moisture-stable FAPbI3 perovskite achieved by atomic structure negotiation. J. Phys. Chem. Lett. 2021, 12, 5332–5338.

[42]

Mosconi, E.; Azpiroz, J. M.; De Angelis, F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 2015, 27, 4885–4892.

[43]

Turedi, B.; Lee, K. J.; Dursun, I.; Alamer, B.; Wu, Z. N.; Alarousu, E.; Mohammed, O. F.; Cho, N.; Bakr, O. M. Water-induced dimensionality reduction in metal-halide perovskites. J. Phys. Chem. C 2018, 122, 14128–14134.

[44]

Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.

[45]

Tan, Y. S.; Li, R. Y.; Xu, H.; Qin, Y. S.; Song, T.; Sun, B. Q. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 2019, 29, 1900730.

[46]

Liang, T. Y.; Liu, W. J.; Liu, X. Y.; Li, Y. Y.; Wu, W. H.; Fan, J. Y. In situ phase-transition crystallization of all-inorganic water-resistant exciton-radiative heteroepitaxial CsPbBr3–CsPb2Br5 core–shell perovskite nanocrystals. Chem. Mater. 2021, 33, 4948–4959.

[47]

Huang, S. Q.; Li, Z. C.; Wang, B.; Zhu, N. W.; Zhang, C. Y.; Kong, L.; Zhang, Q.; Shan, A. D.; Li, L. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces, 2017, 9, 7249–7258.

[48]

Diroll, B. T.; Nedelcu, G.; Kovalenko, M. V.; Schaller, R. D. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 2017, 27, 1606750.

[49]

Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.

[50]

Siegler, T. D.; Dunlap-Shohl, W. A.; Meng, Y. H.; Yang, Y. H.; Kau, W. F.; Sunkari, P. P.; Tsai, C. E.; Armstrong, Z. J.; Chen, Y. C.; Beck, D. A. C. et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 2022, 144, 5552–5561.

[51]

Wang, Y.; Ren, Y. J.; Zhang, S. L.; Wu, J. F.; Song, J. Z.; Li, X. M.; Xu, J. Y.; Sow, C. H.; Zeng, H. B.; Sun, H. D. Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Commun. Phys. 2018, 1, 96.

[52]

Kim, D.; Yun, T.; An, S. M.; Lee, C. L. How to improve the structural stabilities of halide perovskite quantum dots: Review of various strategies to enhance the structural stabilities of halide perovskite quantum dots. Nano Converg. 2024, 11, 4.

[53]

Meng, J.; Lan, Z. Y.; Abdellah, M.; Yang, B.; Mossin, S.; Liang, M. L.; Naumova, M.; Shi, Q.; Gutierrez Alvarez, S. L.; Liu, Y. et al. Modulating charge-carrier dynamics in Mn-doped all-inorganic halide perovskite quantum dots through the doping-induced deep trap states. J. Phys. Chem. Lett. 2020, 11, 3705–3711.

[54]

Zhang, Y. N.; Siegler, T. D.; Thomas, C. J.; Abney, M. K.; Shah, T.; De Gorostiza, A.; Greene, R. M.; Korgel, B. A. A “tips and tricks” practical guide to the synthesis of metal halide perovskite nanocrystals. Chem. Mater. 2020, 32, 5410–5423.

[55]

Vighnesh, K.; Wang, S. X.; Liu, H. C.; Rogach, A. L. Hot-injection synthesis protocol for green-emitting cesium lead bromide perovskite nanocrystals. ACS Nano 2022, 16, 19618–19625.

[56]

Li, Y.; Wang, X. Y.; Xue, W. N.; Wang, W.; Zhu, W.; Zhao, L. J. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785–789.

[57]

Wang, X. D.; Chen, S. T.; Thota, S.; Wang, Y. C.; Tan, H. Y.; Tang, M.; Quan, Z. W.; Zhao, J. Anisotropic arm growth in unconventional semiconductor CdSe/CdS nanotetrapod synthesis using core/shell CdSe/CdS as seeds. J. Phys. Chem. C 2019, 123, 19238–19245.

[58]

Myung, N.; Ding, Z. F.; Bard, A. J. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett. 2002, 2, 1315–1319.

[59]

Green, M. The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797–5809.

[60]

Tan, Y. S.; Zou, Y. T.; Wu, L. Z.; Huang, Q.; Yang, D.; Chen, M.; Ban, M. Y.; Wu, C.; Wu, T.; Bai, S. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3784–3792.

[61]

Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

[62]

Zhang, B. W.; Goldoni, L.; Lambruschini, C.; Moni, L.; Imran, M.; Pianetti, A.; Pinchetti, V.; Brovelli, S.; De Trizio, L.; Manna, L. Stable and size tunable CsPbBr3 nanocrystals synthesized with oleylphosphonic acid. Nano Lett. 2020, 20, 8847–8853.

[63]

Zhang, J. B.; Yin, C. Y.; Yang, F.; Yao, Y.; Yuan, F. L.; Chen, H. T.; Wang, R. W.; Bai, S.; Tu, G. L.; Hou, L. T. Highly luminescent and stable cspbi3 perovskite nanocrystals with sodium dodecyl sulfate ligand passivation for red-light-emitting diodes. J. Phys. Chem. Lett. 2021, 12, 2437–2443.

[64]

Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y. Y.; Wang, Y.; Zeng, H. B. et al. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

[65]

Wang, T. T.; Li, X. S.; Fang, T.; Wang, S. L.; Song, J. Z. Room-temperature synthesis of perovskite-phase CsPbI3 nanocrystals for optoelectronics via a ligand-mediated strategy. Chem. Eng. J. 2021, 418, 129361.

[66]

Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.

[67]

Wang, S. S.; Du, L.; Donmez, S.; Xin, Y.; Mattoussi, H. Polysalt ligands achieve higher quantum yield and improved colloidal stability for CsPbBr3 quantum dots. Nanoscale 2021, 13, 16705–16718.

[68]

Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641–646.

[69]

Grisorio, R.; Fasulo, F.; Muñoz-García, A. B.; Pavone, M.; Conelli, D.; Fanizza, E.; Striccoli, M.; Allegretta, I.; Terzano, R.; Margiotta, N. et al. In situ formation of zwitterionic ligands: Changing the passivation paradigms of CsPbBr3 nanocrystals. Nano Lett. 2022, 22, 4437–4444.

[70]

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

[71]

Liu, Y. F.; Shao, X. W.; Gao, Z. J.; Xie, Q. Y.; Ying, Y. P.; Zhu, X. L.; Pan, Z. C.; Yang, J. P.; Lin, H.; Tang, X. S. et al. In situ and general multidentate ligand passivation achieves efficient and ultra-stable CsPbX3 perovskite quantum dots for white light-emitting diodes. Small, 2024, 20, 2305664.

[72]

Zeng, Q. S.; Zhang, X. Y.; Bing, Q. M.; Xiong, Y.; Yang, F.; Liu, H. W.; Liu, J. Y.; Zhang, H.; Zheng, W. T.; Rogach, A. L. et al. Surface stabilization of colloidal perovskite nanocrystals via multi-amine chelating ligands. ACS Energy Lett. 2022, 7, 1963–1970.

[73]

Yin, W. X.; Li, M. K.; Dong, W.; Luo, Z.; Li, Y. X.; Qian, J. Y.; Zhang, J. Q.; Zhang, W.; Zhang, Y.; Kershaw, S. V. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on cspbbr3 nanoplatelets. ACS Energy Lett. 2021, 6, 477–484.

[74]

Dutt, V. G. V.; Akhil, S.; Mishra, N. Enhancement of photoluminescence and the stability of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation. Nanoscale 2021, 13, 14442–14449.

[75]

Gao, Z. J.; Shao, X. W.; Huang, Z. J.; Xie, Q. Y.; Ying, Y. P.; Lin, H.; Wang, J.; Tang, X. S.; Chen, W. W.; Pei, W. et al. Short-chain ligand achieves ultra-stable CsPbX3 perovskite quantum dots for white light-emitting diodes. Appl. Phys. Lett. 2024, 124, 041106.

[76]

Zhu, X. L.; Pan, Z. C.; Xu, T. Y.; Shao, X. W.; Gao, Z. J.; Xie, Q. Y.; Ying, Y. P.; Pei, W.; Lin, H.; Wang, J. et al. Capping ligand engineering enables stable CsPbBr3 perovskite quantum dots toward white-light-emitting diodes. Inorg. Chem. 2023, 62, 9190–9198.

[77]

Liu, Y. F.; Tang, S.; Gao, Z. J.; Shao, X. W.; Zhu, X. L.; Ràfols Ribé, J.; Wågberg, T.; Edman, L.; Wang, J. The influence of the capping ligands on the optoelectronic performance, morphology, and ion liberation of CsPbBr3 perovskite quantum dots. Nano Res. 2023, 16, 10626–10633.

[78]

Zheng, X. P.; Yuan, S.; Liu, J. K.; Yin, J.; Yuan, F. L.; Shen, W. S.; Yao, K. X.; Wei, M. Y.; Zhou, C.; Song, K. P. et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett. 2020, 5, 793–798.

[79]

Dongre, S. S.; Siddharthan, E. E.; Thapa, R.; Ramu, S.; Balakrishna, R. G. Dual vacancy passivation in CsPbCl3 perovskite nanocrystals: Implications on optoelectronic applications. ACS Appl. Nano Mater. 2023, 6, 13227–13237.

[80]

Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.; Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett. 2018, 3, 2301–2307.

[81]

Chouhan, L.; Ito, S.; Thomas, E. M.; Takano, Y.; Ghimire, S.; Miyasaka, H.; Biju, V. Real-time blinking suppression of perovskite quantum dots by halide vacancy filling. ACS Nano 2021, 15, 2831–2838.

[82]

Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018, 18, 5231–5238.

[83]

Li, F.; Liu, Y.; Wang, H. L.; Zhan, Q.; Liu, Q. L.; Xia, Z. G. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 2018, 30, 8546–8554.

[84]

Yarita, N.; Tahara, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Impact of postsynthetic surface modification on photoluminescence intermittency in formamidinium lead bromide perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 6041–6047.

[85]

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Paul Alivisatos, A. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.

[86]

Li, H. B.; Qian, Y.; Xing, X.; Zhu, J. F.; Huang, X. Y.; Jing, Q.; Zhang, W. H.; Zhang, C. F.; Lu, Z. D. Enhancing luminescence and photostability of CsPbBr3 nanocrystals via surface passivation with silver complex. J. Phys. Chem. C 2018, 122, 12994–13000.

[87]

Xu, L.; Yuan, S.; Zeng, H.; Song, J. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes. Mater. Today Nano, 2019, 6, 100036.

[88]

Chen, J. K.; Ma, J. P.; Guo, S. Q.; Chen, Y. M.; Zhao, Q.; Zhang, B. B.; Li, Z. Y.; Zhou, Y.; Hou, J. S.; Kuroiwa, Y. et al. High-efficiency violet-emitting all-inorganic perovskite nanocrystals enabled by alkaline-earth metal passivation. Chem. Mater. 2019, 31, 3974–3983.

[89]

Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

[90]

Bi, C. H.; Wang, S. X.; Li, Q.; Kershaw, S. V.; Tian, J. J.; Rogach, A. L. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 2019, 10, 943–952.

[91]

Yong, Z. J.; Guo, S. Q.; Ma, J. P.; Zhang, J. Y.; Li, Z. Y.; Chen, Y. M.; Zhang, B. B.; Zhou, Y.; Shu, J.; Gu, J. L. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 2018, 140, 9942–9951.

[92]

Jin, H. D.; Steele, J. A.; Cheng, R. L.; Parveen, N.; Roeffaers, M. B. J.; Hofkens, J.; Debroye, E. Experimental evidence of chloride-induced trap passivation in lead halide perovskites through single particle blinking studies. Adv. Opt. Mater. 2021, 9, 2002240.

[93]

Shi, J. D.; Ge, W. Y.; Zhu, J. F.; Saruyama, M.; Teranishi, T. Core–shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices. ACS Appl. Nano Mater. 2020, 3, 7563–7571.

[94]

Xie, Q. F.; Wu, D.; Wang, X. Z.; Li, Y.; Fang, F.; Wang, Z. J.; Ma, Y. H.; Su, M.; Peng, S. M.; Liu, H. C. et al. Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots. J. Mater. Chem. C 2019, 7, 11251–11257.

[95]

Wang, S. S.; Du, L.; Jin, Z. C.; Xin, Y.; Mattoussi, H. Enhanced stabilization and easy phase transfer of cspbbr3 perovskite quantum dots promoted by high-affinity polyzwitterionic ligands. J. Am. Chem. Soc. 2020, 142, 12669–12680.

[96]

Tran Tran, T. K.; Nyiera, H. N.; Brea, C.; Ruiz, S. N.; Wang, C.; Tan, H. Y.; Suib, S. L.; Hu, G. X.; Zhao, J. Silica surface coating of blue light-emitting CsPbBr3 nanoplatelets for improved stability in polar solvents and long-term storage. ACS Appl. Nano Mater. 2024, 7, 12153–12162.

[97]

Wei, Y.; Li, K.; Cheng, Z. Y.; Liu, M. M.; Xiao, H.; Dang, P. P.; Liang, S. S.; Wu, Z. J.; Lian, H. Z.; Lin, J. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: a novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability. Adv. Mater. 2019, 31, 1807592.

[98]

Liu, P.; Xu, Y.; Zhang, Y. C.; Han, L.; Lian, H. Z; Lin, J. Epitaxial growth of lattice-matched BaWO4/CH3NH3PbX3 (X = Cl, Br, I) hetero-micro/nanostructure with suppressed halide ion migration. Adv. Opt. Mater. 2023, 11, 2300440.

[99]

Liu, P.; Xu, Y.; Li, B. H.; Zhang, Y. C.; Lian, H. Z.; Lin, J. Structural engineering of BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures towards ultrastable and tunable photoluminescence. Nano Res, 2024, 17, 1636–1645.

[100]

Liu, P.; Yi, Z. S.; Li, B. H.; Xia, Z. G.; Xu, Y. Epitaxial growth of MgGa2O4/CsPbBr3 heterostructure with controlled defect tolerance for dynamic photoluminescence. Adv Opt. Mater. 2024, 12, 2303038.

[101]

Zhang, X.; Zhou, Y.; Peng, L. W.; Lin, Z. H.; Chang, Y. Y.; Zhou, Z. F.; Li, Y. Stable blue-emitting CsPbBr3 nanoplatelets for lighting and display applications. ACS Appl. Nano Mater. 2022, 5, 17012–17021.

[102]

Huang, H.; Zhao, W. R.; Yang, H. X.; Zhang, X. L.; Su, J. N.; Hu, K. G.; Nie, Z. G.; Li, Y.; Zhong, J. Y. In situ synthesis of blue-emitting bromide-based perovskite nanoplatelets towards unity quantum efficiency and ultrahigh stability. J. Mater. Chem. C 2021, 9, 5535–5543.

[103]

Wang, S. C.; Wang, W. T.; Donmez, S.; Xin, Y.; Mattoussi, H. Engineering highly fluorescent and colloidally stable blue-emitting CsPbBr3 nanoplatelets using polysalt/PbBr2 ligands. Chem. Mater. 2022, 34, 4924–4936.

[104]

Yang, L. L.; Huang, J. H.; Tan, Y. K.; Lu, W.; Li, Z. W.; Pan, A. L. All-inorganic lead halide perovskite nanocrystals applied in advanced display devices. Mater. Horiz. 2023, 10, 1969–1989.

[105]

Trinh, C. K.; Lee, H.; So, M. G.; Lee, C. L. Synthesis of chemically stable ultrathin SiO2-coated core–shell perovskite QDs via modulation of ligand binding energy for all-solution-processed light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 29798–29808.

[106]

Zhang, Y.; Hou, G. N.; Wu, Y.; Chen, M. S.; Dai, Y. N.; Liu, S. H.; Zhao, Q. B.; Lin, H. C.; Fang, J. F.; Jing, C. B. et al. Surface reconstruction of CsPbBr3 nanocrystals by the ligand engineering approach for achieving high quantum yield and improved stability. Langmuir 2023, 39, 6222–6230.

[107]

Dutt, V. G. V.; Akhil, S.; Singh, R.; Palabathuni, M.; Mishra, N. Year-long stability and near-unity photoluminescence quantum yield of CsPbBr3 perovskite nanocrystals by benzoic acid post-treatment. J. Phys. Chem. C 2022, 126, 9502–9508.

[108]

Ye, Y.; Zhang, W. C.; Zhang, Y. D.; Li, K.; Han, J. J.; Liu, C. CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes. Chem. Eng. J. 2022, 445, 136867.

[109]

Yang, X.; Li, F.; Wang, X. F.; Xu, Y. F.; Wei, H. L.; Wang, L. In situ tetrafluoroborate-modified MAPbBr3 nanocrystals showing high photoluminescence, stability and self-assembly behavior. J. Mater. Chem. C 2020, 8, 1989–1997.

[110]

Fu, H.; Wang, K.; Wu, H.; Bowen, C. R.; Fang, Z.; Yan, Z. B.; Jiang, S. H.; Ou, D. L.; Yang, Y.; Zheng, J. J. et al. Enhanced hygrothermal stability of in-situ-grown MAPbBr3 nanocrystals in polymer with suppressed desorption of ligands. Inorg. Chem. 2023, 62, 13467–13475.

[111]

Yang, S.; Zhang, F.; Tai, J.; Li, Y.; Yang, Y.; Wang, H.; Zhang, J. X.; Xie, Z. G.; Xu, B.; Zhong, H. Z. et al. A detour strategy for colloidally stable block-copolymer grafted MAPbBr3 quantum dots in water with long photoluminescence lifetime. Nanoscale 2018, 10, 5820–5826.

[112]

Zhang, C. X.; Wang, S.; Li, X. M.; Yuan, M. J.; Turyanska, L.; Yang, X. Y. Core/shell perovskite nanocrystals: Synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv Funct. Mater. 2020, 30, 1910582.

[113]

Zeng, Y. C.; Chen, W. W.; Deng, Y.; Gu, W. Y.; Wu, C. X.; Guo, Y. T.; Huang, P.; Liu, F. Z.; Li, H. B. FAPbBr3/Cs4PbBr6 core/shell perovskite nanocrystals with enhanced stability and emission: Implications for LEDs. ACS Appl. Nano Mater. 2022, 5, 9534–9543.

[114]

Wu, Y. N.; Liu, L. H.; Wang, W.; Zhang, W. Z.; Yu, H. T.; Qian, J.; Chen, Y. F.; Shen, W.; Sui, S. Q.; Deng, Z. T. et al. Enhanced stability and performance of light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals via ligand compensation with n-octylphosphonic acid. J. Mater. Chem. C 2020, 8, 9936–9944.

Nano Research
Cite this article:
Kim Tran Tran T, Nyiera HN, Zhao J. Instability of colloidal lead halide perovskite nanocrystals: Causes, improvement, and evaluation. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6975-9
Topics:

505

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 June 2024
Revised: 13 August 2024
Accepted: 19 August 2024
Published: 28 September 2024
© Tsinghua University Press 2024
Return