Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Silver-based quantum dots (QDs) such as Ag2S, Ag2Se, and Ag2Te, which emit in the second near-infrared window (NIR-II, 900–1700 nm), have attracted great research interest due to their prominent optical properties and eco-friendly compositions. Over the past decade, the controllable synthesis, bandgap modulation, and fluorescence improvement of NIR-II Ag-based QDs have greatly promoted their practical applications. In this review, we summarize the development process and latest achievements of NIR-II Ag-based QDs, covering major synthesis techniques for fabricating NIR-II Ag-based QDs, general methods for improving their fluorescence properties and recent advances in the applications of NIR-II Ag-based QDs from bioimaging to optoelectronic devices. Finally, we discuss the challenges and prospects of NIR-II Ag-based QDs in their optical properties and applications. This review aims to present synthesis and modification strategies and future application prospects for NIR-II Ag-based QDs, providing guidance for the design and integration of fluorescent probes in NIR-II window.
de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.
Kambhampati, P. Nanoparticles, nanocrystals, and quantum dots: What are the implications of size in colloidal nanoscale materials?. J. Phys. Chem. Lett. 2021, 12, 4769–4779.
Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.
Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.; Brus, L. E. Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. J. Chem. Phys. 1988, 89, 4001–4011.
Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.
Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J.; Pina, J. M. et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.
Fu, J. H.; Ramesh, S.; Lim, J. W. M.; Sum, T. C. Carriers, quasi-particles, and collective excitations in halide perovskites. Chem. Rev. 2023, 123, 8154–8231.
Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.
Hao, M. M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J. X.; Yuan, Y. B.; Zarrabi, N.; Cheng, N. Y.; Ghasemi, M.; Chen, P. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1– x FA x PbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5, 79–88.
Chen, B.; Baek, S. W.; Hou, Y.; Aydin, E.; De Bastiani, M.; Scheffel, B.; Proppe, A.; Huang, Z. R.; Wei, M. Y.; Wang, Y. K. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257.
Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.
Wu, K. F.; Park, Y. S.; Lim, J.; Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 2017, 12, 1140–1147.
Huang, Z. G.; Sun, Q.; Wang, S. S.; Shen, H. C.; Cai, W. B.; Wang, Y. Broadband tunable optical gain from ecofriendly semiconductor quantum dots with near-half-exciton threshold. Nano Lett. 2023, 23, 4032–4038.
Taghipour, N.; Dalmases, M.; Whitworth, G. L.; Dosil, M.; Othonos, A.; Christodoulou, S.; Liga, S. M.; Konstantatos, G. Colloidal quantum dot infrared lasers featuring sub-single-exciton threshold and very high gain. Adv. Mater. 2023, 35, 2207678.
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.
Lim, H.; Tsao, S.; Zhang, W.; Razeghi, M. High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl. Phys. Lett. 2007, 90, 131112.
Saran, R.; Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81–92.
Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdO x photocatalyst. Nat. Energy 2017, 2, 17021.
Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.
Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.; Xu, H. X.; Xiong, Y. J. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447–16451.
Kong, Y. F.; Chen, J.; Fang, H. W.; Heath, G.; Wo, Y.; Wang, W. L.; Li, Y. X.; Guo, Y.; Evans, S. D.; Chen, S. Y. et al. Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem. Mater. 2016, 28, 3041–3050.
Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.
Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.
Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
Li, C. Y.; Wang, Q. B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 2018, 12, 9654–9659.
Lu, H. P.; Carroll, G. M.; Neale, N. R.; Beard, M. C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953.
Schmidt, E. L.; Ou, Z. H.; Ximendes, E.; Cui, H.; Keck, C. H. C.; Jaque, D.; Hong, G. S. Near-infrared II fluorescence imaging. Nat. Rev. Methods Primers 2024, 4, 23.
Yang, Y.; Jiang, Q. Y.; Zhang, F. Nanocrystals for deep-tissue in vivo luminescence imaging in the near-infrared region. Chem. Rev. 2024, 124, 554–628.
Gui, R. J.; Jin, H.; Wang, Z. H.; Tan, L. J. Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coord. Chem. Rev. 2015, 296, 91–124.
Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.
Ding, C. P.; Huang, Y. J.; Shen, Z. Y.; Chen, X. Y. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence. Adv. Mater. 2021, 33, 2007768.
Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.
Piao, Z. Y.; Yang, D.; Cui, Z. J.; He, H. Y.; Mei, S. L.; Lu, H. X.; Fu, Z. Z.; Wang, L.; Zhang, W. L.; Guo, R. Q. Recent advances in metal chalcogenide quantum dots: From material design to biomedical applications. Adv. Funct. Mater. 2022, 32, 2207662.
Li, S. H.; Wei, J.; Yao, Q. F.; Song, X. R.; Xie, J. P.; Yang, H. H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem. Soc. Rev. 2023, 52, 1672–1696.
Liu, L.; Bai, B.; Yang, X. Y.; Du, Z. L.; Jia, G. H. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications. Chem. Rev. 2023, 123, 3625–3692.
Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 2007, 6, 115–121.
Vasilopoulou, M.; Kim, H. P.; Kim, B. S.; Papadakis, M.; Gavim, A. E. X.; Macedo, A. G.; da Silva, W. J.; Schneider, F. K.; Teridi, M. A. M.; Coutsolelos, A. G. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photonics 2020, 14, 50–56.
Ma, Z. W.; Sun, Z. Q.; Yang, H. C.; Wang, Z. X.; Ren, F.; Yin, N.; Chen, Q.; Zhang, Y. J.; Li, C. Y.; Chen, L. W. et al. Interface-mediation-enabled high-performance near-infrared agause quantum dot light-emitting diodes. J. Am. Chem. Soc. 2023, 145, 24972–24980.
Nieves, L. M.; Mossburg, K.; Hsu, J. C.; Maidment, A. D. A.; Cormode, D. P. Silver chalcogenide nanoparticles: A review of their biomedical applications. Nanoscale 2021, 13, 19306–19323.
Ma, Y.; Zhang, Y.; Yu, W. W. Near infrared emitting quantum dots: Synthesis, luminescence properties and applications. J. Mater. Chem. C 2019, 7, 13662–13679.
Purushothaman, B.; Song, J. M. Ag2S quantum dot theragnostics. Biomater. Sci. 2021, 9, 51–69.
Rempel, J. Y.; Bawendi, M. G.; Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009, 131, 4479–4489.
Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.
Sowers, K. L.; Swartz, B.; Krauss, T. D. Chemical mechanisms of semiconductor nanocrystal synthesis. Chem. Mater. 2013, 25, 1351–1362.
Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5–21.
van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246–2285.
Calvin, J. J.; Brewer, A. S.; Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022, 1, 127–137.
Borovaya, M.; Horiunova, I.; Plokhovska, S.; Pushkarova, N.; Blume, Y.; Yemets, A. Synthesis, properties and bioimaging applications of silver-based quantum dots. Int. J. Mol. Sci. 2021, 22, 12202.
Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.
Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew. Chem., Int. Ed. 2011, 50, 7115–7118.
Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. , Int. Ed. 2012, 51, 9818–9821.
Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.
Zhang, Y. J.; Liu, Y. S.; Li, C. Y.; Chen, X. Y.; Wang, Q. B. Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton bohr radius. J. Phys. Chem. C 2014, 118, 4918–4923.
Li, P.; Peng, Q.; Li, Y. D. Controlled synthesis and self-assembly of highly monodisperse Ag and Ag2S nanocrystals. Chem. -Eur. J. 2011, 17, 941–946.
Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mater. 2012, 24, 3–5.
Zhang, H. T.; Hyun, B. R.; Wise, F. W.; Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 2012, 12, 5856–5860.
Zhao, Y. X.; Song, Z. M. Phase transfer-based synthesis of highly stable, biocompatible and the second near-infrared-emitting silver sulfide quantum dots. Mater. Lett. 2014, 126, 78–80.
Xing, L.; Xu, S.; Cui, J.; Wang, L. Solvent tailored strategy for synthesis of ultrasmall Ag2S quantum dots with near-infrared-II luminescence. J. Nanosci. Nanotechnol. 2019, 19, 4549–4555.
Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758–3765.
Dong, B. H.; Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Zhang, Y.; Deng, M. J.; Wang, Q. B. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509.
Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.
Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.
Zhang, Y. J.; Yang, H. C.; An, X. Y.; Wang, Z.; Yang, X. H.; Yu, M. X.; Zhang, R.; Sun, Z. Q.; Wang, Q. B. Controlled synthesis of Ag2Te@Ag2S core–shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window. Small 2020, 16, 2001003.
Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.
Zhang, M. Y.; Liu, A. A.; Fu, H. H.; Zhang, W.; Zhang, S. H.; Liu, Z. Y.; Jiang, L. H.; Shao, X. G.; Pang, D. W. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%. Chem. Mater. 2021, 33, 9524–9533.
Wang, K.; Deng, K. H.; Tian, Y. S.; Sun, M. Y.; Yu, Z. L.; Tian, Z. Q.; Zhang, Z. L. Core/shell-structured Ag2Te/Ag2Se quantum dots for high-resolution in vivo fluorescence imaging in the near infrared iib region. ACS Appl. Nano Mater. 2023, 6, 14289–14299.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Brelle, M. C.; Zhang, J. Z.; Nguyen, L.; Mehra, R. K. Synthesis and ultrafast study of cysteine- and glutathione-capped Ag2S semiconductor colloidal nanoparticles. J. Phys. Chem. A 1999, 103, 10194–10201.
Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Qian, Y. T.; Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Qian, Y. T.; Zhou, G. E.; Liu, X. M. Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M = Ga, In). Chem. Commun. 1999, 1093–1094.
Gao, F.; Lu, Q. Y.; Zhao, D. Y. Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett. 2003, 3, 85–88.
Ng, M. T.; Boothroyd, C. B.; Vittal, J. J. One-pot synthesis of new-phase AgInSe2 nanorods. J. Am. Chem. Soc. 2006, 128, 7118–7119.
Tian, L.; Elim, H. I.; Ji, W.; Vittal, J. J. One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals. Chem. Commun. 2006, 4276–4278.
Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem. —Eur. J. 2007, 13, 8840–8846.
Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. General synthesis of I-III-VI2 ternary semiconductor nanocrystals. Chem. Commun. 2008, 2556–2558.
Liu, Y. W.; Ko, D. K.; Oh, S. J.; Gordon, T. R.; Doan-Nguyen, V.; Paik, T.; Kang, Y. J.; Ye, X. C.; Jin, L. H.; Kagan, C. R. et al. Near-infrared absorption of monodisperse silver telluride (Ag2Te) nanocrystals and photoconductive response of their self-assembled superlattices. Chem. Mater. 2011, 23, 4657–4659.
Sahu, A.; Qi, L. J.; Kang, M. S.; Deng, D.; Norris, D. J. Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 6509–6512.
Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. A facile “dispersion-decomposition” route to metal sulfide nanocrystals. Chem. -Eur. J. 2011, 17, 10445–10452.
Abazović, N. D.; Čomor, M. I.; Mitrić, M. N.; Piscopiello, E.; Radetić, T.; Janković, I. A.; Nedeljković, J. M. Ligand mediated synthesis of AgInSe2 nanoparticles with tetragonal/orthorhombic crystal phases. J. Nanopart. Res. 2012, 14, 810.
Peng, S. J.; Zhang, S. Y.; Mhaisalkar, S. G.; Ramakrishna, S. Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. Phys. Chem. Chem. Phys. 2012, 14, 8523–8529.
Shen, H. B.; Jiang, X. D.; Wang, S. J.; Fu, Y. T.; Zhou, C. H.; Li, L. S. Facile preparation of metal telluride nanocrystals using di-n-octylphosphine oxide (DOPO) as an air-stable and less toxic alternative to the common tri-alkylphosphines. J. Mater. Chem. 2012, 22, 25050–25056.
Zhou, W. W.; Zhao, W. Y.; Lu, Z. Y.; Zhu, J. X.; Fan, S. F.; Ma, J.; Hng, H. H.; Yan, Q. Y. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods. Nanoscale 2012, 4, 3926–3931.
Deng, M. J.; Shen, S. L.; Wang, X. W.; Zhang, Y. J.; Xu, H. R.; Zhang, T.; Wang, Q. B. Controlled synthesis of AgInS2 nanocrystals and their application in organic–inorganic hybrid photodetectors. CrystEngComm 2013, 15, 6443–6447.
Bai, T. Y.; Li, C. G.; Li, F. F.; Zhao, L.; Wang, Z. R.; Huang, H.; Chen, C. L.; Han, Y.; Shi, Z.; Feng, S. H. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1– x Se x )2 nanocrystals. Nanoscale 2014, 6, 6782–6789.
Fan, C. M.; Regulacio, M. D.; Ye, C.; Lim, S. H.; Zheng, Y. G.; Xu, Q. H.; Xu, A. W.; Han, M. Y. Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals. Chem. Commun. 2014, 50, 7128–7131.
Kameyama, T.; Douke, Y.; Shibakawa, H.; Kawaraya, M.; Segawa, H.; Kuwabata, S.; Torimoto, T. Widely controllable electronic energy structure of ZnSe-AgInSe2 solid solution nanocrystals for quantum-dot-sensitized solar cells. J. Phys. Chem. C 2014, 118, 29517–29524.
Wang, J. L.; Fan, W. L.; Yang, J.; Da, Z. L.; Yang, X. F.; Chen, K. M.; Yu, H.; Cheng, X. N. Tetragonal-orthorhombic-cubic phase transitions in Ag2Se nanocrystals. Chem. Mater. 2014, 26, 5647–5653.
Zhou, B.; Li, M. R.; Wu, Y. H.; Yang, C.; Zhang, W. H.; Li, C. Monodisperse AgSbS2 nanocrystals: Size-control strategy, large-scale synthesis, and photoelectrochemistry. Chem. —Eur. J. 2015, 21, 11143–11151.
Bai, T. Y.; Xing, S. H.; Li, C. G.; Shi, Z.; Feng, S. H. Phase-controlled synthesis of orthorhombic and tetragonal AgGaSe2 nanocrystals with high quality. Chem. Commun. 2016, 52, 8581–8584.
Tappan, B. A.; Horton, M. K.; Brutchey, R. L. Ligand-mediated phase control in colloidal AgInSe2 nanocrystals. Chem. Mater. 2020, 32, 2935–2945.
Tappan, B. A.; Zhu, B. N.; Cottingham, P.; Mecklenburg, M.; Scanlon, D. O.; Brutchey, R. L. Crystal structure of colloidally prepared metastable Ag2Se nanocrystals. Nano Lett. 2021, 21, 5881–5887.
An, M. N.; Eom, S. Y.; Lee, J. H.; Song, H.; Cho, M.; Jeong, K. S. Room temperature synthesis of self-doped silver selenide quantum dots sensitive to mid-infrared light. ACS Appl. Nano Mater. 2023, 6, 22488–22495.
Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087.
Taylor, P. F.; Wood, C. Thermoelectric properties of Ag2Te. J. Appl. Phys. 1961, 32, 1–3.
Tee, S. Y.; Ponsford, D.; Lay, C. L.; Wang, X. B.; Wang, X. Z.; Neo, D. C. J.; Wu, T. Z.; Thitsartarn, W.; Yeo, J. C. C.; Guan, G. J. et al. Thermoelectric silver-based chalcogenides. Adv. Sci. 2022, 9, 2204624.
Wang, J. M.; Zhu, C. N.; Zhu, D. L.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Synthesis of photoluminescence Ag2Te quantum dots in second near-infrared window. Chem. J. Chin. Univ. 2015, 36, 1264–1268.
Hocaoglu, I.; Çizmeciyan, M. N.; Erdem, R.; Ozen, C.; Kurt, A.; Sennaroglu, A.; Acar, H. Y. Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem. 2012, 22, 14674–14681.
Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012, 33, 5130–5135.
Ding, C. P.; Cao, X. Y.; Zhang, C. L.; He, T. R.; Hua, N.; Xian, Y. Z. Rare earth ions enhanced near infrared fluorescence of Ag2S quantum dots for the detection of fluoride ions in living cells. Nanoscale 2017, 9, 14031–14038.
Cai, M. F.; Ding, C. P.; Wang, F. F.; Ye, M. Q.; Zhang, C. L.; Xian, Y. Z. A ratiometric fluorescent assay for the detection and bioimaging of alkaline phosphatase based on near infrared Ag2S quantum dots and calcein. Biosens. Bioelectron. 2019, 137, 148–153.
Wang, C. X.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M. X.; Li, X. W.; Sun, H. C.; Lin, Q.; Yang, B. Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: Tunable photoluminescence from red to near infrared. Small 2012, 8, 3137–3142.
Aydemir, D.; Hashemkhani, M.; Durmusoglu, E. G.; Acar, H. Y.; Ulusu, N. N. A new substrate for glutathione reductase: Glutathione coated Ag2S quantum dots. Talanta 2019, 194, 501–506.
Ding, C. P.; Cheng, S. S.; Zhang, C. L.; Xiong, Y. R.; Ye, M. Q.; Xian, Y. Z. Ratiometric upconversion luminescence nanoprobe with near-infrared Ag2S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Anal. Chem. 2019, 91, 7181–7188.
Wang, Y.; Yan, X. P. Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem. Commun. 2013, 49, 3324–3326.
Yang, H. Y.; Zhao, Y. W.; Zhang, Z. Y.; Xiong, H. M.; Yu, S. N. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 2013, 24, 055706.
Chen, X.; Ding, L.; Liu, P.; Wang, Q. S. Synthesis of protein-assisted aqueous Ag2S quantum dots in the bovine serum albumin solution. Surf. Interface Anal. 2014, 46, 301–306.
Zhang, J.; Hao, G. Y.; Yao, C. F.; Yu, J. N.; Wang, J.; Yang, W. T.; Hu, C. H.; Zhang, B. B. Albumin-mediated biomineralization of paramagnetic NIR Ag2S QDs for tiny tumor bimodal targeted imaging in vivo. ACS Appl. Mater. Interfaces 2016, 8, 16612–16621.
Asik, D.; Yagci, M. B.; Duman, F. D.; Acar, H. Y. One step emission tunable synthesis of PEG coated Ag2S NIR quantum dots and the development of receptor targeted drug delivery vehicles thereof. J. Mater. Chem. B 2016, 4, 1941–1950.
Gao, J. W.; Wu, C. L.; Deng, D.; Wu, P.; Cai, C. X. Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv. Healthcare Mater. 2016, 5, 2437–2449.
Sun, P. Q.; Li, K. L.; Liu, X.; Wang, J.; Qiu, X. S.; Wei, W.; Zhao, J. Peptide-mediated aqueous synthesis of NIR-II emitting Ag2S quantum dots for rapid photocatalytic bacteria disinfection. Angew. Chem., Int. Ed. 2023, 62, e202300085.
Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.
Yang, L. L.; Zhao, W.; Liu, Z. Y.; Ren, M. T.; Kong, J.; Zong, X.; Luo, M. Y.; Tang, B.; Xie, J. H. Y.; Pang, D. W. et al. Acid-resistant near-infrared II Ag2Se quantum dots for gastrointestinal imaging. Anal. Chem. 2023, 95, 15540–15548.
Grevtseva, I.; Ovchinnikov, O.; Smirnov, M.; Aslanov, S.; Derepko, V.; Perepelitsa, A.; Kondratenko, T. Temperature effects and mechanism of IR luminescence of colloidal Ag2Se QDs passivated with 2-mercaptopropionic acid. J. Lumin. 2023, 257, 119669.
Yang, M.; Gui, R. J.; Jin, H.; Wang, Z. H.; Zhang, F. F.; Xia, J. F.; Bi, S.; Xia, Y. Z. Ag2Te quantum dots with compact surface coatings of multivalent polymers: Ambient one-pot aqueous synthesis and the second near-infrared bioimaging. Colloids Surf. B 2015, 126, 115–120.
van der Stam, W.; Berends, A. C.; de Mello Donega, C. Prospects of colloidal copper chalcogenide nanocrystals. ChemPhysChem 2016, 17, 559–581.
Dloczik, L.; Könenkamp, R. Nanostructure transfer in semiconductors by ion exchange. Nano Lett. 2003, 3, 651–653.
Cao, H. L.; Qian, X. F.; Wang, C.; Ma, X. D.; Yin, J.; Zhu, Z. K. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J. Am. Chem. Soc. 2005, 127, 16024–16025.
Geng, J.; Liu, B.; Xu, L.; Hu, F. N.; Zhu, J. J. Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 2007, 23, 10286–10293.
Dawood, F.; Schaak, R. E. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. J. Am. Chem. Soc. 2009, 131, 424–425.
Park, J.; Zheng, H. M.; Jun, Y. W.; Alivisatos, A. P. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.
Saruyama, M.; So, Y. G.; Kimoto, K.; Taguchi, S.; Kanemitsu, Y.; Teranishi, T. Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction. J. Am. Chem. Soc. 2011, 133, 17598–17601.
Langevin, M. A.; Ritcey, A. M.; Allen, C. N. Air-stable near-infrared AgInSe2 nanocrystals. ACS Nano 2014, 8, 3476–3482.
Wang, X. F.; Zhan, S.; Wang, Y.; Wang, P.; Yu, H. G.; Yu, J. G.; Hu, C. Z. Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. J. Colloid Interface Sci. 2014, 422, 30–37.
Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.
De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.
Rivest, J. B.; Jain, P. K. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 2013, 42, 89–96.
Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852–4857.
Liu, J.; Zhao, Q.; Liu, J. L.; Wu, Y. S.; Cheng, Y.; Ji, M. W.; Qian, H. M.; Hao, W. C.; Zhang, L. J.; Wei, X. J. et al. Heterovalent-doping-enabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing II-VI nanocrystals. Adv. Mater. 2015, 27, 2753–2761.
Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U. Chemical transformations of nanostructured materials. Nano Today 2011, 6, 186–203.
Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6944.
Bera, R.; Choi, D.; Jung, Y. S.; Song, H.; Jeong, K. S. Intraband transitions of nanocrystals transforming from lead selenide to self-doped silver selenide quantum dots by cation exchange. J. Phys. Chem. Lett. 2022, 13, 6138–6146.
Chen, S.; Tang, T.; Huang, B.; Liu, F.; Cui, R.; Zhang, M. X.; Sun, T. L. Thiolate etching route for the ripening of uniform Ag2Te quantum dots emitting in the second near-infrared window: Implication for noninvasive in vivo imaging. ACS Appl. Nano Mater. 2022, 5, 3415–3421.
Parr, R. G.; Pearson, R. G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516.
Pearson, R. G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740.
Wang, S. B.; Hu, B.; Liu, C. C.; Yu, S. H. Syringe pump-assisted synthesis of water-soluble cubic structure Ag2Se nanocrystals by a cation-exchange reaction. J. Colloid Interface Sci. 2008, 325, 351–355.
Pang, M. L.; Hu, J. Y.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771–10785.
Tan, C. S.; Hsiao, C. H.; Wang, S. C.; Liu, P. H.; Lu, M. Y.; Huang, M. H.; Ouyang, H.; Chen, L. J. Sequential cation exchange generated superlattice nanowires forming multiple p-n heterojunctions. ACS Nano 2014, 8, 9422–9426.
Yao, S. S.; Jin, B.; Liu, Z. M.; Shao, C. Y.; Zhao, R. B.; Wang, X. Y.; Tang, R. K. Biomineralization: From material tactics to biological strategy. Adv. Mater. 2017, 29, 1605903.
Mao, L. B.; Meng, Y. F.; Meng, X. S.; Yang, B.; Yang, Y. L.; Lu, Y. J.; Yang, Z. Y.; Shang, L. M.; Yu, S. H. Matrix-directed mineralization for bulk structural materials. J. Am. Chem. Soc. 2022, 144, 18175–18194.
Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.
da Costa, J. P.; Girão, A. V.; Trindade, T.; Costa, M. C.; Duarte, A.; Rocha-Santos, T. Biological synthesis of nanosized sulfide semiconductors: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016, 100, 8283–8302.
Feng, Y. Y.; Marusak, K. E.; You, L. C.; Zauscher, S. Biosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications. Curr. Opin. Colloid Interface Sci. 2018, 38, 190–203.
Liu, A. A.; Sun, E. Z.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Artificially regulated synthesis of nanocrystals in live cells. Natl. Sci. Rev. 2022, 9, nwab162.
Wareing, T. C.; Gentile, P.; Phan, A. N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021, 15, 15471–15501.
Calvo, V.; González-Domínguez, J. M.; Benito, A. M.; Maser, W. K. Synthesis and processing of nanomaterials mediated by living organisms. Angew. Chem., Int. Ed. 2022, 61, e202113286.
Aguayo, O. P. Y.; Mouheb, L.; Revelo, K. V.; Vásquez-Ucho, P. A.; Pawar, P. P.; Rahman, A.; Jeffryes, C.; Terencio, T.; Dahoumane, S. A. Biogenic sulfur-based chalcogenide nanocrystals: Methods of fabrication, mechanistic aspects, and bio-applications. Molecules 2022, 27, 458.
Jin, C. Y.; Xu, W.; Jin, K.; Yu, L.; Lu, H. F.; Liu, Z.; Liu, J. L.; Zhu, X. H.; Wu, Y. H.; Zhang, Y. Microbial biosynthesis of quantum dots: Regulation and application. Inorg. Chem. Front. 2023, 10, 4008–4027.
Niu, L. Q.; Yu, L.; Jin, C. Y.; Jin, K.; Liu, Z.; Zhu, T.; Zhu, X. H.; Zhang, Y.; Wu, Y. H. Living materials based dynamic information encryption via light-inducible bacterial biosynthesis of quantum dots. Angew. Chem., Int. Ed. 2024, 63, e202315251.
Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989, 338, 596–597.
Suresh, A. K.; Doktycz, M. J.; Wang, W.; Moon, J. W.; Gu, B. H.; Meyer III, H. M.; Hensley, D. K.; Allison, D. P.; Phelps, T. J.; Pelletier, D. A. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater. 2011, 7, 4253–4258.
Órdenes-Aenishanslins, N.; Anziani-Ostuni, G.; Monrás, J. P.; Tello, A.; Bravo, D.; Toro-Ascuy, D.; Soto-Rifo, R.; Prasad, P. N.; Pérez-Donoso, J. M. Bacterial synthesis of ternary CdSAg quantum dots through cation exchange: Tuning the composition and properties of biological nanoparticles for bioimaging and photovoltaic applications. Microorganisms 2020, 8, 631.
Liu, J. Y.; Zheng, D. M.; Zhong, L. P.; Gong, A.; Wu, S. Y.; Xie, Z. X. Biosynthesis of biocompatibility Ag2Se quantum dots in Saccharomyces cerevisiae and its application. Biochem. Biophys. Res. Commun. 2021, 544, 60–64.
de la Rica, R.; Velders, A. H. Biomimetic crystallization of Ag2S nanoclusters in nanopore assemblies. J. Am. Chem. Soc. 2011, 133, 2875–2877.
Chen, J.; Zhang, T.; Feng, L. L.; Zhang, M. Q.; Zhang, X.; Su, H. C.; Cui, D. X. Synthesis of Ribonuclease-A conjugated Ag2S quantum dots clusters via biomimetic route. Mater. Lett. 2013, 96, 224–227.
Cao, Y. T.; Geng, W.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Liu, L. M.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 14952–14957.
Sousa, F. L. N.; Souza, B. A. S.; Jesus, A. C.; Azevedo, W. M.; Mansur, H. S.; Freitas, D. V.; Navarro, M. Aqueous electrosynthesis of silver indium selenide nanocrystals and their photothermal properties. Green Chem. 2020, 22, 1239–1248.
Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 2011, 115, 1786–1792.
Sun, Z. Q.; Liu, C.; Yang, H. C.; Yang, X. H.; Zhang, Y. J.; Lin, H. Z.; Li, Y. Y.; Wang, Q. B. AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Res. 2022, 15, 8555–8563.
Hamilton, M. A.; Barnes, A. C.; Howells, W. S.; Fischer, H. E. Ag+ dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering. J. Phys.: Condens. Matter 2001, 13, 2425–2436.
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.
Ioannou, D.; Griffin, D. K. Nanotechnology and molecular cytogenetics: The future has not yet arrived. Nano Rev. 2010, 1, 5117.
Luo, M. Y.; Tang, B.; Liu, A. A.; Zhao, J. Y.; Zhang, Z. L.; Pang, D. W. A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands. Nano Res. 2023, 16, 12608–12617.
Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.
Giansante, C.; Infante, I. Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective. J. Phys. Chem. Lett. 2017, 8, 5209–5215.
Bhattacharjee, K.; Prasad, B. L. V. Surface functionalization of inorganic nanoparticles with ligands: A necessary step for their utility. Chem. Soc. Rev. 2023, 52, 2573–2595.
Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.
Sahu, A.; Kumar, D. Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling. J. Alloys Compd. 2022, 924, 166508.
Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941–958.
Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.
Pan, L. J.; Tu, J. W.; Yang, L. L.; Tian, Z. Q.; Zhang, Z. L. Photoluminescence enhancement of NIR-II emissive Ag2S quantum dots via chloride-mediated growth and passivation. Adv. Opt. Mater. 2022, 10, 2102806.
Kim, G.; Choi, D.; Eom, S. Y.; Song, H.; Jeong, K. S. Extended short-wavelength infrared photoluminescence and photocurrent of nonstoichiometric silver telluride colloidal nanocrystals. Nano Lett. 2021, 21, 8073–8079.
Santos, H. D. A.; Gutiérrez, I. Z.; Shen, Y. L.; Lifante, J.; Ximendes, E.; Laurenti, M.; Méndez-González, D.; Melle, S.; Calderón, O. G.; Cabarcos, E. L. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 2020, 11, 2933.
Wu, Q.; Zhou, M.; Shi, J.; Li, Q. J.; Yang, M. Y.; Zhang, Z. X. Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal. Chem. 2017, 89, 6616–6623.
Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.
Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.
Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.
Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.
Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature dependence of “elementary processes” in doping semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 9333–9339.
He, H.; Lin, Y.; Tian, Z. Q.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W. Ultrasmall Pb: Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window. Small 2018, 14, 1703296.
Cargnello, M.; Johnston-Peck, A. C.; Diroll, B. T.; Wong, E.; Datta, B.; Damodhar, D.; Doan-Nguyen, V. V. T.; Herzing, A. A.; Kagan, C. R.; Murray, C. B. Substitutional doping in nanocrystal superlattices. Nature 2015, 524, 450–453.
Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. C.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.
Tang, Z. Y.; Yang, H. C.; Sun, Z. Q.; Zhang, Y. J.; Chen, G. C.; Wang, Q. B. The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs. Nano Res. 2023, 16, 12315–12322.
Zhou, Y. F.; Huang, B.; Chen, S. H.; Liu, S. L.; Zhang, M. X.; Cui, R. Ultra-bright near-infrared-IIb emitting Zn-doped Ag2Te quantum dots for noninvasive monitoring of traumatic brain injury. Nano Res. 2023, 16, 2719–2727.
Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589.
Johnsen, S. Hidden in plain sight: The ecology and physiology of organismal transparency. Biol. Bull. 2001, 201, 301–318.
Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.
Liu, P. F.; Zhao, R.; Li, H. W.; Zhu, T. Y.; Li, Y.; Wang, H.; Zhang, X. D. Near-infrared-II deep tissue fluorescence microscopy and application. Nano Res. 2023, 16, 692–714.
Alifu, N.; Zebibula, A.; Zhang, H. Q.; Ni, H. W.; Zhu, L.; Xi, W.; Wang, Y. L.; Zhang, X. L.; Wu, C. F.; Qian, J. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging. Nano Res. 2020, 13, 2632–2640.
Chen, M.; Feng, S. J.; Yang, Y. M.; Li, Y. X.; Zhang, J.; Chen, S. Y.; Chen, J. Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging. Nano Res. 2020, 13, 3123–3129.
Su, M. Y.; Wang, Z. M.; Zhang, J. T. Near-infrared manipulation of temperature-sensitive ion channel through photothermal nanotransducer brightens in vivo photomedicine. Coord. Chem. Rev. 2023, 492, 215282.
Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.
Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.
Nakane, Y.; Tsukasaki, Y.; Sakata, T.; Yasuda, H.; Jin, T. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem. Commun. 2013, 49, 7584–7586.
Sasaki, A.; Tsukasaki, Y.; Komatsuzaki, A.; Sakata, T.; Yasuda, H.; Jin, T. Recombinant protein (EGFP-Protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors. Nanoscale 2015, 7, 5115–5119.
Chen, G. C.; Zhang, Y. J.; Peng, Z.; Huang, D. H.; Li, C. Y.; Wang, Q. B. Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Res. 2019, 12, 1321–1326.
Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.
Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed. 2014, 53, 12086–12090.
Shao, W.; Chen, G. Y.; Kuzmin, A.; Kutscher, H. L.; Pliss, A.; Ohulchanskyy, T. Y.; Prasad, P. N. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc. 2016, 138, 16192–16195.
Li, H.; Zhong, Y. F.; Wang, S. M.; Zha, M. L.; Gu, W. X.; Liu, G. Y.; Wang, B. H.; Yu, Z. D.; Wang, Y.; Li, K. et al. In vivo bioorthogonal labeling of rare-earth doped nanoparticles for improved NIR-II tumor imaging by extracellular vesicle-mediated targeting. Nano Res. 2023, 16, 2895–2904.
Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.
Zhang, Y.; Zhang, Y. J.; Hong, G. S.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G. C.; Liu, Z.; Dai, H. J. et al. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639–3646.
Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.
Zhang, J. J.; Lin, Y.; Zhou, H.; He, H.; Ma, J. J.; Luo, M. Y.; Zhang, Z. L.; Pang, D. W. Cell membrane-camouflaged NIR II fluorescent Ag2Te quantum dots-based nanobioprobes for enhanced in vivo homotypic tumor imaging. Adv. Healthcare Mater. 2019, 8, 1900341.
Afshari, M. J.; Li, C.; Zeng, J. F.; Cui, J. B.; Wu, S. W.; Gao, M. Y. Self-illuminating NIR-II bioluminescence imaging probe based on silver sulfide quantum dots. ACS Nano 2022, 16, 16824–16832.
Huang, D. H.; Wang, Q. W.; Cao, Y. H.; Yang, H. C.; Li, M.; Wu, F.; Zhang, Y. J.; Chen, G. C.; Wang, Q. B. Multiscale NIR-II imaging-guided brain-targeted drug delivery using engineered cell membrane nanoformulation for Alzheimer’s disease therapy. ACS Nano 2023, 17, 5033–5046.
Ling, S. S.; Yang, X. H.; Li, C. Y.; Zhang, Y. J.; Yang, H. C.; Chen, G. C.; Wang, Q. B. Tumor microenvironment-activated NIR-II nanotheranostic system for precise diagnosis and treatment of peritoneal metastasis. Angew. Chem., Int. Ed. 2020, 59, 7219–7223.
Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 2015, 8, 1637–1647.
Chen, G. C.; Tian, F.; Zhang, Y.; Zhang, Y. J.; Li, C. Y.; Wang, Q. B. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater. 2014, 24, 2481–2488.
Chen, G. C.; Tian, F.; Li, C. Y.; Zhang, Y. J.; Weng, Z.; Zhang, Y.; Peng, R.; Wang, Q. B. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 2015, 53, 265–273.
Wen, Q. X.; Zhang, Y. J.; Li, C. Y.; Ling, S. S.; Yang, X. H.; Chen, G. C.; Yang, Y.; Wang, Q. B. NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew. Chem., Int. Ed. 2019, 58, 11001–11006.
Li, C. Y.; Li, W. F.; Liu, H. H.; Zhang, Y. J.; Chen, G. C.; Li, Z. J.; Wang, Q. B. An activatable NIR-II nanoprobe for in vivo early real-time diagnosis of traumatic brain injury. Angew. Chem., Int. Ed. 2020, 59, 247–252.
Shi, B.; Yan, Q. L.; Tang, J.; Xin, K.; Zhang, J. C.; Zhu, Y.; Xu, G.; Wang, R. C.; Chen, J.; Gao, W. et al. Hydrogen sulfide-activatable second near-infrared fluorescent nanoassemblies for targeted photothermal cancer therapy. Nano Lett. 2018, 18, 6411–6416.
Wang, C. L.; Niu, M.; Wang, W.; Su, L. C.; Feng, H. J.; Lin, H. X.; Ge, X. G.; Wu, R. R.; Li, Q.; Liu, J. Y. et al. In situ activatable ratiometric NIR-II fluorescence nanoprobe for quantitative detection of H2S in colon cancer. Anal. Chem. 2021, 93, 9356–9363.
Zhang, X.; Wang, W. L.; Su, L. C.; Ge, X. G.; Ye, J. M.; Zhao, C. Y.; He, Y.; Yang, H. H.; Song, J. B.; Duan, H. W. Plasmonic-fluorescent janus Ag/Ag2S nanoparticles for in situ H2O2-activated NIR-II fluorescence imaging. Nano Lett. 2021, 21, 2625–2633.
Sun, Z. Q.; Li, T. W.; Wu, F.; Yao, T. F.; Yang, H. C.; Yang, X. H.; Yin, H. Q.; Gao, Y. J.; Zhang, Y. J.; Li, C. Y. et al. Precise synergistic photothermal therapy guided by accurate temperature-dependent NIR-II fluorescence imaging. Adv. Funct. Mater. 2024, 34, 2311622.
Wang, Y. J.; Peng, L. C.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242.
Yang, Z. Y.; Voznyy, O.; Liu, M. X.; Yuan, M. J.; Ip, A. H.; Ahmed, O. S.; Levina, L.; Kinge, S.; Hoogland, S.; Sargent, E. H. All-quantum-dot infrared light-emitting diodes. ACS Nano 2015, 9, 12327–12333.
Jia, Z.; Shao, H. Y.; Xu, J. Y.; Dai, Y.; Qiao, J. Crown ether-assisted room-temperature halide passivation for high-efficiency PbS quantum dots enabling large-area and long-lifetime near-infrared QD-OLEDs. Nano Res. 2023, 16, 7537–7544.
Zhang, J. B.; Gao, J. B.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015.
Vafaie, M.; Fan, J. Z.; Najarian, A. M.; Ouellette, O.; Sagar, L. K.; Bertens, K.; Sun, B.; de Arquer, F. P. G.; Sargent, E. H. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1, 550 nm. Matter 2021, 4, 1042–1053.
Sun, Z. Q.; Yang, H. C.; Ma, Z. W.; Zhang, Z. Y.; Han, L. R.; Wang, Z. X.; Zhang, Y. J.; Wang, X. Y.; Wang, Q. B. AgAuSe quantum dots-based eco-friendly solar cells. Sol. RRL 2023, 7, 2300353.
Qu, J. L.; Weis, M.; Izquierdo, E.; Mizrahi, S. G.; Chu, A.; Dabard, C.; Gréboval, C.; Bossavit, E.; Prado, Y.; Péronne, E. et al. Electroluminescence from nanocrystals above 2 µm. Nat. Photonics 2022, 16, 38–44.
Lei, Y.; Jia, H. M.; He, W. W.; Zhang, Y. G.; Mi, L. W.; Hou, H. W.; Zhu, G. S.; Zheng, Z. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: The case of P3HT: Ag2S. J. Am. Chem. Soc. 2012, 134, 17392–17395.
Gu, L. Y.; Lei, Y.; Luo, J.; Yang, X. G.; Cai, T.; Zheng, Z. Reducing the schottky barrier by SnS2 underlayer modification to enhance photoelectric performance: The case of Ag2S/FTO. ACS Appl. Mater. Interfaces 2019, 11, 24789–24794.
Zhang, J. Y.; Min, J. J.; Li, B. H.; Yang, W. X.; Zeng, Z. P.; Liu, D. Y.; Ji, B. T. Thiol-Free synthesis of bright near-infrared-emitting Ag2S nanocrystals through heterovalent-metal decoration for ecofriendly solar cells. Chem. Mater. 2023, 35, 1325–1334.
Mir, W. J.; Swarnkar, A.; Sharma, R.; Katti, A.; Adarsh, K. V.; Nag, A. Origin of unusual excitonic absorption and emission from colloidal Ag2S nanocrystals: Ultrafast photophysics and solar cell. J. Phys. Chem. Lett. 2015, 6, 3915–3922.
Guo, Y. X.; Lei, H. W.; Li, B. R.; Chen, Z.; Wen, J.; Yang, G.; Fang, G. J. Improved performance in Ag2S/P3HT hybrid solar cells with a solution processed SnO2 electron transport layer. RSC Adv. 2016, 6, 77701–77708.
Zhang, Z.; Yang, Y.; Gao, J.; Xiao, S.; Zhou, C. H.; Pan, D. Q.; Liu, G.; Guo, X. Y. Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: Size effects on device performances. Mater. Today Energy 2018, 7, 27–36.
Yang, Y.; Pan, D. Q.; Zhang, Z.; Chen, T.; Xie, H. Y.; Gao, J.; Guo, X. Y. Ag2Se quantum dots for photovoltaic applications and ligand effects on device performance. J. Alloys Compd. 2018, 766, 925–932.
Abate, M. A.; Chang, J. Y. Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Sol. Energy Mater. Sol. Cells 2018, 182, 37–44.
Wang, Y. J.; Kavanagh, S. R.; Burgués-Ceballos, I.; Walsh, A.; Scanlon, D. O.; Konstantatos, G. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photonics 2022, 16, 235–241.
Bernechea, M.; Cates, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 2016, 10, 521–525.
Akgul, M. Z.; Figueroba, A.; Pradhan, S.; Bi, Y.; Konstantatos, G. Low-cost RoHS compliant solution processed photovoltaics enabled by ambient condition synthesis of AgBiS2 nanocrystals. ACS Photonics 2020, 7, 588–595.
Lee, W. Y.; Ha, S.; Lee, H.; Bae, J. H.; Jang, B.; Kwon, H. J.; Yun, Y.; Lee, S.; Jang, J. High-detectivity flexible near-infrared photodetector based on chalcogenide Ag2Se nanoparticles. Adv. Opt. Mater. 2019, 7, 1900812.
Hafiz, S. B.; Scimeca, M. R.; Zhao, P.; Paredes, I. J.; Sahu, A.; Ko, D. K. Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection. ACS Appl. Nano Mater. 2019, 2, 1631–1636.
Graddage, N.; Ouyang, J. Y.; Lu, J. P.; Chu, T. Y.; Zhang, Y. G.; Li, Z.; Wu, X. H.; Malenfant, P. R. L.; Tao, Y. Near-infrared-II photodetectors based on silver selenide quantum dots on mesoporous TiO2 scaffolds. ACS Appl. Nano Mater. 2020, 3, 12209–12217.
Ouyang, J. Y.; Graddage, N.; Lu, J. P.; Zhong, Y. F.; Chu, T. Y.; Zhang, Y. G.; Wu, X. H.; Kodra, O.; Li, Z.; Tao, Y. et al. Ag2Te colloidal quantum dots for near-infrared-II photodetectors. ACS Appl. Nano Mater. 2021, 4, 13587–13601.
Wang, Z.; Liu, F. H.; Gu, Y. J.; Hu, Y. G.; Wu, W. P. Solution-processed self-powered near-infrared photodetectors of toxic heavy metal-free AgAuSe colloidal quantum dots. J. Mater. Chem. C 2022, 10, 1097–1104.
Wang, Z.; Gu, Y. J.; Aleksandrov, D.; Liu, F. H.; He, H. B.; Wu, W. P. Engineering band gap of ternary Ag2Te x S1– x quantum dots for solution-processed near-infrared photodetectors. Inorganics 2024, 12, 1.
Nagasuna, K.; Akita, T.; Fujishima, M.; Tada, H. Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight. Langmuir 2011, 27, 7294–7300.
Singh, S. V.; Gupta, U.; Mukherjee, B.; Pal, B. N. Role of electronically coupled in situ grown silver sulfides (Ag2S) nanoparticles with TiO2 for the efficient photoelectrochemical H2 evolution. Int. J. Hydrogen Energy 2020, 45, 30153–30164.
Yu, C.; Song, J.; Kim, T. I.; Lee, Y.; Kwon, Y.; Kim, J.; Park, J.; Choi, J.; Doh, J.; Min, S. K. et al. Silver sulfide nanocrystals as a biocompatible and full-spectrum photocatalyst for efficient light-driven polymerization under aqueous and ambient conditions. ACS Catal. 2023, 13, 665–680.
Du, X. Y.; Wang, C. F.; Wu, G.; Chen, S. The rapid and large-scale production of carbon quantum dots and their integration with polymers. Angew. Chem., Int. Ed. 2021, 60, 8585–8595.
Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.
Liao, C.; Tang, L. P.; Wang, L. Y.; Li, Y.; Xu, J.; Jia, Y. Z. Low-threshold near-infrared lasing at room temperature using low-toxicity Ag2Se quantum dots. Nanoscale 2020, 12, 21879–21884.