AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Innovative hydrogel-based delivery systems for immunotherapy: A review of pre-clinical progress

Narsimha Mamidi1Michael Poellmann2Kaila Javius-Jones2KiChang Nam3Seungpyo Hong1,2,4,5( )
Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
Department of Medical Engineering, College of Medicine, Dongguk University, Goyang 10326, Republic of Korea
Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, WI 53705, USA
Show Author Information

Graphical Abstract

This review highlights the preclinical advances of hydrogels in cancer immunotherapy. By integrating various therapeutic approaches, hydrogels aim to improve treatment outcomes by minimizing the adverse effects of pre-existing immunotherapies, paving the way for clinical translation.

Abstract

Immunotherapy has markedly reinvented how we treat cancer, as shown by numerous Food and Drug Administration (FDA) drug approvals that have made significant clinical impact and ongoing clinical trials. However, undesirable side effects, such as autoimmunity and inflammation, and inconsistent clinical outcomes remain a major challenge. Improving response rates across various immunotherapeutic reagents is imperative to enhance overall effectiveness and reduce adverse side effects. To address this challenge, interdisciplinary approaches have been explored by incorporating immunotherapies into hydrogels, enabling fine-controlled delivery to target tissues. This review focuses on recent progress in the utilization of hydrogel-based delivery systems for cancer immunotherapy and their potential to further enhance treatment response rates. Specifically, recent preclinical advances in hydrogels implemented with immune checkpoint inhibitors, combination therapies, and vaccines, along with self-assembled peptide hydrogels, are reviewed. We also discuss technological advances and drawbacks in this area and provide insights to ultimately realize the clinical application of hydrogels in cancer immunotherapy.

References

[1]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.

[2]

Dellacherie, M. O.; Seo, B. R.; Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 2019, 4, 379–397.

[3]

Alberts, B. The promise of cancer research. Science 2008, 320, 19.

[4]

Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

[5]

Bezwoda, W. R.; Hesdorffer, C. S.; Dansey, R. D.; Lewis, D. Treatment of hairy cell leukaemia with recombinant alpha-interferon. S. Afr. Med. J. 1987, 72, 661–662.

[6]

Rosenberg, S. A. IL-2: The first effective immunotherapy for human cancer. J. Immunol. 2014, 192, 5451–5458.

[7]

Rosenberg, S. A.; Yang, J. C.; Restifo, N. P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2004, 10, 909–915.

[8]

Kantoff, P. W.; Higano, C. S.; Shore, N. D.; Berger, E. R.; Small, E. J.; Penson, D. F.; Redfern, C. H.; Ferrari, A. C.; Dreicer, R.; Sims, R. B. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2012, 365, 411–422.

[9]

Graff, J. N.; Chamberlain, E. D. Sipuleucel-T in the treatment of prostate cancer: An evidence-based review of its place in therapy. Core Evid. 2014, 10, 1–10.

[10]

Robert, C.; Thomas, L.; Bondarenko, I.; O'Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J. F.; Testori, A.; Grob, J. J. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 2011, 364, 2517–2526.

[11]

Fesnak, A. D.; June, C. H.; Levine, B. L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 2016, 16, 566–581.

[12]

June, C. H.; O’Connor, R. S.; Kawalekar, O. U.; Ghassemi, S.; Milone, M. C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365.

[13]

Milling, L.; Zhang, Y.; Irvine, D. J. Delivering safer immunotherapies for cancer. Adv. Drug Deliv. Rev. 2017, 114, 79–101.

[14]

June, C. H.; Warshauer, J. T.; Bluestone, J. A. Is autoimmunity the Achilles’ heel of cancer immunotherapy. Nat. Med. 2017, 23, 540–547.

[15]

Menon, S.; Shin, S.; Dy, G. Advances in cancer immunotherapy in solid tumors. Cancers 2016, 8, 106.

[16]

Goldberg, M. S. Immunoengineering: How nanotechnology can enhance cancer immunotherapy. Cell 2015, 161, 201–204.

[17]

Wang, C.; Ye, Y. Q.; Hu, Q. Y.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater. 2017, 29, 1606036.

[18]

Cheung, A. S.; Mooney, D. J. Engineered materials for cancer immunotherapy. Nano Today 2015, 10, 511–531.

[19]

Zhao, Z. P.; Li, Q.; Qin, X. H.; Zhang, M. Z.; Du, Q.; Luan, Y. X. An injectable hydrogel reshaping adenosinergic axis for cancer therapy. Adv. Funct. Mater. 2022, 32, 2200801.

[20]

Vishnubhakthula, S.; Elupula, R.; Durán-Lara, E. F. Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: A mini review. J. Drug Deliv. 2017, 2017, 7275985.

[21]

Soh, W. W. M.; Teoh, R. Y. P.; Zhu, J. L.; Xun, Y. R.; Wee, C. Y.; Ding, J.; Thian, E. S.; Li, J. Facile construction of a two-in-one injectable micelleplex-loaded thermogel system for the prolonged delivery of plasmid DNA. Biomacromolecules 2022, 23, 3477–3492.

[22]

Zhang, C.; Pu, K. Y. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem. Soc. Rev. 2020, 49, 4234–4253.

[23]

Wang, H.; Jin, Y.; Tan, Y. L.; Zhu, H.; Huo, W. D.; Niu, P.; Li, Z. H.; Zhang, J. C.; Liang, X. J.; Yang, X. J. Photo-responsive hydrogel facilitates nutrition deprivation by an ambidextrous approach for preventing cancer recurrence and metastasis. Biomaterials 2021, 275, 120992.

[24]

Wang, B.; Chen, J.; Caserto, J. S.; Wang, X.; Ma, M. L. An in situ hydrogel-mediated chemo-immunometabolic cancer therapy. Nat. Commun. 2022, 13, 3821.

[25]

Yang, Y.; Yang, Y.; Chen, M. L.; Chen, J. Q.; Wang, J. Y.; Ma, Y. J.; Qian, H. Q. Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages. Biomater. Sci. 2021, 9, 6597–6608.

[26]

Ni, H. F.; Qian, S. X.; Lu, J.; Feng, J.; Mou, X. Z.; Zhang, J. Natural polysaccharide delivery platforms with multiscale structure used for cancer chemoimmunotherapy. Mol. Pharmaceutics 2023, 20, 5778–5789.

[27]

Zhang, L.; Zhou, J. H.; Hu, L.; Han, X.; Zou, X. W.; Chen, Q.; Chen, Y. G.; Liu, Z.; Wang, C. In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery. Adv. Funct. Mater. 2020, 30, 1906922.

[28]

Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

[29]

Yu, S. J.; Wang, C.; Yu, J. C.; Wang, J. Q.; Lu, Y.; Zhang, Y. Q.; Zhang, X. D.; Hu, Q. Y.; Sun, W. J.; He, C. L. et al. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv. Mater. 2018, 30, 1801527.

[30]

Zhang, Y. Y.; Tian, S. D.; Huang, L. P.; Li, Y. N.; Lu, Y.; Li, H. Y.; Chen, G. P.; Meng, F. L.; Liu, G. L.; Yang, X. L. et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat. Commun. 2022, 13, 4553.

[31]

Gao, C.; Cheng, K. M.; Li, Y.; Gong, R. N.; Zhao, X.; Nie, G. J.; Ren, H. Injectable immunotherapeutic hydrogel containing RNA-loaded lipid nanoparticles reshapes tumor microenvironment for pancreatic cancer therapy. Nano Lett. 2022, 22, 8801–8809.

[32]

Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 2015, 33, 97–101.

[33]

Sun, Z. Y.; Song, C. J.; Wang, C.; Hu, Y. Q.; Wu, J. H. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol. Pharm. 2020, 17, 373–391.

[34]

Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

[35]

Fenton, O. S.; Tibbitt, M. W.; Appel, E. A.; Jhunjhunwala, S.; Webber, M. J.; Langer, R. Injectable polymer-nanoparticle hydrogels for local immune cell recruitment. Biomacromolecules 2019, 20, 4430–4436.

[36]

Kowalski, P. S.; Bhattacharya, C.; Afewerki, S.; Langer, R. Smart biomaterials: Recent advances and future directions. ACS Biomater. Sci. Eng. 2018, 4, 3809–3817.

[37]

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.

[38]

Vegas, A. J.; Veiseh, O.; Doloff, J. C.; Ma, M. L.; Tam, H. H.; Bratlie, K.; Li, J.; Bader, A. R.; Langan, E.; Olejnik, K. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 2016, 34, 345–352.

[39]

Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26.

[40]

Zhang, Y. S.; Duchamp, M.; Oklu, R.; Ellisen, L. W.; Langer, R.; Khademhosseini, A. Bioprinting the cancer microenvironment. ACS Biomater. Sci. Eng. 2016, 2, 1710–1721.

[41]

Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M. C.; Caramella, C. M.; Ferrari, F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020, 12, 1–29.

[42]

Mamidi, N.; Delgadillo, R. M. V. Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces. Colloids Surf. B: Biointerfaces 2021, 204, 111819.

[43]

Mamidi, N.; Velasco Delgadillo, R. M.; Barrera, E. V. Covalently functionalized carbon nano-onions integrated gelatin methacryloyl nanocomposite hydrogel containing γ-cyclodextrin as drug carrier for high-performance pH-triggered drug release. Pharmaceuticals 2021, 14, 291.

[44]

Aufderhorst-Roberts, A.; Hughes, M. D. G.; Hare, A.; Head, D. A.; Kapur, N.; Brockwell, D. J.; Dougan, L. Reaction rate governs the viscoelasticity and nanostructure of folded protein hydrogels. Biomacromolecules 2020, 21, 4253–4260.

[45]

Xu, X. Y.; Xia, X. F.; Zhang, K. Y.; Rai, A.; Li, Z.; Zhao, P. C.; Wei, K. C.; Zou, L.; Yang, B. G.; Wong, W. K. et al. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Sci. Transl. Med. 2020, 12, eaba8014.

[46]

Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L. H.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624.

[47]

Grenier, J.; Duval, H.; Barou, F.; Lv, P.; David, B.; Letourneur, D. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 2019, 94, 195–203.

[48]

Xue, J. J.; Wu, T.; Dai, Y. Q.; Xia, Y. N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415.

[49]

Celebioglu, A.; Uyar, T. Green synthesis of polycyclodextrin/drug inclusion complex nanofibrous hydrogels: pH-dependent release of acyclovir. ACS Appl. Bio Mater. 2023, 6, 3798–3809.

[50]

Mamidi, N.; García, R. G.; Martínez, J. D. H.; Briones, C. M.; Martínez Ramos, A. M.; Tamez, M. F. L.; Del Valle, B. G.; Segura, F. J. M. Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications. ACS Biomater. Sci. Eng. 2022, 8, 3690–3716.

[51]

Baniasadi, H.; Abidnejad, R.; Fazeli, M.; Lipponen, J.; Niskanen, J.; Kontturi, E.; Seppälä, J.; Rojas, O. J. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 2024, 324, 103095.

[52]

Yue, X. S.; Nguyen, T. D.; Zellmer, V.; Zhang, S. Y.; Zorlutuna, P. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials 2018, 170, 37–48.

[53]

Ge, Q.; Chen, Z.; Cheng, J. X.; Zhang, B.; Zhang, Y. F.; Li, H. G.; He, X. N.; Yuan, C.; Liu, J.; Magdassi, S. et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci. Adv. 2021, 7, eaba4261.

[54]

Mamidi, N.; Ijadi, F.; Norahan, M. H. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: An assessment of challenges and opportunities. Biomacromolecules 2024, 25, 2075–2113.

[55]

Zhang, H.; Lin, X.; Cao, X. Y.; Wang, Y.; Wang, J. L.; Zhao, Y. J. Developing natural polymers for skin wound healing. Bioact. Mater. 2024, 33, 355–376.

[56]

Tolabi, H.; Davari, N.; Khajehmohammadi, M.; Malektaj, H.; Nazemi, K.; Vahedi, S.; Ghalandari, B.; Reis, R. L.; Ghorbani, F.; Oliveira, J. M. Progress of microfluidic hydrogel-based scaffolds and organ-on-chips for the cartilage tissue engineering. Adv. Mater. 2023, 35, 2208852.

[57]

Hauptstein, J.; Böck, T.; Bartolf-Kopp, M.; Forster, L.; Stahlhut, P.; Nadernezhad, A.; Blahetek, G.; Zernecke-Madsen, A.; Detsch, R.; Jüngst, T. et al. Hyaluronic acid-based bioink composition enabling 3D bioprinting and improving quality of deposited cartilaginous extracellular matrix. Adv. Healthc. Mater. 2020, 9, 2000737.

[58]

Zhao, Z. Y.; Wang, Z.; Li, G.; Cai, Z. W.; Wu, J. Z.; Wang, L.; Deng, L. F.; Cai, M.; Cui, W. G. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv. Funct. Mater. 2021, 5, 2103339.

[59]

Peng, Y. X.; Liang, S.; Meng, Q. F.; Liu, D.; Ma, K. S.; Zhou, M. L.; Yun, K. Q.; Rao, L.; Wang, Z. H. Engineered bio-based hydrogels for cancer immunotherapy. Adv. Mater. 2024, 36, 2313188.

[60]

Zhou, X. Y.; Wang, C. K.; Shen, Z. F.; Wang, Y. F.; Li, Y. H.; Hu, Y. N.; Zhang, P.; Zhang, Q. Recent research progress on tumour-specific responsive hydrogels. J. Mater. Chem. B 2024, 12, 7246–7266.

[61]

Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.

[62]

Li, Y. J.; Chen, R. F.; Zhou, B. N.; Dong, Y. C.; Liu, D. S. Rational design of DNA hydrogels based on molecular dynamics of polymers. Adv. Mater. 2024, 36, 2307129.

[63]

Galassi, C.; Klapp, V.; Yamazaki, T.; Galluzzi, L. Molecular determinants of immunogenic cell death elicited by radiation therapy. Immunol. Rev. 2024, 321, 20–32.

[64]

Li, Q. Q.; Shi, Z. Q.; Zhang, F.; Zeng, W. W.; Zhu, D. W.; Mei, L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm. Sin. B 2022, 12, 107–134.

[65]

Hori, Y.; Winans, A. M.; Huang, C. C.; Horrigan, E. M.; Irvine, D. J. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 2008, 29, 3671–3682.

[66]

Zhang, D.; Li, Q.; Chen, X. W.; Nie, X. X.; Xue, F. M.; Xu, W.; Luan, Y. X. An injectable hydrogel to modulate T cells for cancer immunotherapy. Small 2022, 18, 2202663.

[67]

Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing hydrogels for on-demand therapy. Acc. Chem. Res. 2017, 50, 669–679.

[68]

Egen, J. G.; Kuhns, M. S.; Allison, J. P. CTLA-4: New insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 2002, 3, 611–618.

[69]

Cha, J. H.; Chan, L. C.; Li, C. W.; Hsu, J. L.; Hung, M. C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell. 2019, 76, 359–370.

[70]

Twomey, J. D.; Zhang, B. L. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021, 23, 39.

[71]

Martins, F.; Sofiya, L.; Sykiotis, G. P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y. et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580.

[72]

He, W.; Zhang, Y. Q.; Qu, Y.; Liu, M. M.; Li, G. D.; Pan, L. X.; Xu, X. Y.; Shi, G. G.; Hao, Q.; Liu, F. et al. Research progress on hydrogel-based drug therapy in melanoma immunotherapy. BMB Rep. 2024, 57, 71–78.

[73]

Budimir, N.; Thomas, G. D.; Dolina, J. S.; Salek-Ardakani, S. Reversing T-cell exhaustion in cancer: Lessons learned from PD-1/PD-L1 immune checkpoint blockade. Cancer Immunol. Res. 2022, 10, 146–153.

[74]

Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

[75]

Quatrini, L.; Mariotti, F. R.; Munari, E.; Tumino, N.; Vacca, P.; Moretta, L. The immune checkpoint PD-1 in natural killer cells: Expression, function and targeting in tumour immunotherapy. Cancers 2020, 12, 3285.

[76]

Chao, Y.; Chen, Q.; Liu, Z. Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 2020, 30, 1902785.

[77]

Bernhard, S.; Tibbitt, M. W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2021, 17, 240–256.

[78]

Mortezaee, K.; Majidpoor, J. Checkpoint inhibitor/interleukin-based combination therapy of cancer. Cancer Med. 2022, 11, 2934–2943.

[79]

Barroso-Sousa, R.; Ott, P. A. Transformation of old concepts for a new era of cancer immunotherapy: Cytokine therapy and cancer vaccines as combination partners of PD1/PD-L1 inhibitors. Curr. Oncol. Rep. 2018, 20, 1.

[80]

Chen, D. S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 2017, 541, 321–330.

[81]

Wu, X. L.; Wu, Y. D.; Ye, H. B.; Yu, S. J.; He, C. L.; Chen, X. S. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J. Control. Release 2017, 255, 81–93.

[82]

Yu, P.; Steel, J. C.; Zhang, M. L.; Morris, J. C.; Waldmann, T. A. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin. Cancer Res. 2010, 16, 6019–6028.

[83]

Kim, J.; Francis, D. M.; Sestito, L. F.; Archer, P. A.; Manspeaker, M. P.; O’Melia, M. J.; Thomas, S. N. Thermosensitive hydrogel releasing nitric oxide donor and anti-CTLA-4 micelles for anti-tumor immunotherapy. Nat. Commun. 2022, 13, 1479.

[84]

Wang, F. H.; Su, H.; Xu, D. Q.; Dai, W. B.; Zhang, W. J.; Wang, Z. Y.; Anderson, C. F.; Zheng, M. Z.; Oh, R.; Wan, F. Y. et al. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat. Biomed. Eng. 2020, 4, 1090–1101.

[85]

Huynh, V.; Tatari, N.; Marple, A.; Savage, N.; McKenna, D.; Venugopal, C.; Singh, S. K.; Wylie, R. Real-time evaluation of a hydrogel delivery vehicle for cancer immunotherapeutics within embedded spheroid cultures. J. Control. Release 2022, 348, 386–396.

[86]

DePeaux, K.; Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 2021, 21, 785–797.

[87]

Smith, T. T.; Moffett, H. F.; Stephan, S. B.; Opel, C. F.; Dumigan, A. G.; Jiang, X. Y.; Pillarisetty, V. G.; Pillai, S. P. S.; Wittrup, K. D.; Stephan, M. T. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Invest. 2017, 127, 2176–2191.

[88]

Meng, Z. Q.; Zhang, Y. J.; She, J. L.; Zhou, X. F.; Xu, J.; Han, X.; Wang, C.; Zhu, M. F.; Liu, Z. Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy. Nano Lett. 2021, 21, 1228–1237.

[89]

Saxena, M.; van der Burg, S. H.; Melief, C. J. M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378.

[90]

Nguyen, T. L.; Yin, Y.; Choi, Y.; Jeong, J. H.; Kim, J. Enhanced cancer DNA vaccine via direct transfection to host dendritic cells recruited in injectable scaffolds. ACS Nano 2020, 14, 11623–11636.

[91]

Huo, W. D.; Yang, X. J.; Wang, B.; Cao, L. Z.; Fang, Z. Y.; Li, Z. H.; Liu, H. F.; Liang, X. J.; Zhang, J. C.; Jin, Y. Biomineralized hydrogel DC vaccine for cancer immunotherapy: A boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials 2022, 288, 121722.

[92]

Li, J. L.; Yan, Y.; Zhang, P.; Ding, J. Z.; Huang, Y.; Jin, Y.; Li, L. A cell-laden hydrogel as prophylactic vaccine and anti-PD-L1 amplifier against autologous tumors. J. Control. Release 2022, 351, 231–244.

[93]

Kaczmarek, M.; Poznańska, J.; Fechner, F.; Michalska, N.; Paszkowska, S.; Napierała, A.; Mackiewicz, A. Cancer vaccine therapeutics: Limitations and effectiveness-a literature review. Cells 2023, 12, 2159.

[94]

Zhang, Y.; Xu, J. L.; Fei, Z. Y.; Dai, H. X.; Fan, Q.; Yang, Q. Y.; Chen, Y. T.; Wang, B. L.; Wang, C. 3D printing scaffold vaccine for antitumor immunity. Adv. Mater. 2021, 33, 2106768.

[95]

Hwang, J.; An, E. K.; Zhang, W.; Kim, H. J.; Eom, Y.; Jin, J. O. Dual-functional alginate and collagen-based injectable hydrogel for the treatment of cancer and its metastasis. J. Nanobiotechnology 2022, 20, 245.

[96]

Shao, S. Q.; Cao, Z. Y.; Xiao, Z. K.; Yu, B. Y.; Hu, L. W.; Du, X. J.; Yang, X. Z. Programming of in situ tumor vaccines via supramolecular nanodrug/hydrogel composite and deformable nanoadjuvant for cancer immunotherapy. Nano Lett. 2024, 24, 9017–9026.

[97]

Wang, F. J.; Xie, M.; Huang, Y. Y.; Liu, Y. H.; Liu, X. L.; Zhu, L. J.; Zhu, X. Y.; Guo, Y. Y.; Zhang, C. In situ vaccination with an injectable nucleic acid hydrogel for synergistic cancer immunotherapy. Angew. Chem., Int. Ed. 2024, 63, e202315282.

[98]

Wu, Y. Y.; Wen, H. N.; Bernstein, Z. J.; Hainline, K. M.; Blakney, T. S.; Congdon, K. L.; Snyder, D. J.; Sampson, J. H.; Sanchez-Perez, L.; Collier, J. H. Multiepitope supramolecular peptide nanofibers eliciting coordinated humoral and cellular antitumor immune responses. Sci. Adv. 2022, 8, eabm7833.

[99]

Lv, M. Y.; Xiao, W. Y.; Zhang, Y. P.; Jin, L. L.; Li, Z. H.; Lei, Z. X.; Cheng, D. B.; Jin, S. D. In situ self-assembled peptide enables effective cancer immunotherapy by blockage of CD47. Colloids Surf. B: Biointerfaces 2022, 217, 112655.

[100]

Froimchuk, E.; Carey, S. T.; Edwards, C.; Jewell, C. M. Self-assembly as a molecular strategy to improve immunotherapy. Acc. Chem. Res. 2020, 53, 2534–2545.

[101]

Cai, Y.; Ran, W.; Zhai, Y. H.; Wang, J. Y.; Zheng, C.; Li, Y. P.; Zhang, P. C. Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomater. Sci. 2020, 8, 1045–1057.

[102]

Garland, K. M.; Sheehy, T. L.; Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Revi. 2022, 122, 5977–6039.

[103]

Nguyen, D. C.; Song, K. F.; Jokonya, S.; Yazdani, O.; Sellers, D. L.; Wang, Y. H.; Zakaria, A. B. M.; Pun, S. H.; Stayton, P. S. Mannosylated STING agonist drugamers for dendritic cell-mediated cancer immunotherapy. ACS Cent. Sci. 2024, 10, 666–675.

[104]

Dharmaraj, N.; Piotrowski, S.; Lopez-Silva, T.; Lei, Y.; Sikora, A.; Young, S.; Hartgerink, J. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 2018, 163, 67–75.

[105]

Song, H. J.; Yang, P. X.; Huang, P. S.; Zhang, C. N.; Kong, D. L.; Wang, W. W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 2019, 9, 2299–2314.

[106]

Yang, P. X.; Song, H. J.; Qin, Y. B.; Huang, P. S.; Zhang, C. N.; Kong, D. L.; Wang, W. W. Engineering dendritic-cell-based vaccines and PD-1 blockade in self-assembled peptide nanofibrous hydrogel to amplify antitumor T-cell immunity. Nano Lett. 2018, 18, 4377–4385.

[107]

Wu, X. L.; He, C. L.; Wu, Y. D.; Chen, X. S.; Cheng, J. J. Nanogel-incorporated physical and chemical hybrid gels for highly effective chemo-protein combination therapy. Adv. Funct. Mater. 2015, 25, 6744–6755.

[108]

Lv, Q.; He, C. L.; Quan, F. L.; Yu, S. J.; Chen, X. S. DOX/IL-2/IFN-γ co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioact. Mater. 2018, 3, 118–128.

[109]

Wang, Y. X.; Liu, Y. M.; Zhang, J. C.; Peng, Q. K.; Wang, X. D.; Xiao, X. Y.; Shi, K. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater. 2024, 176, 51–76.

[110]

Bos, G. W.; Jacobs, J. J. L.; Koten, J. W.; Van Tomme, S.; Veldhuis, T.; Van Nostrum, C. F.; Den Otter, W.; Hennink, W. E. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur. J. Pharm. Sci. 2004, 21, 561–567.

[111]

Cheever, M. A. Twelve immunotherapy drugs that could cure cancers. Immunol. Rev. 2008, 222, 357–368.

[112]

Qiao, M. X.; Chen, D. W.; Hao, T. N.; Zhao, X. L.; Hu, H. Y.; Ma, X. C. Injectable thermosensitive PLGA-PEG-PLGA triblock copolymers-based hydrogels as carriers for interleukin-2. Pharmazie 2008, 1, 27–30.

[113]

Xu, K. M.; Lee, F.; Gao, S. J.; Chung, J. E.; Yano, H.; Kurisawa, M. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J. Control. Release 2013, 166, 203–210.

[114]

Ma, D.; Zhang, H. B.; Tu, K.; Zhang, L. M. Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor. Soft Matter. 2012, 8, 3665–3672.

[115]

Seo, S. H.; Han, H. D.; Noh, K. H.; Kim, T. W.; Son, S. W. Chitosan hydrogel containing GMCSF and a cancer drug exerts synergistic anti-tumor effects via the induction of CD8+ T cell-mediated anti-tumor immunity. Clin. Exp. Metastasis 2009, 26, 179–187.

[116]

Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610.

[117]

Mittal, R. K.; Mishra, R.; Uddin, R.; Sharma, V. Hydrogel breakthroughs in biomedicine: Recent advances and implications. Curr. Pharm. Biotechnol. 2024, 25, 1436–1451.

[118]

Correa, S.; Grosskopf, A. K.; Lopez Hernandez, H.; Chan, D.; Yu, A. C.; Stapleton, L. M.; Appel, E. A. Translational applications of hydrogels. Chem. Rev. 2021, 121, 11385–11457.

[119]

Yin, Y. F.; Jiang, X. W.; Sun, L. P.; Li, H. Y.; Su, C. X.; Zhang, Y.; Xu, G.; Li, X. L.; Zhao, C. K.; Chen, Y. et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today 2021, 36, 101009.

[120]

van de Weert, M.; Hennink, W. E.; Jiskoot, W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 2000, 17, 1159–1167.

[121]

Liu, A. L.; García, A. J. Methods for generating hydrogel particles for protein delivery. Ann. Biomed. Eng. 2016, 44, 1946–1958.

[122]

Mikhail, A. S.; Morhard, R.; Mauda-Havakuk, M.; Kassin, M.; Arrichiello, A.; Wood, B. J. Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer. Adv. Drug Deliv. Rev. 2023, 202, 115083.

[123]

Lu, P. L.; Ruan, D. X.; Huang, M. Q.; Tian, M.; Zhu, K. S.; Gan, Z. Q.; Xiao, Z. C. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target Ther. 2024, 9, 166.

Nano Research
Cite this article:
Mamidi N, Poellmann M, Javius-Jones K, et al. Innovative hydrogel-based delivery systems for immunotherapy: A review of pre-clinical progress. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6980-z
Topics:

141

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 April 2024
Revised: 23 August 2024
Accepted: 28 August 2024
Published: 12 September 2024
© Tsinghua University Press 2024
Return