AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

NIR-II silver-based quantum dots: Synthesis and applications

Ziyan Zhang1,2Hongchao Yang2( )Mingzhe Wang1,2Yejun Zhang2Jiang Jiang1,2Qiangbin Wang1,2,3,4( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Silver-based quantum dots (QDs) such as Ag2S, Ag2Se, and Ag2Te, which emit in the second near-infrared window (NIR-II, 900–1700 nm), have attracted great research interest due to their prominent optical properties and eco-friendly compositions. Over the past decade, the controllable synthesis, bandgap modulation, and fluorescence improvement of NIR-II Ag-based QDs have greatly promoted their practical applications. In this review, we summarize the development process and latest achievements of NIR-II Ag-based QDs, covering major synthesis techniques for fabricating NIR-II Ag-based QDs, general methods for improving their fluorescence properties and recent advances in the applications of NIR-II Ag-based QDs from bioimaging to optoelectronic devices. Finally, we discuss the challenges and prospects of NIR-II Ag-based QDs in their optical properties and applications. This review aims to present synthesis and modification strategies and future application prospects for NIR-II Ag-based QDs, providing guidance for the design and integration of fluorescent probes in NIR-II window.

References

[1]

de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[2]

Kambhampati, P. Nanoparticles, nanocrystals, and quantum dots: What are the implications of size in colloidal nanoscale materials?. J. Phys. Chem. Lett. 2021, 12, 4769–4779.

[3]

Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.

[4]

Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.; Brus, L. E. Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. J. Chem. Phys. 1988, 89, 4001–4011.

[5]

Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.

[6]

Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J.; Pina, J. M. et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.

[7]

Fu, J. H.; Ramesh, S.; Lim, J. W. M.; Sum, T. C. Carriers, quasi-particles, and collective excitations in halide perovskites. Chem. Rev. 2023, 123, 8154–8231.

[8]

Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

[9]

Hao, M. M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J. X.; Yuan, Y. B.; Zarrabi, N.; Cheng, N. Y.; Ghasemi, M.; Chen, P. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1– x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88.

[10]

Chen, B.; Baek, S. W.; Hou, Y.; Aydin, E.; De Bastiani, M.; Scheffel, B.; Proppe, A.; Huang, Z. R.; Wei, M. Y.; Wang, Y. K. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257.

[11]

Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

[12]

Wu, K. F.; Park, Y. S.; Lim, J.; Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 2017, 12, 1140–1147.

[13]

Huang, Z. G.; Sun, Q.; Wang, S. S.; Shen, H. C.; Cai, W. B.; Wang, Y. Broadband tunable optical gain from ecofriendly semiconductor quantum dots with near-half-exciton threshold. Nano Lett. 2023, 23, 4032–4038.

[14]

Taghipour, N.; Dalmases, M.; Whitworth, G. L.; Dosil, M.; Othonos, A.; Christodoulou, S.; Liga, S. M.; Konstantatos, G. Colloidal quantum dot infrared lasers featuring sub-single-exciton threshold and very high gain. Adv. Mater. 2023, 35, 2207678.

[15]

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

[16]

Lim, H.; Tsao, S.; Zhang, W.; Razeghi, M. High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl. Phys. Lett. 2007, 90, 131112.

[17]

Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81–92.

[18]

Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdO x photocatalyst. Nat. Energy 2017, 2, 17021.

[19]

Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.

[20]

Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.; Xu, H. X.; Xiong, Y. J. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447–16451.

[21]

Kong, Y. F.; Chen, J.; Fang, H. W.; Heath, G.; Wo, Y.; Wang, W. L.; Li, Y. X.; Guo, Y.; Evans, S. D.; Chen, S. Y. et al. Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem. Mater. 2016, 28, 3041–3050.

[22]

Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.

[23]

Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.

[24]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[25]

Li, C. Y.; Wang, Q. B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 2018, 12, 9654–9659.

[26]

Lu, H. P.; Carroll, G. M.; Neale, N. R.; Beard, M. C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953.

[27]

Schmidt, E. L.; Ou, Z. H.; Ximendes, E.; Cui, H.; Keck, C. H. C.; Jaque, D.; Hong, G. S. Near-infrared II fluorescence imaging. Nat. Rev. Methods Primers 2024, 4, 23.

[28]

Yang, Y.; Jiang, Q. Y.; Zhang, F. Nanocrystals for deep-tissue in vivo luminescence imaging in the near-infrared region. Chem. Rev. 2024, 124, 554–628.

[29]

Gui, R. J.; Jin, H.; Wang, Z. H.; Tan, L. J. Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coord. Chem. Rev. 2015, 296, 91–124.

[30]

Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

[31]

Ding, C. P.; Huang, Y. J.; Shen, Z. Y.; Chen, X. Y. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence. Adv. Mater. 2021, 33, 2007768.

[32]

Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.

[33]

Piao, Z. Y.; Yang, D.; Cui, Z. J.; He, H. Y.; Mei, S. L.; Lu, H. X.; Fu, Z. Z.; Wang, L.; Zhang, W. L.; Guo, R. Q. Recent advances in metal chalcogenide quantum dots: From material design to biomedical applications. Adv. Funct. Mater. 2022, 32, 2207662.

[34]

Li, S. H.; Wei, J.; Yao, Q. F.; Song, X. R.; Xie, J. P.; Yang, H. H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem. Soc. Rev. 2023, 52, 1672–1696.

[35]

Liu, L.; Bai, B.; Yang, X. Y.; Du, Z. L.; Jia, G. H. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications. Chem. Rev. 2023, 123, 3625–3692.

[36]

Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 2007, 6, 115–121.

[37]

Vasilopoulou, M.; Kim, H. P.; Kim, B. S.; Papadakis, M.; Gavim, A. E. X.; Macedo, A. G.; da Silva, W. J.; Schneider, F. K.; Teridi, M. A. M.; Coutsolelos, A. G. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photonics 2020, 14, 50–56.

[38]

Ma, Z. W.; Sun, Z. Q.; Yang, H. C.; Wang, Z. X.; Ren, F.; Yin, N.; Chen, Q.; Zhang, Y. J.; Li, C. Y.; Chen, L. W. et al. Interface-mediation-enabled high-performance near-infrared agause quantum dot light-emitting diodes. J. Am. Chem. Soc. 2023, 145, 24972–24980.

[39]

Nieves, L. M.; Mossburg, K.; Hsu, J. C.; Maidment, A. D. A.; Cormode, D. P. Silver chalcogenide nanoparticles: A review of their biomedical applications. Nanoscale 2021, 13, 19306–19323.

[40]

Ma, Y.; Zhang, Y.; Yu, W. W. Near infrared emitting quantum dots: Synthesis, luminescence properties and applications. J. Mater. Chem. C 2019, 7, 13662–13679.

[41]

Purushothaman, B.; Song, J. M. Ag2S quantum dot theragnostics. Biomater. Sci. 2021, 9, 51–69.

[42]

Rempel, J. Y.; Bawendi, M. G.; Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009, 131, 4479–4489.

[43]

Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.

[44]

Sowers, K. L.; Swartz, B.; Krauss, T. D. Chemical mechanisms of semiconductor nanocrystal synthesis. Chem. Mater. 2013, 25, 1351–1362.

[45]

Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5–21.

[46]

van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246–2285.

[47]

Calvin, J. J.; Brewer, A. S.; Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022, 1, 127–137.

[48]

Borovaya, M.; Horiunova, I.; Plokhovska, S.; Pushkarova, N.; Blume, Y.; Yemets, A. Synthesis, properties and bioimaging applications of silver-based quantum dots. Int. J. Mol. Sci. 2021, 22, 12202.

[49]

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

[50]

Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew. Chem., Int. Ed. 2011, 50, 7115–7118.

[51]

Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. , Int. Ed. 2012, 51, 9818–9821.

[52]

Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.

[53]

Zhang, Y. J.; Liu, Y. S.; Li, C. Y.; Chen, X. Y.; Wang, Q. B. Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton bohr radius. J. Phys. Chem. C 2014, 118, 4918–4923.

[54]

Li, P.; Peng, Q.; Li, Y. D. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag2S nanocrystals. Chem. -Eur. J. 2011, 17, 941–946.

[55]

Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mater. 2012, 24, 3–5.

[56]

Zhang, H. T.; Hyun, B. R.; Wise, F. W.; Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 2012, 12, 5856–5860.

[57]

Zhao, Y. X.; Song, Z. M. Phase transfer-based synthesis of highly stable, biocompatible and the second near-infrared-emitting silver sulfide quantum dots. Mater. Lett. 2014, 126, 78–80.

[58]

Xing, L.; Xu, S.; Cui, J.; Wang, L. Solvent tailored strategy for synthesis of ultrasmall Ag2S quantum dots with near-infrared-II luminescence. J. Nanosci. Nanotechnol. 2019, 19, 4549–4555.

[59]

Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758–3765.

[60]

Dong, B. H.; Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Zhang, Y.; Deng, M. J.; Wang, Q. B. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509.

[61]

Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.

[62]

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

[63]

Zhang, Y. J.; Yang, H. C.; An, X. Y.; Wang, Z.; Yang, X. H.; Yu, M. X.; Zhang, R.; Sun, Z. Q.; Wang, Q. B. Controlled synthesis of Ag2Te@Ag2S core–shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window. Small 2020, 16, 2001003.

[64]

Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

[65]

Zhang, M. Y.; Liu, A. A.; Fu, H. H.; Zhang, W.; Zhang, S. H.; Liu, Z. Y.; Jiang, L. H.; Shao, X. G.; Pang, D. W. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%. Chem. Mater. 2021, 33, 9524–9533.

[66]

Wang, K.; Deng, K. H.; Tian, Y. S.; Sun, M. Y.; Yu, Z. L.; Tian, Z. Q.; Zhang, Z. L. Core/shell-structured Ag2Te/Ag2Se quantum dots for high-resolution in vivo fluorescence imaging in the near infrared iib region. ACS Appl. Nano Mater. 2023, 6, 14289–14299.

[67]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[68]

Brelle, M. C.; Zhang, J. Z.; Nguyen, L.; Mehra, R. K. Synthesis and ultrafast study of cysteine- and glutathione-capped Ag2S semiconductor colloidal nanoparticles. J. Phys. Chem. A 1999, 103, 10194–10201.

[69]

Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Qian, Y. T.; Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Qian, Y. T.; Zhou, G. E.; Liu, X. M. Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M = Ga, In). Chem. Commun. 1999, 1093–1094.

[70]

Gao, F.; Lu, Q. Y.; Zhao, D. Y. Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett. 2003, 3, 85–88.

[71]

Ng, M. T.; Boothroyd, C. B.; Vittal, J. J. One-pot synthesis of new-phase AgInSe2 nanorods. J. Am. Chem. Soc. 2006, 128, 7118–7119.

[72]

Tian, L.; Elim, H. I.; Ji, W.; Vittal, J. J. One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals. Chem. Commun. 2006, 4276–4278.

[73]

Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem. —Eur. J. 2007, 13, 8840–8846.

[74]

Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. General synthesis of I-III-VI2 ternary semiconductor nanocrystals. Chem. Commun. 2008, 2556–2558.

[75]

Liu, Y. W.; Ko, D. K.; Oh, S. J.; Gordon, T. R.; Doan-Nguyen, V.; Paik, T.; Kang, Y. J.; Ye, X. C.; Jin, L. H.; Kagan, C. R. et al. Near-infrared absorption of monodisperse silver telluride (Ag2Te) nanocrystals and photoconductive response of their self-assembled superlattices. Chem. Mater. 2011, 23, 4657–4659.

[76]

Sahu, A.; Qi, L. J.; Kang, M. S.; Deng, D.; Norris, D. J. Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 6509–6512.

[77]

Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. A facile “dispersion-decomposition” route to metal sulfide nanocrystals. Chem. -Eur. J. 2011, 17, 10445–10452.

[78]

Abazović, N. D.; Čomor, M. I.; Mitrić, M. N.; Piscopiello, E.; Radetić, T.; Janković, I. A.; Nedeljković, J. M. Ligand mediated synthesis of AgInSe2 nanoparticles with tetragonal/orthorhombic crystal phases. J. Nanopart. Res. 2012, 14, 810.

[79]

Peng, S. J.; Zhang, S. Y.; Mhaisalkar, S. G.; Ramakrishna, S. Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. Phys. Chem. Chem. Phys. 2012, 14, 8523–8529.

[80]

Shen, H. B.; Jiang, X. D.; Wang, S. J.; Fu, Y. T.; Zhou, C. H.; Li, L. S. Facile preparation of metal telluride nanocrystals using di-n-octylphosphine oxide (DOPO) as an air-stable and less toxic alternative to the common tri-alkylphosphines. J. Mater. Chem. 2012, 22, 25050–25056.

[81]

Zhou, W. W.; Zhao, W. Y.; Lu, Z. Y.; Zhu, J. X.; Fan, S. F.; Ma, J.; Hng, H. H.; Yan, Q. Y. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods. Nanoscale 2012, 4, 3926–3931.

[82]

Deng, M. J.; Shen, S. L.; Wang, X. W.; Zhang, Y. J.; Xu, H. R.; Zhang, T.; Wang, Q. B. Controlled synthesis of AgInS2 nanocrystals and their application in organic–inorganic hybrid photodetectors. CrystEngComm 2013, 15, 6443–6447.

[83]

Bai, T. Y.; Li, C. G.; Li, F. F.; Zhao, L.; Wang, Z. R.; Huang, H.; Chen, C. L.; Han, Y.; Shi, Z.; Feng, S. H. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1– x Se x )2 nanocrystals. Nanoscale 2014, 6, 6782–6789.

[84]

Fan, C. M.; Regulacio, M. D.; Ye, C.; Lim, S. H.; Zheng, Y. G.; Xu, Q. H.; Xu, A. W.; Han, M. Y. Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals. Chem. Commun. 2014, 50, 7128–7131.

[85]

Kameyama, T.; Douke, Y.; Shibakawa, H.; Kawaraya, M.; Segawa, H.; Kuwabata, S.; Torimoto, T. Widely controllable electronic energy structure of ZnSe-AgInSe2 solid solution nanocrystals for quantum-dot-sensitized solar cells. J. Phys. Chem. C 2014, 118, 29517–29524.

[86]

Wang, J. L.; Fan, W. L.; Yang, J.; Da, Z. L.; Yang, X. F.; Chen, K. M.; Yu, H.; Cheng, X. N. Tetragonal-orthorhombic-cubic phase transitions in Ag2Se nanocrystals. Chem. Mater. 2014, 26, 5647–5653.

[87]

Zhou, B.; Li, M. R.; Wu, Y. H.; Yang, C.; Zhang, W. H.; Li, C. Monodisperse AgSbS2 nanocrystals: Size-control strategy, large-scale synthesis, and photoelectrochemistry. Chem. —Eur. J. 2015, 21, 11143–11151.

[88]

Bai, T. Y.; Xing, S. H.; Li, C. G.; Shi, Z.; Feng, S. H. Phase-controlled synthesis of orthorhombic and tetragonal AgGaSe2 nanocrystals with high quality. Chem. Commun. 2016, 52, 8581–8584.

[89]

Tappan, B. A.; Horton, M. K.; Brutchey, R. L. Ligand-mediated phase control in colloidal AgInSe2 nanocrystals. Chem. Mater. 2020, 32, 2935–2945.

[90]

Tappan, B. A.; Zhu, B. N.; Cottingham, P.; Mecklenburg, M.; Scanlon, D. O.; Brutchey, R. L. Crystal structure of colloidally prepared metastable Ag2Se nanocrystals. Nano Lett. 2021, 21, 5881–5887.

[91]

An, M. N.; Eom, S. Y.; Lee, J. H.; Song, H.; Cho, M.; Jeong, K. S. Room temperature synthesis of self-doped silver selenide quantum dots sensitive to mid-infrared light. ACS Appl. Nano Mater. 2023, 6, 22488–22495.

[92]

Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087.

[93]

Taylor, P. F.; Wood, C. Thermoelectric properties of Ag2Te. J. Appl. Phys. 1961, 32, 1–3.

[94]

Tee, S. Y.; Ponsford, D.; Lay, C. L.; Wang, X. B.; Wang, X. Z.; Neo, D. C. J.; Wu, T. Z.; Thitsartarn, W.; Yeo, J. C. C.; Guan, G. J. et al. Thermoelectric silver-based chalcogenides. Adv. Sci. 2022, 9, 2204624.

[95]

Wang, J. M.; Zhu, C. N.; Zhu, D. L.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Synthesis of photoluminescence Ag2Te quantum dots in second near-infrared window. Chem. J. Chin. Univ. 2015, 36, 1264–1268.

[96]

Hocaoglu, I.; Çizmeciyan, M. N.; Erdem, R.; Ozen, C.; Kurt, A.; Sennaroglu, A.; Acar, H. Y. Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem. 2012, 22, 14674–14681.

[97]

Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012, 33, 5130–5135.

[98]

Ding, C. P.; Cao, X. Y.; Zhang, C. L.; He, T. R.; Hua, N.; Xian, Y. Z. Rare earth ions enhanced near infrared fluorescence of Ag2S quantum dots for the detection of fluoride ions in living cells. Nanoscale 2017, 9, 14031–14038.

[99]

Cai, M. F.; Ding, C. P.; Wang, F. F.; Ye, M. Q.; Zhang, C. L.; Xian, Y. Z. A ratiometric fluorescent assay for the detection and bioimaging of alkaline phosphatase based on near infrared Ag2S quantum dots and calcein. Biosens. Bioelectron. 2019, 137, 148–153.

[100]

Wang, C. X.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M. X.; Li, X. W.; Sun, H. C.; Lin, Q.; Yang, B. Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: Tunable photoluminescence from red to near infrared. Small 2012, 8, 3137–3142.

[101]

Aydemir, D.; Hashemkhani, M.; Durmusoglu, E. G.; Acar, H. Y.; Ulusu, N. N. A new substrate for glutathione reductase: Glutathione coated Ag2S quantum dots. Talanta 2019, 194, 501–506.

[102]

Ding, C. P.; Cheng, S. S.; Zhang, C. L.; Xiong, Y. R.; Ye, M. Q.; Xian, Y. Z. Ratiometric upconversion luminescence nanoprobe with near-infrared Ag2S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Anal. Chem. 2019, 91, 7181–7188.

[103]

Wang, Y.; Yan, X. P. Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem. Commun. 2013, 49, 3324–3326.

[104]

Yang, H. Y.; Zhao, Y. W.; Zhang, Z. Y.; Xiong, H. M.; Yu, S. N. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 2013, 24, 055706.

[105]

Chen, X.; Ding, L.; Liu, P.; Wang, Q. S. Synthesis of protein-assisted aqueous Ag2S quantum dots in the bovine serum albumin solution. Surf. Interface Anal. 2014, 46, 301–306.

[106]

Zhang, J.; Hao, G. Y.; Yao, C. F.; Yu, J. N.; Wang, J.; Yang, W. T.; Hu, C. H.; Zhang, B. B. Albumin-mediated biomineralization of paramagnetic NIR Ag2S QDs for tiny tumor bimodal targeted imaging in vivo. ACS Appl. Mater. Interfaces 2016, 8, 16612–16621.

[107]

Asik, D.; Yagci, M. B.; Duman, F. D.; Acar, H. Y. One step emission tunable synthesis of PEG coated Ag2S NIR quantum dots and the development of receptor targeted drug delivery vehicles thereof. J. Mater. Chem. B 2016, 4, 1941–1950.

[108]

Gao, J. W.; Wu, C. L.; Deng, D.; Wu, P.; Cai, C. X. Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv. Healthcare Mater. 2016, 5, 2437–2449.

[109]

Sun, P. Q.; Li, K. L.; Liu, X.; Wang, J.; Qiu, X. S.; Wei, W.; Zhao, J. Peptide-mediated aqueous synthesis of NIR-II emitting Ag2S quantum dots for rapid photocatalytic bacteria disinfection. Angew. Chem., Int. Ed. 2023, 62, e202300085.

[110]

Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

[111]

Yang, L. L.; Zhao, W.; Liu, Z. Y.; Ren, M. T.; Kong, J.; Zong, X.; Luo, M. Y.; Tang, B.; Xie, J. H. Y.; Pang, D. W. et al. Acid-resistant near-infrared II Ag2Se quantum dots for gastrointestinal imaging. Anal. Chem. 2023, 95, 15540–15548.

[112]

Grevtseva, I.; Ovchinnikov, O.; Smirnov, M.; Aslanov, S.; Derepko, V.; Perepelitsa, A.; Kondratenko, T. Temperature effects and mechanism of IR luminescence of colloidal Ag2Se QDs passivated with 2-mercaptopropionic acid. J. Lumin. 2023, 257, 119669.

[113]

Yang, M.; Gui, R. J.; Jin, H.; Wang, Z. H.; Zhang, F. F.; Xia, J. F.; Bi, S.; Xia, Y. Z. Ag2Te quantum dots with compact surface coatings of multivalent polymers: Ambient one-pot aqueous synthesis and the second near-infrared bioimaging. Colloids Surf. B 2015, 126, 115–120.

[114]

van der Stam, W.; Berends, A. C.; de Mello Donega, C. Prospects of colloidal copper chalcogenide nanocrystals. ChemPhysChem 2016, 17, 559–581.

[115]

Dloczik, L.; Könenkamp, R. Nanostructure transfer in semiconductors by ion exchange. Nano Lett. 2003, 3, 651–653.

[116]

Cao, H. L.; Qian, X. F.; Wang, C.; Ma, X. D.; Yin, J.; Zhu, Z. K. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J. Am. Chem. Soc. 2005, 127, 16024–16025.

[117]

Geng, J.; Liu, B.; Xu, L.; Hu, F. N.; Zhu, J. J. Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 2007, 23, 10286–10293.

[118]

Dawood, F.; Schaak, R. E. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. J. Am. Chem. Soc. 2009, 131, 424–425.

[119]

Park, J.; Zheng, H. M.; Jun, Y. W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.

[120]

Saruyama, M.; So, Y. G.; Kimoto, K.; Taguchi, S.; Kanemitsu, Y.; Teranishi, T. Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction. J. Am. Chem. Soc. 2011, 133, 17598–17601.

[121]

Langevin, M. A.; Ritcey, A. M.; Allen, C. N. Air-stable near-infrared AgInSe2 nanocrystals. ACS Nano 2014, 8, 3476–3482.

[122]

Wang, X. F.; Zhan, S.; Wang, Y.; Wang, P.; Yu, H. G.; Yu, J. G.; Hu, C. Z. Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. J. Colloid Interface Sci. 2014, 422, 30–37.

[123]

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

[124]

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

[125]

Rivest, J. B.; Jain, P. K. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 2013, 42, 89–96.

[126]

Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852–4857.

[127]

Liu, J.; Zhao, Q.; Liu, J. L.; Wu, Y. S.; Cheng, Y.; Ji, M. W.; Qian, H. M.; Hao, W. C.; Zhang, L. J.; Wei, X. J. et al. Heterovalent-doping-enabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing II-VI nanocrystals. Adv. Mater. 2015, 27, 2753–2761.

[128]

Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U. Chemical transformations of nanostructured materials. Nano Today 2011, 6, 186–203.

[129]

Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6944.

[130]

Bera, R.; Choi, D.; Jung, Y. S.; Song, H.; Jeong, K. S. Intraband transitions of nanocrystals transforming from lead selenide to self-doped silver selenide quantum dots by cation exchange. J. Phys. Chem. Lett. 2022, 13, 6138–6146.

[131]

Chen, S.; Tang, T.; Huang, B.; Liu, F.; Cui, R.; Zhang, M. X.; Sun, T. L. Thiolate etching route for the ripening of uniform Ag2Te quantum dots emitting in the second near-infrared window: Implication for noninvasive in vivo imaging. ACS Appl. Nano Mater. 2022, 5, 3415–3421.

[132]

Parr, R. G.; Pearson, R. G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516.

[133]

Pearson, R. G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740.

[134]

Wang, S. B.; Hu, B.; Liu, C. C.; Yu, S. H. Syringe pump-assisted synthesis of water-soluble cubic structure Ag2Se nanocrystals by a cation-exchange reaction. J. Colloid Interface Sci. 2008, 325, 351–355.

[135]

Pang, M. L.; Hu, J. Y.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771–10785.

[136]

Tan, C. S.; Hsiao, C. H.; Wang, S. C.; Liu, P. H.; Lu, M. Y.; Huang, M. H.; Ouyang, H.; Chen, L. J. Sequential cation exchange generated superlattice nanowires forming multiple p-n heterojunctions. ACS Nano 2014, 8, 9422–9426.

[137]

Yao, S. S.; Jin, B.; Liu, Z. M.; Shao, C. Y.; Zhao, R. B.; Wang, X. Y.; Tang, R. K. Biomineralization: From material tactics to biological strategy. Adv. Mater. 2017, 29, 1605903.

[138]

Mao, L. B.; Meng, Y. F.; Meng, X. S.; Yang, B.; Yang, Y. L.; Lu, Y. J.; Yang, Z. Y.; Shang, L. M.; Yu, S. H. Matrix-directed mineralization for bulk structural materials. J. Am. Chem. Soc. 2022, 144, 18175–18194.

[139]

Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

[140]

da Costa, J. P.; Girão, A. V.; Trindade, T.; Costa, M. C.; Duarte, A.; Rocha-Santos, T. Biological synthesis of nanosized sulfide semiconductors: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016, 100, 8283–8302.

[141]

Feng, Y. Y.; Marusak, K. E.; You, L. C.; Zauscher, S. Biosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications. Curr. Opin. Colloid Interface Sci. 2018, 38, 190–203.

[142]

Liu, A. A.; Sun, E. Z.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Artificially regulated synthesis of nanocrystals in live cells. Natl. Sci. Rev. 2022, 9, nwab162.

[143]

Wareing, T. C.; Gentile, P.; Phan, A. N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021, 15, 15471–15501.

[144]

Calvo, V.; González-Domínguez, J. M.; Benito, A. M.; Maser, W. K. Synthesis and processing of nanomaterials mediated by living organisms. Angew. Chem., Int. Ed. 2022, 61, e202113286.

[145]

Aguayo, O. P. Y.; Mouheb, L.; Revelo, K. V.; Vásquez-Ucho, P. A.; Pawar, P. P.; Rahman, A.; Jeffryes, C.; Terencio, T.; Dahoumane, S. A. Biogenic sulfur-based chalcogenide nanocrystals: Methods of fabrication, mechanistic aspects, and bio-applications. Molecules 2022, 27, 458.

[146]

Jin, C. Y.; Xu, W.; Jin, K.; Yu, L.; Lu, H. F.; Liu, Z.; Liu, J. L.; Zhu, X. H.; Wu, Y. H.; Zhang, Y. Microbial biosynthesis of quantum dots: Regulation and application. Inorg. Chem. Front. 2023, 10, 4008–4027.

[147]

Niu, L. Q.; Yu, L.; Jin, C. Y.; Jin, K.; Liu, Z.; Zhu, T.; Zhu, X. H.; Zhang, Y.; Wu, Y. H. Living materials based dynamic information encryption via light-inducible bacterial biosynthesis of quantum dots. Angew. Chem., Int. Ed. 2024, 63, e202315251.

[148]

Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989, 338, 596–597.

[149]

Suresh, A. K.; Doktycz, M. J.; Wang, W.; Moon, J. W.; Gu, B. H.; Meyer III, H. M.; Hensley, D. K.; Allison, D. P.; Phelps, T. J.; Pelletier, D. A. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater. 2011, 7, 4253–4258.

[150]

Órdenes-Aenishanslins, N.; Anziani-Ostuni, G.; Monrás, J. P.; Tello, A.; Bravo, D.; Toro-Ascuy, D.; Soto-Rifo, R.; Prasad, P. N.; Pérez-Donoso, J. M. Bacterial synthesis of ternary CdSAg quantum dots through cation exchange: Tuning the composition and properties of biological nanoparticles for bioimaging and photovoltaic applications. Microorganisms 2020, 8, 631.

[151]

Liu, J. Y.; Zheng, D. M.; Zhong, L. P.; Gong, A.; Wu, S. Y.; Xie, Z. X. Biosynthesis of biocompatibility Ag2Se quantum dots in Saccharomyces cerevisiae and its application. Biochem. Biophys. Res. Commun. 2021, 544, 60–64.

[152]

de la Rica, R.; Velders, A. H. Biomimetic crystallization of Ag2S nanoclusters in nanopore assemblies. J. Am. Chem. Soc. 2011, 133, 2875–2877.

[153]

Chen, J.; Zhang, T.; Feng, L. L.; Zhang, M. Q.; Zhang, X.; Su, H. C.; Cui, D. X. Synthesis of Ribonuclease-A conjugated Ag2S quantum dots clusters via biomimetic route. Mater. Lett. 2013, 96, 224–227.

[154]

Cao, Y. T.; Geng, W.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Liu, L. M.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 14952–14957.

[155]

Sousa, F. L. N.; Souza, B. A. S.; Jesus, A. C.; Azevedo, W. M.; Mansur, H. S.; Freitas, D. V.; Navarro, M. Aqueous electrosynthesis of silver indium selenide nanocrystals and their photothermal properties. Green Chem. 2020, 22, 1239–1248.

[156]

Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 2011, 115, 1786–1792.

[157]

Sun, Z. Q.; Liu, C.; Yang, H. C.; Yang, X. H.; Zhang, Y. J.; Lin, H. Z.; Li, Y. Y.; Wang, Q. B. AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Res. 2022, 15, 8555–8563.

[158]

Hamilton, M. A.; Barnes, A. C.; Howells, W. S.; Fischer, H. E. Ag+ dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering. J. Phys.: Condens. Matter 2001, 13, 2425–2436.

[159]

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[160]

Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.

[161]

Ioannou, D.; Griffin, D. K. Nanotechnology and molecular cytogenetics: The future has not yet arrived. Nano Rev. 2010, 1, 5117.

[162]

Luo, M. Y.; Tang, B.; Liu, A. A.; Zhao, J. Y.; Zhang, Z. L.; Pang, D. W. A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands. Nano Res. 2023, 16, 12608–12617.

[163]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[164]

Giansante, C.; Infante, I. Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective. J. Phys. Chem. Lett. 2017, 8, 5209–5215.

[165]

Bhattacharjee, K.; Prasad, B. L. V. Surface functionalization of inorganic nanoparticles with ligands: A necessary step for their utility. Chem. Soc. Rev. 2023, 52, 2573–2595.

[166]

Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

[167]

Sahu, A.; Kumar, D. Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling. J. Alloys Compd. 2022, 924, 166508.

[168]

Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941–958.

[169]

Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

[170]

Pan, L. J.; Tu, J. W.; Yang, L. L.; Tian, Z. Q.; Zhang, Z. L. Photoluminescence enhancement of NIR-II emissive Ag2S quantum dots via chloride-mediated growth and passivation. Adv. Opt. Mater. 2022, 10, 2102806.

[171]

Kim, G.; Choi, D.; Eom, S. Y.; Song, H.; Jeong, K. S. Extended short-wavelength infrared photoluminescence and photocurrent of nonstoichiometric silver telluride colloidal nanocrystals. Nano Lett. 2021, 21, 8073–8079.

[172]

Santos, H. D. A.; Gutiérrez, I. Z.; Shen, Y. L.; Lifante, J.; Ximendes, E.; Laurenti, M.; Méndez-González, D.; Melle, S.; Calderón, O. G.; Cabarcos, E. L. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 2020, 11, 2933.

[173]

Wu, Q.; Zhou, M.; Shi, J.; Li, Q. J.; Yang, M. Y.; Zhang, Z. X. Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal. Chem. 2017, 89, 6616–6623.

[174]

Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.

[175]

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

[176]

Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.

[177]

Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.

[178]

Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature dependence of “elementary processes” in doping semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 9333–9339.

[179]

He, H.; Lin, Y.; Tian, Z. Q.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W. Ultrasmall Pb: Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window. Small 2018, 14, 1703296.

[180]

Cargnello, M.; Johnston-Peck, A. C.; Diroll, B. T.; Wong, E.; Datta, B.; Damodhar, D.; Doan-Nguyen, V. V. T.; Herzing, A. A.; Kagan, C. R.; Murray, C. B. Substitutional doping in nanocrystal superlattices. Nature 2015, 524, 450–453.

[181]

Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. C.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.

[182]

Tang, Z. Y.; Yang, H. C.; Sun, Z. Q.; Zhang, Y. J.; Chen, G. C.; Wang, Q. B. The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs. Nano Res. 2023, 16, 12315–12322.

[183]

Zhou, Y. F.; Huang, B.; Chen, S. H.; Liu, S. L.; Zhang, M. X.; Cui, R. Ultra-bright near-infrared-IIb emitting Zn-doped Ag2Te quantum dots for noninvasive monitoring of traumatic brain injury. Nano Res. 2023, 16, 2719–2727.

[184]

Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589.

[185]

Johnsen, S. Hidden in plain sight: The ecology and physiology of organismal transparency. Biol. Bull. 2001, 201, 301–318.

[186]

Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.

[187]

Liu, P. F.; Zhao, R.; Li, H. W.; Zhu, T. Y.; Li, Y.; Wang, H.; Zhang, X. D. Near-infrared-II deep tissue fluorescence microscopy and application. Nano Res. 2023, 16, 692–714.

[188]

Alifu, N.; Zebibula, A.; Zhang, H. Q.; Ni, H. W.; Zhu, L.; Xi, W.; Wang, Y. L.; Zhang, X. L.; Wu, C. F.; Qian, J. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging. Nano Res. 2020, 13, 2632–2640.

[189]

Chen, M.; Feng, S. J.; Yang, Y. M.; Li, Y. X.; Zhang, J.; Chen, S. Y.; Chen, J. Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging. Nano Res. 2020, 13, 3123–3129.

[190]

Su, M. Y.; Wang, Z. M.; Zhang, J. T. Near-infrared manipulation of temperature-sensitive ion channel through photothermal nanotransducer brightens in vivo photomedicine. Coord. Chem. Rev. 2023, 492, 215282.

[191]

Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

[192]

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

[193]

Nakane, Y.; Tsukasaki, Y.; Sakata, T.; Yasuda, H.; Jin, T. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem. Commun. 2013, 49, 7584–7586.

[194]

Sasaki, A.; Tsukasaki, Y.; Komatsuzaki, A.; Sakata, T.; Yasuda, H.; Jin, T. Recombinant protein (EGFP-Protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors. Nanoscale 2015, 7, 5115–5119.

[195]

Chen, G. C.; Zhang, Y. J.; Peng, Z.; Huang, D. H.; Li, C. Y.; Wang, Q. B. Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Res. 2019, 12, 1321–1326.

[196]

Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.

[197]

Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086–12090.

[198]

Shao, W.; Chen, G. Y.; Kuzmin, A.; Kutscher, H. L.; Pliss, A.; Ohulchanskyy, T. Y.; Prasad, P. N. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc. 2016, 138, 16192–16195.

[199]

Li, H.; Zhong, Y. F.; Wang, S. M.; Zha, M. L.; Gu, W. X.; Liu, G. Y.; Wang, B. H.; Yu, Z. D.; Wang, Y.; Li, K. et al. In vivo bioorthogonal labeling of rare-earth doped nanoparticles for improved NIR-II tumor imaging by extracellular vesicle-mediated targeting. Nano Res. 2023, 16, 2895–2904.

[200]

Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

[201]

Zhang, Y.; Zhang, Y. J.; Hong, G. S.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G. C.; Liu, Z.; Dai, H. J. et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639–3646.

[202]

Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.

[203]

Zhang, J. J.; Lin, Y.; Zhou, H.; He, H.; Ma, J. J.; Luo, M. Y.; Zhang, Z. L.; Pang, D. W. Cell membrane-camouflaged NIR II fluorescent Ag2Te quantum dots-based nanobioprobes for enhanced in vivo homotypic tumor imaging. Adv. Healthcare Mater. 2019, 8, 1900341.

[204]

Afshari, M. J.; Li, C.; Zeng, J. F.; Cui, J. B.; Wu, S. W.; Gao, M. Y. Self-illuminating NIR-II bioluminescence imaging probe based on silver sulfide quantum dots. ACS Nano 2022, 16, 16824–16832.

[205]

Huang, D. H.; Wang, Q. W.; Cao, Y. H.; Yang, H. C.; Li, M.; Wu, F.; Zhang, Y. J.; Chen, G. C.; Wang, Q. B. Multiscale NIR-II imaging-guided brain-targeted drug delivery using engineered cell membrane nanoformulation for Alzheimer’s disease therapy. ACS Nano 2023, 17, 5033–5046.

[206]

Ling, S. S.; Yang, X. H.; Li, C. Y.; Zhang, Y. J.; Yang, H. C.; Chen, G. C.; Wang, Q. B. Tumor microenvironment-activated NIR-II nanotheranostic system for precise diagnosis and treatment of peritoneal metastasis. Angew. Chem., Int. Ed. 2020, 59, 7219–7223.

[207]

Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 2015, 8, 1637–1647.

[208]

Chen, G. C.; Tian, F.; Zhang, Y.; Zhang, Y. J.; Li, C. Y.; Wang, Q. B. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater. 2014, 24, 2481–2488.

[209]

Chen, G. C.; Tian, F.; Li, C. Y.; Zhang, Y. J.; Weng, Z.; Zhang, Y.; Peng, R.; Wang, Q. B. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 2015, 53, 265–273.

[210]

Wen, Q. X.; Zhang, Y. J.; Li, C. Y.; Ling, S. S.; Yang, X. H.; Chen, G. C.; Yang, Y.; Wang, Q. B. NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew. Chem., Int. Ed. 2019, 58, 11001–11006.

[211]

Li, C. Y.; Li, W. F.; Liu, H. H.; Zhang, Y. J.; Chen, G. C.; Li, Z. J.; Wang, Q. B. An activatable NIR-II nanoprobe for in vivo early real-time diagnosis of traumatic brain injury. Angew. Chem., Int. Ed. 2020, 59, 247–252.

[212]

Shi, B.; Yan, Q. L.; Tang, J.; Xin, K.; Zhang, J. C.; Zhu, Y.; Xu, G.; Wang, R. C.; Chen, J.; Gao, W. et al. Hydrogen sulfide-activatable second near-infrared fluorescent nanoassemblies for targeted photothermal cancer therapy. Nano Lett. 2018, 18, 6411–6416.

[213]

Wang, C. L.; Niu, M.; Wang, W.; Su, L. C.; Feng, H. J.; Lin, H. X.; Ge, X. G.; Wu, R. R.; Li, Q.; Liu, J. Y. et al. In situ activatable ratiometric NIR-II fluorescence nanoprobe for quantitative detection of H2S in colon cancer. Anal. Chem. 2021, 93, 9356–9363.

[214]

Zhang, X.; Wang, W. L.; Su, L. C.; Ge, X. G.; Ye, J. M.; Zhao, C. Y.; He, Y.; Yang, H. H.; Song, J. B.; Duan, H. W. Plasmonic-fluorescent janus Ag/Ag2S nanoparticles for in situ H2O2-activated NIR-II fluorescence imaging. Nano Lett. 2021, 21, 2625–2633.

[215]

Sun, Z. Q.; Li, T. W.; Wu, F.; Yao, T. F.; Yang, H. C.; Yang, X. H.; Yin, H. Q.; Gao, Y. J.; Zhang, Y. J.; Li, C. Y. et al. Precise synergistic photothermal therapy guided by accurate temperature-dependent NIR-II fluorescence imaging. Adv. Funct. Mater. 2024, 34, 2311622.

[216]

Wang, Y. J.; Peng, L. C.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242.

[217]

Yang, Z. Y.; Voznyy, O.; Liu, M. X.; Yuan, M. J.; Ip, A. H.; Ahmed, O. S.; Levina, L.; Kinge, S.; Hoogland, S.; Sargent, E. H. All-quantum-dot infrared light-emitting diodes. ACS Nano 2015, 9, 12327–12333.

[218]

Jia, Z.; Shao, H. Y.; Xu, J. Y.; Dai, Y.; Qiao, J. Crown ether-assisted room-temperature halide passivation for high-efficiency PbS quantum dots enabling large-area and long-lifetime near-infrared QD-OLEDs. Nano Res. 2023, 16, 7537–7544.

[219]

Zhang, J. B.; Gao, J. B.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015.

[220]

Vafaie, M.; Fan, J. Z.; Najarian, A. M.; Ouellette, O.; Sagar, L. K.; Bertens, K.; Sun, B.; de Arquer, F. P. G.; Sargent, E. H. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1, 550 nm. Matter 2021, 4, 1042–1053.

[221]

Sun, Z. Q.; Yang, H. C.; Ma, Z. W.; Zhang, Z. Y.; Han, L. R.; Wang, Z. X.; Zhang, Y. J.; Wang, X. Y.; Wang, Q. B. AgAuSe quantum dots-based eco-friendly solar cells. Sol. RRL 2023, 7, 2300353.

[222]

Qu, J. L.; Weis, M.; Izquierdo, E.; Mizrahi, S. G.; Chu, A.; Dabard, C.; Gréboval, C.; Bossavit, E.; Prado, Y.; Péronne, E. et al. Electroluminescence from nanocrystals above 2 µm. Nat. Photonics 2022, 16, 38–44.

[223]

Lei, Y.; Jia, H. M.; He, W. W.; Zhang, Y. G.; Mi, L. W.; Hou, H. W.; Zhu, G. S.; Zheng, Z. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: The case of P3HT: Ag2S. J. Am. Chem. Soc. 2012, 134, 17392–17395.

[224]

Gu, L. Y.; Lei, Y.; Luo, J.; Yang, X. G.; Cai, T.; Zheng, Z. Reducing the schottky barrier by SnS2 underlayer modification to enhance photoelectric performance: The case of Ag2S/FTO. ACS Appl. Mater. Interfaces 2019, 11, 24789–24794.

[225]

Zhang, J. Y.; Min, J. J.; Li, B. H.; Yang, W. X.; Zeng, Z. P.; Liu, D. Y.; Ji, B. T. Thiol-Free synthesis of bright near-infrared-emitting Ag2S nanocrystals through heterovalent-metal decoration for ecofriendly solar cells. Chem. Mater. 2023, 35, 1325–1334.

[226]

Mir, W. J.; Swarnkar, A.; Sharma, R.; Katti, A.; Adarsh, K. V.; Nag, A. Origin of unusual excitonic absorption and emission from colloidal Ag2S nanocrystals: Ultrafast photophysics and solar cell. J. Phys. Chem. Lett. 2015, 6, 3915–3922.

[227]

Guo, Y. X.; Lei, H. W.; Li, B. R.; Chen, Z.; Wen, J.; Yang, G.; Fang, G. J. Improved performance in Ag2S/P3HT hybrid solar cells with a solution processed SnO2 electron transport layer. RSC Adv. 2016, 6, 77701–77708.

[228]

Zhang, Z.; Yang, Y.; Gao, J.; Xiao, S.; Zhou, C. H.; Pan, D. Q.; Liu, G.; Guo, X. Y. Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: Size effects on device performances. Mater. Today Energy 2018, 7, 27–36.

[229]

Yang, Y.; Pan, D. Q.; Zhang, Z.; Chen, T.; Xie, H. Y.; Gao, J.; Guo, X. Y. Ag2Se quantum dots for photovoltaic applications and ligand effects on device performance. J. Alloys Compd. 2018, 766, 925–932.

[230]

Abate, M. A.; Chang, J. Y. Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Sol. Energy Mater. Sol. Cells 2018, 182, 37–44.

[231]

Wang, Y. J.; Kavanagh, S. R.; Burgués-Ceballos, I.; Walsh, A.; Scanlon, D. O.; Konstantatos, G. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photonics 2022, 16, 235–241.

[232]

Bernechea, M.; Cates, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521–525.

[233]

Akgul, M. Z.; Figueroba, A.; Pradhan, S.; Bi, Y.; Konstantatos, G. Low-cost RoHS compliant solution processed photovoltaics enabled by ambient condition synthesis of AgBiS2 nanocrystals. ACS Photonics 2020, 7, 588–595.

[234]

Lee, W. Y.; Ha, S.; Lee, H.; Bae, J. H.; Jang, B.; Kwon, H. J.; Yun, Y.; Lee, S.; Jang, J. High-detectivity flexible near-infrared photodetector based on chalcogenide Ag2Se nanoparticles. Adv. Opt. Mater. 2019, 7, 1900812.

[235]

Hafiz, S. B.; Scimeca, M. R.; Zhao, P.; Paredes, I. J.; Sahu, A.; Ko, D. K. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection. ACS Appl. Nano Mater. 2019, 2, 1631–1636.

[236]

Graddage, N.; Ouyang, J. Y.; Lu, J. P.; Chu, T. Y.; Zhang, Y. G.; Li, Z.; Wu, X. H.; Malenfant, P. R. L.; Tao, Y. Near-infrared-II photodetectors based on silver selenide quantum dots on mesoporous TiO2 scaffolds. ACS Appl. Nano Mater. 2020, 3, 12209–12217.

[237]

Ouyang, J. Y.; Graddage, N.; Lu, J. P.; Zhong, Y. F.; Chu, T. Y.; Zhang, Y. G.; Wu, X. H.; Kodra, O.; Li, Z.; Tao, Y. et al. Ag2Te colloidal quantum dots for near-infrared-II photodetectors. ACS Appl. Nano Mater. 2021, 4, 13587–13601.

[238]

Wang, Z.; Liu, F. H.; Gu, Y. J.; Hu, Y. G.; Wu, W. P. Solution-processed self-powered near-infrared photodetectors of toxic heavy metal-free AgAuSe colloidal quantum dots. J. Mater. Chem. C 2022, 10, 1097–1104.

[239]

Wang, Z.; Gu, Y. J.; Aleksandrov, D.; Liu, F. H.; He, H. B.; Wu, W. P. Engineering band gap of ternary Ag2Te x S1– x quantum dots for solution-processed near-infrared photodetectors. Inorganics 2024, 12, 1.

[240]

Nagasuna, K.; Akita, T.; Fujishima, M.; Tada, H. Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight. Langmuir 2011, 27, 7294–7300.

[241]

Singh, S. V.; Gupta, U.; Mukherjee, B.; Pal, B. N. Role of electronically coupled in situ grown silver sulfides (Ag2S) nanoparticles with TiO2 for the efficient photoelectrochemical H2 evolution. Int. J. Hydrogen Energy 2020, 45, 30153–30164.

[242]

Yu, C.; Song, J.; Kim, T. I.; Lee, Y.; Kwon, Y.; Kim, J.; Park, J.; Choi, J.; Doh, J.; Min, S. K. et al. Silver sulfide nanocrystals as a biocompatible and full-spectrum photocatalyst for efficient light-driven polymerization under aqueous and ambient conditions. ACS Catal. 2023, 13, 665–680.

[243]

Du, X. Y.; Wang, C. F.; Wu, G.; Chen, S. The rapid and large-scale production of carbon quantum dots and their integration with polymers. Angew. Chem., Int. Ed. 2021, 60, 8585–8595.

[244]

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

[245]

Liao, C.; Tang, L. P.; Wang, L. Y.; Li, Y.; Xu, J.; Jia, Y. Z. Low-threshold near-infrared lasing at room temperature using low-toxicity Ag2Se quantum dots. Nanoscale 2020, 12, 21879–21884.

Nano Research
Cite this article:
Zhang Z, Yang H, Wang M, et al. NIR-II silver-based quantum dots: Synthesis and applications. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6977-7
Topics:

319

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 May 2024
Revised: 19 August 2024
Accepted: 20 August 2024
Published: 28 September 2024
© Tsinghua University Press 2024
Return