AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Pressure-responsive pH-triggered layer-by-layer coating of paclitaxel-eluting balloon catheters for instant high-dose drug delivery for percutaneous coronary artery intervention

Jeong Yu Lee1,§Shonit Nair Sharma2,3,§Sung-Yu Hong4Young-Guk Ko5Yangsoo Jang4,5Minjae Do1Michael Christopher Stark2Qiwen Peng2Benjamin Allen Mossburg2Bo Chan Seo2Yuhan Lee2( )
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea

§ Jeong Yu Lee and Shonit Nair Sharma contributed equally to this work.

Show Author Information

Graphical Abstract

A pressure-responsive pH-triggered layer-by-layer coating was developed and applied to paclitaxel-eluting balloon catheters. This novel coating facilitates controllable, rapid, high-dose drug delivery for percutaneous coronary artery intervention.

Abstract

Cardiovascular diseases remain the leading cause of mortality worldwide, with percutaneous coronary interventions (PCI) using drug-eluting stents (DES) as the standard treatment for coronary artery disease. Despite advancements in DES technology, challenges such as restenosis and stent thrombosis still necessitate further interventions and carry considerable risks, highlighting an urgent need for a novel therapeutic approach with lower restenosis rates and reduced reintervention risks. Drug-eluting balloons (DEBs) coated with anti-proliferative agents offer a novel method of local drug delivery for reducing restenosis by directly administering drugs to the lesion site. However, efficient delivery of drugs within the brief procedural window while minimizing drug loss during maneuvering to the target site remains a challenge. Herein, we developed a pressure-responsive and pH-triggered, paclitaxel (PTX) coated DEB catheter for rapid and high-dose delivery of paclitaxel to the lesion sites, overcoming the limitations of drug dispersion and inefficiencies associated with conventional DEBs. Using the charge reversion of albumin around its isoelectric point, paclitaxel-loaded human serum albumin nanoparticles (PTX-HSA-NPs) and heparin were coated using a layer-by-layer deposition method at pH 4.0. Upon exposure to physiological pH (i.e., 7.4), the coating is rapidly released from the balloon surface. Combined with a protective shellac coating, the DEB achieved controlled release of high-dose paclitaxel to the arterial tissue in vivo (up to 400 µg per gram tissue), exceeding current DEBs in the clinic. These results suggest the pH-responsive, multi-layer coated DEB’s potential for superior procedural outcomes, addressing a critical unmet need in PCI.

References

[1]

Ralapanawa, U.; Sivakanesan, R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: A narrative review. J. Epidemiol. Glob. Health. 2021, 11, 169–177.

[2]

Giustino, G.; Colombo, A.; Camaj, A.; Yasumura, K.; Mehran, R.; Stone, G. W.; Kini, A.; Sharma, S. K. Coronary in-stent restenosis: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 80, 348–372.

[3]

Madhavan, M. V.; Kirtane, A. J.; Redfors, B.; Généreux, P.; Ben-Yehuda, O.; Palmerini, T.; Benedetto, U.; Biondi-Zoccai, G.; Smits, P. C.; Von Birgelen, C. et al. Stent-related adverse events >1 year after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2020, 75, 590–604.

[4]

Kastrati, A.; Cassese, S. In-stent restenosis in the United States: Time to enrich its treatment armamentarium. J. Am. Coll. Cardiol. 2020, 76, 1532–1535.

[5]

Chitkara, K.; Gershlick, A. H. Second-versus first-generation drug-eluting stents. Interv. Cardiol. 2010, 5, 23–26.

[6]

Moukarbel, G. V. Coronary stent thrombosis and mortality: Does the relationship stand the test of time. J. Am. Heart Assoc. 2022, 11, e025341.

[7]

Tamez, H.; Secemsky, E. A.; Valsdottir, L. R.; Moussa, I. D.; Song, Y.; Simonton, C. A.; Gibson, C. M.; Popma, J. J.; Yeh, R. W. Long-term outcomes of percutaneous coronary intervention for in-stent restenosis among Medicare beneficiaries. EuroIntervention 2021, 17, e380–e387.

[8]

Ni, L.; Chen, H.; Luo, Z. R.; Yu, Y. Q. Bioresorbable vascular stents and drug-eluting stents in treatment of coronary heart disease: A meta-analysis. J. Cardiothorac. Surg. 2020, 15, 26.

[9]

Lee, D. H.; De La Torre Hernandez, J. M. The newest generation of drug-eluting stents and beyond. Eur. Cardiol. 2018, 13, 54–59.

[10]

Axel, D. I.; Kunert, W.; Goggelmann, C.; Oberhoff, M.; Herdeg, C.; Kuttner, A.; Wild, D. H.; Brehm, B. R.; Riessen, R.; Koveker, G. et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 1997, 96, 636–645.

[11]

Posa, A.; Hemetsberger, R.; Petnehazy, Ö.; Petrasi, Z.; Testor, M.; Glogar, D.; Gyöngyösi, M. Attainment of local drug delivery with paclitaxel-eluting balloon in porcine coronary arteries. Coron. Artery Dis. 2008, 19, 243–247.

[12]

Jeger, R.; Nestelberger, T. Drug-coated balloons for small coronary vessel interventions: A literature review. Interv. Cardiol. 2019, 14, 131–136.

[13]

Cao, Z.; Li, J.; Fang, Z.; Feierkaiti, Y.; Zheng, X. X.; Jiang, X. J. The factors influencing the efficiency of drug-coated balloons. Front. Cardiovasc. Med. 2022, 9, 947776.

[14]

Granada, J. F.; Stenoien, M.; Buszman, P. P.; Tellez, A.; Langanki, D.; Kaluza, G. L.; Leon, M. B.; Gray, W.; Jaff, M. R.; Schwartz, R. S. Mechanisms of tissue uptake and retention of paclitaxel-coated balloons: Impact on neointimal proliferation and healing. Open Heart. 2014, 1, e000117

[15]

Tang, Y. D.; Qiao, S. B.; Su, X.; Chen, Y. D.; Jin, Z. N.; Chen, H.; Xu, B.; Kong, X. Q.; Pang, W. Y.; Liu, Y. et al. The effectiveness and safety of the RESTORE® drug-eluting balloon versus a drug-eluting stent for small coronary vessel disease: Study protocol for a multi-center, randomized, controlled trial. J. Geriatr. Cardiol. 2018, 15, 469–475.

[16]

Xia, C. Y.; Jiang, Y. H.; Li, S. S.; Xiong, D.; Chen, X. J.; Chen, Y. F. In vitro and in vivo comparative evaluation of a shellac-ammonium paclitaxel-coated balloon versus a benchmark device. J. Interv. Cardiol. 2021, 2021, 9962313.

[17]

Lemos, P. A.; Farooq, V.; Takimura, C. K.; Gutierrez, P. S.; Virmani, R.; Kolodgie, F.; Christians, U.; Kharlamov, A.; Doshi, M.; Sojitra, P. et al. Emerging technologies: Polymer-free phospholipid encapsulated sirolimus nanocarriers for the controlled release of drug from a stent-plus-balloon or a stand-alone balloon catheter. EuroIntervention 2013, 9, 148–156.

[18]

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

[19]

Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540.

[20]

Barclay, T. G.; Hegab, H. M.; Clarke, S. R.; Ginic-Markovic, M. Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications. Adv. Mater. Interfaces 2017, 4, 1601192.

[21]

Panda, S.; Jeong, H.; Hajra, S.; Rajaitha, P. M.; Hong, S.; Kim, H. J. Biocompatible polydopamine based triboelectric nanogenerator for humidity sensing. Sens. Actuators B: Chem. 2023, 394, 134384.

[22]

Liu, X. S.; Cao, J. M.; Li, H.; Li, J. Y.; Jin, Q.; Ren, K. F.; Ji, J. Mussel-inspired polydopamine: A biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 2013, 7, 9384–9395.

[23]

Yang, W.; Liu, C. J.; Chen, Y. Stability of polydopamine coatings on gold substrates inspected by surface Plasmon resonance imaging. Langmuir 2018, 34, 3565–3571.

[24]

Boddohi, S.; Killingsworth, C. E.; Kipper, M. J. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin. Biomacromolecules 2008, 9, 2021–2028.

[25]

Hirsh, J.; Anand, S. S.; Halperin, J. L.; Fuster, V. Guide to anticoagulant therapy: Heparin: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 103, 2994–3018.

[26]

Li, W.; Johnson, D. J. D.; Esmon, C. T.; Huntington, J. A. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat. Struct. Mol. Biol. 2004, 11, 857–862.

[27]

Biran, R.; Pond, D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev. 2017, 112, 12–23.

[28]

Lee, J. Y.; Carugo, D.; Crake, C.; Owen, J.; De Saint Victor, M.; Seth, A.; Coussios, C.; Stride, E. Nanoparticle-loaded protein-polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv. Mater. 2015, 27, 5484–5492.

[29]

Lee, J. Y.; Bae, K. H.; Kim, J. S.; Nam, Y. S.; Park, T. G. Intracellular delivery of paclitaxel using oil-free, shell cross-linked HSA-multi-armed PEG nanocapsules. Biomaterials 2011, 32, 8635–8644.

[30]

Scheller, B.; Hehrlein, C.; Bocksch, W.; Rutsch, W.; Haghi, D.; Dietz, U.; Böhm, M.; Speck, U. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N. Engl. J. Med. 2006, 355, 2113–2124.

[31]

Scheller, B.; Speck, U.; Abramjuk, C.; Bernhardt, U.; Böhm, M.; Nickenig, G. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 2004, 110, 810–814.

[32]

Rockley, M.; Jetty, P.; Radonjic, A.; Rockley, K.; Wells, G.; Fergusson, D. Prolonged versus brief balloon inflation during arterial angioplasty for de novo atherosclerotic disease: A systematic review and meta-analysis. CVIR Endovasc. 2019, 2, 29.

[33]

Tajti, P.; Xenogiannis, I.; Najar, H.; Brilakis, E. S. Management of balloon undilatable CTOs. Cardiac Interv. Today 2018, 12, 43–48.

[34]

Liu, Q. Y.; Zhang, X. R.; Xue, J. W.; Chai, J. J.; Qin, L.; Guan, J.; Zhang, X.; Mao, S. R. Exploring the intrinsic micro-/nanoparticle size on their in vivo fate after lung delivery. J. Control. Release. 2022, 347, 435–448.

[35]

Banerjee, A.; Qi, J. P.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release. 2016, 238, 176–185.

[36]

Forouzandehmehr, M.; Ghoytasi, I.; Shamloo, A.; Ghosi, S. Particles in coronary circulation: A review on modelling for drug carrier design. Mater. Des. 2022, 216, 110511.

[37]
Gupta, R. B.; Kompella, U. B. Nanoparticle Technology for Drug Delivery; Taylor & Francis Group: New York, 2006.
[38]

Faenger, B.; Heinrich, A.; Hilger, I.; Teichgräber, U. Drug loss from paclitaxel-coated balloons during preparation, insertion and inflation for angioplasty: A laboratory investigation. Cardiovasc. Intervent. Radiol. 2022, 45, 1186–1197.

[39]

Tzafriri, A. R.; Muraj, B.; Garcia-Polite, F.; Salazar-Martín, A. G.; Markham, P.; Zani, B.; Spognardi, A.; Albaghdadi, M.; Alston, S.; Edelman, E. R. Balloon-based drug coating delivery to the artery wall is dictated by coating micro-morphology and angioplasty pressure gradients. Biomaterials 2020, 260, 120337.

[40]

Lee, H. S.; Kang, J.; Park, K. W.; Ki, Y. J.; Chang, M.; Han, J. K.; Yang, H. M.; Kang, H. J.; Koo, B. K.; Kim, H. S. Procedural optimization of drug-coated balloons in the treatment of coronary artery disease. Catheter. Cardiovasc. Interv. 2021, 98, E43–E52.

[41]

Villar-Matamoros, E.; Stokes, L.; Lloret, A.; Todd, M.; Tillman, B. W.; Yazdani, S. K. Understanding the mechanism of drug transfer and retention of drug-coated balloons. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 10742484221119559

[42]

Reilly, C. F.; Fritze, L. M. S.; Rosenberg, R. D. Heparin inhibition of smooth muscle cell proliferation: A cellular site of action. J. Cell Physiol. 1986, 129, 11–19.

[43]

Fasciano, S.; Patel, R. C.; Handy, I.; Patel, C. V. Regulation of vascular smooth muscle proliferation by heparin: Inhibition of cyclin-dependent kinase 2 activity by p27(kip1). J. Biol. Chem. 2005, 280, 15682–15689.

[44]

Pavo, N.; Samaha, E.; Sabdyusheva, I.; Von Strandmann, R. P.; Stahnke, S.; Plass, C. A.; Zlabinger, K.; Lukovic, D.; Jambrik, Z.; Pavo, I. J. et al. Coating of intravascular balloon with paclitaxel prevents constrictive remodeling of the dilated porcine femoral artery due to inhibition of intimal and media fibrosis. J. Mater. Sci. Mater. Med. 2016, 27, 131.

[45]

Speck, U.; Häckel, A.; Schellenberger, E.; Kamann, S.; Löchel, M.; Clever, Y. P.; Peters, D.; Scheller, B.; Trog, S.; Bettink, S. Drug distribution and basic pharmacology of paclitaxel/resveratrol-coated balloon catheters. Cardiovasc. Intervent. Radiol. 2018, 41, 1599–1610.

[46]

Abadal, J. M.; Vazquez, E.; Morales, M.; Toro, A.; Quintana, M.; Araujo, M. Pharmacokinetic evaluation of two paclitaxel-coated balloons with different drug load in a short-term porcine study. Cardiovasc. Intervent. Radiol. 2016, 39, 1152–1158.

[47]

Cremers, B.; Binyamin, G.; Clever, Y. P.; Seifert, P.; Konstantino, E.; Kelsch, B.; Bienek, S.; Speck, U.; Scheller, B. A novel constrained, paclitaxel-coated angioplasty balloon catheter. EuroIntervention 2017, 12, 2140–2147.

[48]

Gongora, C. A.; Shibuya, M.; Wessler, J. D.; McGregor, J.; Tellez, A.; Cheng, Y. P.; Conditt, G. B.; Kaluza, G. L.; Granada, J. F. Impact of paclitaxel dose on tissue pharmacokinetics and vascular healing: A comparative drug-coated balloon study in the familial hypercholesterolemic swine model of superficial femoral in-stent restenosis. JACC Cardiovasc. Interv. 2015, 8, 1115–1123.

[49]
National Library of Medicine. Paclitaxel-coated balloon angioplasty versus standard angioplasty for the treatment of stenosis of Arteriovenous fistula (ABISS)[Online]. 2016. https://classic.clinicaltrials.gov/ct2/show/NCT02753998?term=lutonix&draw=2&rank=29 (accessed Aug 20, 2024).
[50]
National Library of Medicine. PERVIDEO I Registry, The Lutonix paclitaxel-coated balloon catheter for the treatment of coronary in-stent restenosis (PERVIDEO I) [Online]. 2009. https://classic.clinicaltrials.gov/ct2/show/results/NCT00916279?term=lutonix&draw=1&rank=12 (accessed Aug 20, 2024).
[51]
Levant, I. The Lutonix paclitaxel-coated balloon for the prevention of Femoropopliteal restenosis (LEVANT I). 2009.
[52]

Steiner, S.; Schmidt, A.; Zeller, T.; Tepe, G.; Thieme, M.; Maiwald, L.; Schröder, H.; Euringer, W.; Ulrich, M.; Brechtel, K. et al. COMPARE: Prospective, randomized, non-inferiority trial of high- vs low-dose paclitaxel drug-coated balloons for femoropopliteal interventions. Eur. Heart J. 2020, 41, 2541–2552

[53]

Tuttle, M. K.; Popma, J. J. A retrospective look at paclitaxel use in the coronary arteries: A review of the safety and efficacy profile of paclitaxel treatment in patients with coronary artery disease. Endovasc. Today 2019, 18, 80–84.

[54]

Schneider, P. A.; Laird, J. R.; Doros, G.; Gao, Q.; Ansel, G.; Brodmann, M.; Micari, A.; Shishehbor, M. H.; Tepe, G.; Zeller, T. Mortality not correlated with paclitaxel exposure: An independent patient-level meta-analysis of a drug-coated balloon. J. Am. Coll. Cardiol. 2019, 73, 2550–2563.

[55]

Schneider, P. A.; Brodmann, M.; Mauri, L.; Laird, J.; Soga, Y.; Micari, A.; Ansel, G.; Shishehbor, M. H.; Krishnan, P.; Gao, Q. et al. Paclitaxel exposure: Long-term safety and effectiveness of a drug-coated balloon for claudication in pooled randomized trials. Catheter. Cardiovasc. Interv. 2020, 96, 1087–1099.

Nano Research
Cite this article:
Lee JY, Sharma SN, Hong S-Y, et al. Pressure-responsive pH-triggered layer-by-layer coating of paclitaxel-eluting balloon catheters for instant high-dose drug delivery for percutaneous coronary artery intervention. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6979-5
Topics:

149

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 March 2024
Revised: 22 August 2024
Accepted: 28 August 2024
Published: 12 September 2024
© Tsinghua University Press 2024
Return