AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Advancement in QDs for optoelectronic applications and beyond

Memoona Qammar1Max J. H. Tan2Pengbo Ding1Jianchao Ge1Yinthai Chan3( )Jonathan E. Halpert1( )
Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Hong Kong 999077, China
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
Cosmic Discovery Sdn Bhd, 10 Jalan Wawasan 3/KU7, Sungai Kapar Indah, 42200, Klang, Selangor, Malaysia
Show Author Information

Graphical Abstract

Abstract

This review focuses on the history and current state of the art optoelectronic applications of quantum dots involving light emission. We focus mainly on three areas of commercial, or potential commercial interest, including quantum dot light emitting devices (QLEDs, sometimes called QD-LEDs), lasing applications, and quantum computing applications. The main connection between these areas is the development of the science and engineering needed to achieve electrical excitation of the quantum dot in an optoelectronic device in order to achieve emission with characteristics particularly suited to the application in question. Due to the special physics of quantum dots, these materials are particularly well suited for both existing commercial applications, and potentially for future applications, such as single photon sources, spin cubits, or polarized emission. We conclude with an analysis of the future prospects for these exciting materials. Given 30 years of progress since the Nobel Prize winning work on monodisperse samples of QDs, our goal is to highlight the current start of the art, discuss the current issues for each technology, and suggest future goals for the next 30 years for quantum dot research.

References

[1]

Shan, Q. S.; Dong, Y. H.; Xiang, H. Y.; Yan, D. N.; Hu, T. J.; Yuan, B. C.; Zhu, H.; Wang, Y. F.; Zeng, H. B. Perovskite quantum dots for the next-generation displays: Progress and prospect. Adv. Funct. Mater. 2024, 34, 2401284.

[2]

Chen, Z. N.; Li, H. T.; Yuan, C. X.; Gao, P. L.; Su, Q.; Chen, S. M. Color revolution: Prospects and challenges of quantum-dot light-emitting diode display technologies. Small Methods 2024, 8, 2300359.

[3]

Ekimov, A. I.; Onushchenko, A. A. J. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 2023, 118, S15–S17.

[4]

Rossetti, R.; Brus, L. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem. 1982, 86, 4470–4472.

[5]

Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.

[6]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[7]

Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.; Brus, L. E. Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. J. Chem. Phys. 1988, 89, 4001–4011.

[8]

Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.

[9]

de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[10]

Oshinowo, J.; Nishioka, M.; Ishida, S.; Arakawa, Y. Highly uniform InGaAs/GaAs quantum dots (~ 15 nm) by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1994, 65, 1421–1423.

[11]

Gurioli, M.; Wang, Z. M.; Rastelli, A.; Kuroda, T.; Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 2019, 18, 799–810.

[12]

Bayer, M. Bridging two worlds: Colloidal versus epitaxial quantum dots. Ann. Phys. 2019, 531, 1900039.

[13]

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

[14]

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

[15]

Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.

[16]

Wise, F. W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780.

[17]

Vaughn II, D. D.; Schaak, R. E. Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chem. Soc. Rev. 2013, 42, 2861–2879.

[18]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[19]

Srivastava, A. K.; Zhang, W. L.; Schneider, J.; Halpert, J. E.; Rogach, A. L. Luminescent down-conversion semiconductor quantum dots and aligned quantum rods for liquid crystal displays. Adv. Sci. 2019, 6, 1901345.

[20]

Jung, H.; Ahn, N.; Klimov, V. I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655.

[21]

Kagan, C. R.; Bassett, L. C.; Murray, C. B.; Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 2021, 121, 3186–3233.

[22]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[23]

Shivarudraiah, S. B.; Ng, M.; Li, C. H. A.; Halpert, J. E. All-inorganic, solution-processed, inverted CsPbI3 quantum dot solar cells with a PCE of 13.1% achieved via a layer-by-layer FAI treatment. ACS Appl. Energy Mater. 2020, 3, 5620–5627.

[24]

Wang, Y.; Zhi, M.; Chang, Y. Q.; Zhang, J. P.; Chan, Y. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett. 2018, 18, 4976–4984.

[25]

Guo, X. S.; Breum, C. R.; Borregaard, J.; Izumi, S.; Larsen, M. V.; Gehring, T.; Christandl, M.; Neergaard-Nielsen, J. S.; Andersen, U. L. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 2020, 16, 281–284.

[26]

Liu, W. H.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y.; Bawendi, M. G. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 2008, 130, 1274–1284.

[27]

Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

[28]

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

[29]

Jin, X.; Xie, K. L.; Zhang, T. T.; Lian, H. D.; Zhang, Z. H.; Xu, B.; Li, D. Y.; Li, Q. H. Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chem. Commun. 2020, 56, 6130–6133.

[30]

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

[31]

Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941.

[32]

Arakawa, Y.; Holmes, M. J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl. Phys. Rev. 2020, 7, 021309.

[33]

Yazdani, N.; Andermatt, S.; Yarema, M.; Farto, V.; Bani-Hashemian, M. H.; Volk, S.; Lin, W. M. M.; Yarema, O.; Luisier, M.; Wood, V. Charge transport in semiconductors assembled from nanocrystal quantum dots. Nat. Commun. 2020, 11, 2852.

[34]

Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86–89.

[35]

Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352.

[36]

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-Dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

[37]

Efros, A. L.; Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Res. 2000, 30, 475–521.

[38]

Song, J. J.; Wang, O. Y.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 2019, 29, 1808377.

[39]

Zhu, T.; Shanmugasundaram, K.; Price, S. C.; Ruzyllo, J.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Wang, A. Y. Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Appl. Phys. Lett. 2008, 92, 023111.

[40]

Wood, V.; Panzer, M. J.; Chen, J. L.; Bradley, M. S.; Halpert, J. E.; Bawendi, M. G.; Bulović, V. Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv. Mater. 2009, 21, 2151–2155.

[41]

Kang, C. B.; Zhou, Z. C.; Halpert, J. E.; Srivastava, A. K. Inkjet printed patterned bank structure with encapsulated perovskite colour filters for modern display. Nanoscale 2022, 14, 8060–8068.

[42]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[43]
Fan, J. P.; Han, C. F.; Yang, G. J.; Song, B.; Xu, R.; Xiang, C. Y.; Zhang, T.; Qian, L. Recent progress of quantum dots light-emitting diodes: Materials, device structures, and display applications. Adv. Mater., in press, DOI: 10.1002/adma.202312948.
[44]

Xia, F. T.; Sun, X. W.; Chen, S. M. Alternating-current driven quantum-dot light-emitting diodes with high brightness. Nanoscale 2019, 11, 5231–5239.

[45]

Cho, S. H.; Sung, J.; Hwang, I.; Kim, R. H.; Choi, Y. S.; Jo, S. S.; Lee, T. W.; Park, C. High performance AC electroluminescence from colloidal quantum dot hybrids. Adv. Mater. 2012, 24, 4540–4546.

[46]

Wood, V.; Halpert, J. E.; Panzer, M. J.; Bawendi, M. G.; Bulovic, V. Alternating current driven electroluminescence from ZnSe/ZnS: Mn/ZnS nanocrystals. Nano Lett. 2009, 9, 2367–2371.

[47]

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

[48]

Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

[49]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[50]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[51]

Liu, Y.; Jiang, C. B.; Song, C.; Wang, J. H.; Mu, L.; He, Z. W.; Zhong, Z. J.; Cun, Y. K.; Mai, C. H.; Wang, J. et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes. ACS Nano 2018, 12, 1564–1570.

[52]

Chen, M. Y.; Chen, X. T.; Ma, W. C.; Sun, X. J.; Wu, L. J.; Lin, X. F.; Yang, Y. X.; Li, R.; Shen, D. Y.; Chen, Y. et al. Highly stable SnO2-based quantum-dot light-emitting diodes with the conventional device structure. ACS Nano 2022, 16, 9631–9639.

[53]

Wu, Q. Q.; Gong, X. W.; Zhao, D. W.; Zhao, Y. B.; Cao, F.; Wang, H. R.; Wang, S.; Zhang, J. H.; Quintero-Bermudez, R.; Sargent, E. H. et al. Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Adv. Mater. 2022, 34, 2108150.

[54]

Cao, F.; Zhao, D. W.; Shen, P. Y.; Wu, J. L.; Wang, H. R.; Wu, Q. Q.; Wang, F. J.; Yang, X. Y. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units. Adv. Opt. Mater. 2018, 6, 1800652.

[55]

Qin, Z. Y.; Su, Q.; Chen, S. M. Unraveling the energy transfer mechanisms in bi-color and tri-color quantum dots: Toward efficient white quantum dot light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2202451.

[56]

Bang, S. Y.; Suh, Y. H.; Fan, X. B.; Shin, D. W.; Lee, S.; Choi, H. W.; Lee, T. H.; Yang, J. J.; Zhan, S. J.; Harden-Chaters, W. et al. Technology progress on quantum dot light-emitting diodes for next-generation displays. Nanoscale Horiz. 2021, 6, 68–77.

[57]

Xie, L. M.; Xiong, X. Y.; Chang, Q. W.; Chen, X. L.; Wei, C. T.; Li, X.; Zhang, M.; Su, W. M.; Cui, Z. Inkjet-printed high-efficiency multilayer QLEDs based on a novel crosslinkable small-molecule hole transport material. Small 2019, 15, 1900111.

[58]

Wang, S. J.; Li, C. R.; Xiang, Y.; Qi, H.; Fang, Y.; Wang, A. Q.; Shen, H. B.; Du, Z. L. Light extraction from quantum dot light emitting diodes by multiscale nanostructures. Nanoscale Adv. 2020, 2, 1967–1972.

[59]

Zeng, Q. Y.; Xu, Z. W.; Zheng, C. X.; Liu, Y.; Chen, W.; Guo, T. L.; Li, F. S.; Xiang, C. Y.; Yang, Y. X.; Cao, W. R. et al. Improving charge injection via a blade-coating molybdenum oxide layer: Toward high-performance large-area quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 8258–8264.

[60]

Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.

[61]

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

[62]

Li, H. Y.; Zhang, W. J.; Bian, Y. Y.; Ahn, T. K.; Shen, H. B.; Ji, B. T. ZnF2-Assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 2022, 22, 4067–4073.

[63]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[64]

Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J.; Pina, J. M. et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.

[65]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R. Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 2023, 18, 1168–1174.

[66]

Fu, Z.; Zhou, L. K.; Yin, Y.; Weng, K. K.; Li, F.; Lu, S. Y.; Liu, D.; Liu, W. Y.; Wu, L. J.; Yang, Y. X. et al. Direct photo-patterning of efficient and stable quantum dot light-emitting diodes via light-triggered, carbocation-enabled ligand stripping. Nano Lett. 2023, 23, 2000–2008.

[67]

Guo, J.; Lu, M.; Zhang, X. Y.; Sun, S. Q.; Han, C.; Zhang, Y.; Yang, X. Y.; Kershaw, S. V.; Zheng, W. T.; Rogach, A. L. Highly stable and efficient light-emitting diodes based on orthorhombic γ-CsPbI3 nanocrystals. ACS Nano 2023, 17, 9290–9301.

[68]

Sun, Y. Z.; Su, Q.; Zhang, H.; Wang, F.; Zhang, S. D.; Chen, S. M. Investigation on thermally induced efficiency roll-off: Toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 2019, 13, 11433–11442.

[69]

Chao, W. C.; Chiang, T. H.; Liu, Y. C.; Huang, Z. X.; Liao, C. C.; Chu, C. H.; Wang, C. H.; Tseng, H. W.; Hung, W. Y.; Chou, P. T. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2021, 2, 96.

[70]

Yu, P.; Cao, S.; Shan, Y. L.; Bi, Y. H.; Hu, Y. Q.; Zeng, R. S.; Zou, B. S.; Wang, Y. J.; Zhao, J. L. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 2022, 11, 162.

[71]

Moon, H.; Lee, W.; Kim, J.; Lee, D.; Cha, S.; Shin, S.; Chae, H. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. (Camb) 2019, 55, 13299–13302.

[72]

Zhang, X. Y.; Wang, Q. Q.; Yao, Z. W.; Deng, M.; Wang, J.; Qian, L.; Ren, Y.; Yan, Y. Y.; Xiang, C. Y. Stable perovskite quantum dots light-emitting diodes with efficiency exceeding 24%. Adv. Sci. 2023, 10, 2304696.

[73]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.

[74]

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

[75]

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

[76]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[77]

Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.

[78]

Liu, Y.; Li, Z. L.; Xu, J.; Dong, Y. T.; Chen, B.; Park, S. M.; Ma, D. X.; Lee, S.; Huang, J. E.; Teale, S. et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J. Am. Chem. Soc. 2022, 144, 4009–4016.

[79]

Mei, G. D.; Tan, Y. Z.; Sun, J. Y.; Wu, D.; Zhang, T. Q.; Liu, H. C.; Liu, P.; Sun, X. W.; Choy, W. C. H.; Wang, K. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Appl. Phys. Lett. 2022, 120, 091101.

[80]

Zhang, W. D.; Tan, Y. Z.; Duan, X. J.; Zhao, F. Q.; Liu, H. C.; Chen, W.; Liu, P.; Liu, X. G.; Wang, K.; Zhang, Z. K. et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2200685.

[81]

Li, B.; Chen, F.; Xu, H. Y.; Song, Y.; Yan, X. H.; Xu, Q. L.; Wu, L. J.; Yan, Y. R.; Hou, W. J.; Cao, W. R. et al. Advances in understanding quantum dot light-emitting diodes. Nat. Rev. Electr. Eng. 2024, 1, 412–425.

[82]

Greenham, N. C.; Friend, R. H.; Bradley, D. D. C. Angular dependence of the emission from a conjugated polymer light-emitting diode: Implications for efficiency calculations. Adv. Mater. 1994, 6, 491–494.

[83]

Yang, Z. W.; Gao, M. Y.; Wu, W. J.; Yang, X. Y.; Sun, X. W.; Zhang, J. H.; Wang, H. C.; Liu, R. S.; Han, C. Y.; Yang, H. et al. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater. Today 2019, 24, 69–93.

[84]

Chung, D. S.; Lyu, Q.; Cotella, G. F.; Chun, P.; Aziz, H. Suppressing degradation in QLEDs via doping ZnO electron transport layer by halides. Adv. Opt. Mater. 2023, 11, 2300686.

[85]

Yi, Y. Q. Q.; Yang, J.; Xie, L. M.; Liu, Y.; Su, W. M.; Cui, Z. Linear cross-linkers enabling photothermally cured hole transport layer for high-performance quantum dots light-emitting diodes with ultralow efficiency roll-off. Chem. Eng. J. 2022, 439, 135702.

[86]

Yu, Y.; Liang, Y.; Yong, J.; Li, T. Z.; Hossain, M. S.; Liu, Y. T.; Hu, Y. H.; Ganesan, K.; Skafidas, E. Low-temperature solution-processed transparent QLED using inorganic metal oxide carrier transport layers. Adv. Funct. Mater. 2022, 32, 2106387.

[87]

Chen, Z. N.; Chen, S. M. Efficient and stable quantum-dot light-emitting diodes enabled by tin oxide multifunctional electron transport layer. Adv. Opt. Mater. 2022, 10, 2102404.

[88]

Chen, S.; Cao, W. R.; Liu, T. L.; Tsang, S. W.; Yang, Y. X.; Yan, X. L.; Qian, L. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 2019, 10, 765.

[89]

Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.

[90]

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

[91]

Lin, J.; Dai, X. L.; Liang, X. Y.; Chen, D. S.; Zheng, X. R.; Li, Y. F.; Deng, Y. Z.; Du, H.; Ye, Y. X.; Chen, D. et al. High-performance quantum-dot light-emitting diodes using NiO x hole-injection layers with a high and stable work function. Adv. Funct. Mater. 2020, 30, 1907265.

[92]

Qiu, Y. L.; Gong, Z. P.; Xu, L.; Huang, Q. C.; Yang, Z. X.; Ye, B. Q.; Ye, Y. L.; Meng, Z. Y.; Zeng, Z. W.; Shen, Z. H. et al. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer. ACS Appl. Nano Mater. 2022, 5, 2962–2972.

[93]

Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.

[94]

Ye, Y. X.; Zheng, X. R.; Chen, D. S.; Deng, Y. Z.; Chen, D.; Hao, Y. L.; Dai, X. L.; Jin, Y. Z. Design of the hole-injection/hole-transport interfaces for stable quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 2020, 11, 4649–4654.

[95]

You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.

[96]

Wang, L. X.; Pan, J. Y.; Qian, J. P.; Liu, C. J.; Zhang, W.; Akram, J.; Lei, W.; Chen, J. Performance enhancement of all-inorganic quantum dot light-emitting diodes via surface modification of nickel oxide nanoparticles hole transport layer. ACS Appl. Electron. Mater. 2019, 1, 2096–2102.

[97]

Chang, J. H.; Park, P.; Jung, H.; Jeong, B. G.; Hahm, D.; Nagamine, G.; Ko, J.; Cho, J.; Padilha, L. A.; Lee, D. C. et al. Unraveling the origin of operational instability of quantum dot based light-emitting diodes. ACS Nano 2018, 12, 10231–10239.

[98]

Lee, Y. J.; Jo, D. Y.; Kim, T.; Jo, J. H.; Park, J.; Yang, H.; Kim, D. Effectual interface and defect engineering for Auger recombination suppression in bright InP/ZnSeS/ZnS quantum dots. ACS Appl. Mater. Interfaces 2022, 14, 12479–12487.

[99]

Cha, Y.; Woo, H. J.; Yoon, S. H.; Song, Y. J.; Choi, Y. J.; Kim, S. H. Degradation phenomena of quantum dot light-emitting diodes induced by high electric field. Nanotechnology 2023, 34, 265705.

[100]

Zanjani, S. M.; Sadeghi, S.; Shahalizad, A.; Pahlevani, M. An investigation on the cyclic temperature-dependent performance behaviors of ultrabright air-stable QLEDs. Sci. Rep. 2023, 13, 12713.

[101]

Yuan, G. C.; Gómez, D. E.; Kirkwood, N.; Boldt, K.; Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 2018, 12, 3397–3405.

[102]

Zhang, H.; Su, Q.; Sun, Y. Z.; Chen, S. M. Efficient and color stable white quantum-dot light-emitting diodes with external quantum efficiency over 23%. Adv. Opt. Mater. 2018, 6, 1800354.

[103]

Ding, S. H.; Wu, Z. H.; Qu, X. W.; Tang, H. D.; Wang, K.; Xu, B.; Sun, X. W. Impact of the resistive switching effects in ZnMgO electron transport layer on the aging characteristics of quantum dot light-emitting diodes. Appl. Phys. Lett. 2020, 117, 093501.

[104]

Nadupalli, S.; Repp, S.; Weber, S.; Erdem, E. About defect phenomena in ZnO nanocrystals. Nanoscale 2021, 13, 9160–9171.

[105]

Yu, H. W.; Zhang, J. M.; Long, T.; Xu, M. X.; Feng, H. W.; Zhang, L. T.; Liu, S. H.; Xie, W. F. Efficient all-blade-coated quantum dot light-emitting diodes through solvent engineering. J. Phys. Chem. Lett. 2020, 11, 9019–9025.

[106]

Park, M.; Kim, Y. I.; Jung, Y. K.; Kang, J. G.; Kim, S.; Ha, J.; Yoon, Y. G.; Lee, C. All inkjet-printed 6.95 ″217 ppi active matrix QD-LED display with RGB Cd-free QDs in the top-emission device structure. J. Soc. Inf. Disp. 2022, 30, 433–440.

[107]

Zeng, Q. Y.; Chen, Z. X.; Liu, Y.; Guo, T. L. Efficient larger size white quantum dots light emitting diodes using blade coating at ambient conditions. Organ. Electron. 2021, 88, 106021.

[108]

Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.

[109]

Choi, M. K.; Yang, J.; Kim, D. C.; Dai, Z. H.; Kim, J.; Seung, H.; Kale, V. S.; Sung, S. J.; Park, C. R.; Lu, N. S. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 2018, 30, 1703279.

[110]
Bae, W. K.; Lim, J.; Lee, D.; Park, M.; Lee, H.; Kwak, J.; Char, K.; Lee, C.; Lee, S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv. Mater. 2014 , 26, 6387–6393.
[111]

Yu, H. W.; Zhu, H.; Xu, M. X.; Zhang, J. M.; Feng, H. W.; Zhang, L. T.; Liu, S. H.; Xie, W. F. High-efficiency, large-area, flexible top-emitting quantum-dot light-emitting diode. ACS Photonics 2022, 10, 2192–2200.

[112]

Zhang, D.; Li, Z.; Lu, S. Y.; Li, D.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. A 4.7-inch 650 PPI AMQLED display prepared by direct photolithography. J. Soc. Inf. Disp. 2024, 32, 174–183.

[113]

Lee, J.; Jo, H.; Choi, M.; Park, S.; Oh, J.; Lee, K.; Bae, Y.; Rhee, S.; Roh, J. Recent progress on quantum dot patterning technologies for commercialization of QD-LEDs: Current status, future prospects, and exploratory approaches. Small Methods 2024, 8, 2301224.

[114]

Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

[115]

Jiang, C. B.; Mu, L.; Zou, J. H.; He, Z. W.; Zhong, Z. J.; Wang, L.; Xu, M.; Wang, J.; Peng, J. B.; Cao, Y. Full-color quantum dots active matrix display fabricated by ink-jet printing. Sci. China Chem. 2017, 60, 1349–1355.

[116]

Xiang, C. Y.; Cao, W. R.; Yang, Y. X.; Qian, L.; Yan, X. L. The dawn of QLED for the FPD industry. Inf. Disp. 2018, 34, 14–17.

[117]

Park, J. S.; Kyhm, J.; Kim, H. H.; Jeong, S.; Kang, J. H.; Lee, S. E.; Lee, K. T.; Park, K.; Barange, N.; Han, J. Y. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 2016, 16, 6946–6953.

[118]

Lee, S.; Lee, C. High-density quantum dots composites and its photolithographic patterning applications. Polym. Adv. Technol. 2019, 30, 749–754.

[119]

Cho, H.; Pan, J. A.; Wu, H. Q.; Lan, X. Z.; Coropceanu, I.; Wang, Y. Y.; Cho, W.; Hill, E. A.; Anderson, J. S.; Talapin, D. V. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange. Adv. Mater. 2020, 32, 2003805.

[120]

Yang, J.; Hahm, D.; Kim, K.; Rhee, S.; Lee, M.; Kim, S.; Chang, J. H.; Park, H. W.; Lim, J.; Lee, M. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat. Commun. 2020, 11, 2874.

[121]

Lu, S. Y.; Fu, Z.; Li, F.; Weng, K. K.; Zhou, L. K.; Zhang, L. P.; Yang, Y. C.; Qiu, H. W.; Liu, D.; Qing, W. Y. et al. Beyond a linker: The role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals. Angew. Chem., Int. Ed. 2022, 61, e202202633.

[122]

Hahm, D.; Lim, J.; Kim, H.; Shin, J. W.; Hwang, S.; Rhee, S.; Chang, J. H.; Yang, J.; Lim, C. H.; Jo, H. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 2022, 17, 952–958.

[123]

Ha, J.; Lee, S.; Park, M.; Kim, H.; Jung, Y. K.; Han, C.; Hwang, J.; Park, G.; Lee, H. J.; Bae, W. K. et al. Dual ligand exchange of Cd-free quantum dots and optimal control of ink formulation for improving the performance of all-inkjet-printed quantum dot light-emitting diodes. J. Soc. Inf. Disp. 2024, 32, 332–340.

[124]

Kitano, K.; Lee, S. H.; Kida, S.; Doe, T.; Asaoka, Y.; Iwata, N.; Izumi, M.; Tatsuma, T.; Arakawa, Y. 83-2: Inorganic ion treatment of Cd-free quantum dots and applications to QD-LED with improved characteristics. SID Symp. Dig. Tech. Pap. 2023, 54, 1166–1169.

[125]

Wang, Y. F.; Li, Y.; Su, Y. Q.; Chen, X. R.; Wang, R.; Xu, J. Y.; Zhou, G. Q.; Chen, Z. S.; Xiang, H. Y.; Zhidkov, I. S. et al. Fine purification engineering enables efficient perovskite QLEDs with efficiency exceeding 23%. ACS Appl. Mater. Interfaces 2024, 16, 28853–28860.

[126]

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

[127]

Nong, Y. Y.; Yao, J. S.; Li, J. Q.; Xu, L. M.; Yang, Z.; Li, C.; Song, J. Z. Boosting external quantum efficiency of blue perovskite QLEDs Exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 2024, 36, 2402325.

[128]

Hill, M. T.; Gather, M. C. Advances in small lasers. Nat. Photonics 2014, 8, 908–918.

[129]

Zhang, Q.; Su, R.; Du, W. N.; Liu, X. F.; Zhao, L. Y.; Ha, S. T.; Xiong, Q. H. Advances in small perovskite-based lasers. Small Methods 2017, 1, 1700163.

[130]

Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.

[131]

Norman, J. C.; Jung, D.; Wan, Y. T.; Bowers, J. E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 030901.

[132]

Ming, K.; Kim, J.; Biondi, M. J.; Syed, A.; Chen, K.; Lam, A.; Ostrowski, M.; Rebbapragada, A.; Feld, J. J.; Chan, W. C. W. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano 2015, 9, 3060–3074.

[133]

Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401.

[134]

Park, Y. S.; Bae, W. K.; Baker, T.; Lim, J.; Klimov, V. I. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015, 15, 7319–7328.

[135]

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

[136]

Christodoulou, S.; Ramiro, I.; Othonos, A.; Figueroba, A.; Dalmases, M.; Özdemir, O.; Pradhan, S.; Itskos, G.; Konstantatos, G. Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots. Nano Lett. 2020, 20, 5909–5915.

[137]

Kharchenko, V. A.; Rosen, M. Auger relaxation processes in semiconductor nanocrystals and quantum wells. J. Lumin. 1996, 70, 158–169.

[138]

Cragg, G. E.; Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 2010, 10, 313–317.

[139]

Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349–2362.

[140]

Li, Q. Y.; Lian, T. Q. Area-and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: Breaking the “Universal Volume Scaling Law”. Nano Lett. 2017, 17, 3152–3158.

[141]

Philbin, J. P.; Rabani, E. Auger recombination lifetime scaling for type I and quasi-type II core/shell quantum dots. J. Phys. Chem. Lett. 2020, 11, 5132–5138.

[142]

Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey, J.; Feng, Y.; Charbonneau, S. Red-emitting semiconductor quantum dot lasers. Science 1996, 274, 1350–1353.

[143]

Ahn, N.; Livache, C.; Pinchetti, V.; Jung, H.; Jin, H.; Hahm, D.; Park, Y. S.; Klimov, V. I. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 2023, 617, 79–85.

[144]

Chan, Y.; Steckel, J. S.; Snee, P. T.; Caruge, J. M.; Hodgkiss, J. M.; Nocera, D. G.; Bawendi, M. G. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 2005, 86, 073102.

[145]

Wang, Y.; Fong, K. E.; Yang, S. C.; Ta, V. D.; Gao, Y.; Wang, Z.; Nalla, V.; Demir, H. V.; Sun, H. D. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers. Laser Photonics Rev. 2015, 9, 507–516.

[146]

Bae, W. K.; Nam, M. K.; Char, K.; Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1- x Zn x S/ZnS nanocrystals. Chem. Mater. 2008, 20, 5307–5313.

[147]

Tan, M. J. H.; Patel, S. K.; Chiu, J.; Zheng, Z. T.; Odom, T. W. Liquid lasing from solutions of ligand-engineered semiconductor nanocrystals. J. Chem. Phys. 2024, 160, 154703.

[148]

Wang, Y.; Leck, K. S.; Ta, V. D.; Chen, R.; Nalla, V.; Gao, Y.; He, T. C.; Demir, H. V.; Sun, H. D. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping. Adv. Mater. 2015, 27, 169–175.

[149]

Nandan, Y.; Mehata, M. S. Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots. Sci. Rep. 2019, 9, 2.

[150]

Nanda, J.; Ivanov, S. A.; Achermann, M.; Bezel, I.; Piryatinski, A.; Klimov, V. I. Light amplification in the single-exciton regime using exciton–exciton repulsion in type-II nanocrystal quantum dots. J. Phys. Chem. C 2007, 111, 15382–15390.

[151]

Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335–339.

[152]

Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 2014, 9, 891–895.

[153]

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Dahlberg, P. D.; Engel, G. S.; Schaller, R. D.; Talapin, D. V. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 9475–9485.

[154]

Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

[155]

Li, M. J.; Zhi, M.; Zhu, H.; Wu, W. Y.; Xu, Q. H.; Jhon, M. H.; Chan, Y. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Nat. Commun. 2015, 6, 8513.

[156]

Xing, G. C.; Liao, Y. L.; Wu, X. Y.; Chakrabortty, S.; Liu, X. F.; Yeow, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 2012, 6, 10835–10844.

[157]

Polovitsyn, A.; Khan, A. H.; Angeloni, I.; Grim, J. Q.; Planelles, J.; Climente, J. I.; Moreels, I. Synthesis of anisotropic CdSe/CdS dot-in-giant-rod nanocrystals with persistent blue-shifted biexciton emission. ACS Photonics 2018, 5, 4561–4568.

[158]

Pang, Q.; Zhao, L. J.; Cai, Y.; Nguyen, D. P.; Regnault, N.; Wang, N.; Yang, S. H.; Ge, W. K.; Ferreira, R.; Bastard, G. et al. CdSe nano-tetrapods: Controllable synthesis, structure analysis, and electronic and optical properties. Chem. Mater. 2005, 17, 5263–5267.

[159]

Wong, J. I.; Mishra, N.; Xing, G. C.; Li, M. J.; Chakrabortty, S.; Sum, T. C.; Shi, Y. M.; Chan, Y.; Yang, H. Y. Dual wavelength electroluminescence from CdSe/CdS tetrapods. ACS Nano 2014, 8, 2873–2879.

[160]

Lupo, M. G.; Sala, F. D.; Carbone, L.; Zavelani-Rossi, M.; Fiore, A.; Lüer, L.; Polli, D.; Cingolani, R.; Manna, L.; Lanzani, G. Ultrafast electron-hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett. 2008, 8, 4582–4587.

[161]

Liao, Y. L.; Xing, G. C.; Mishra, N.; Sum, T. C.; Chan, Y. Low threshold, amplified spontaneous emission from core-seeded semiconductor nanotetrapods incorporated into a sol–gel matrix. Adv. Mater. 2012, 24, OP159–OP164.

[162]

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

[163]

Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63.

[164]

Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.

[165]

Koscher, B. A.; Bronstein, N. D.; Olshansky, J. H.; Bekenstein, Y.; Alivisatos, A. P. Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 2016, 138, 12065–12068.

[166]

Castañeda, J. A.; Nagamine, G.; Yassitepe, E.; Bonato, L. G.; Voznyy, O.; Hoogland, S.; Nogueira, A. F.; Sargent, E. H.; Cruz, C. H. B.; Padilha, L. A. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano 2016, 10, 8603–8609.

[167]

Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

[168]

Huang, C. Y.; Zou, C.; Mao, C. Y.; Corp, K. L.; Yao, Y. C.; Lee, Y. J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 2017, 4, 2281–2289.

[169]

Tan, M. J. H.; Park, J. E.; Freire-Fernández, F.; Guan, J.; Juarez, X. G.; Odom, T. W. Lasing action from quasi-propagating modes. Adv. Mater. 2022, 34, 2203999.

[170]

Wang, J.; Wang, S. F.; Ding, L. M. The physical origin of stimulated emission in perovskites. J. Semicond. 2022, 43, 050202.

[171]
Suárez, I. Stimulated emission mechanisms in perovskite semiconductors. In Metal Halide Perovskites for Generation, Manipulation and Detection of Light. Martínez-Pastor, J. P.; Boix, P. P.; Xing, G. C., Eds.; Elsevier, 2023; pp 145–182.
[172]

Suárez, I.; Juárez-Pérez, E. J.; Chirvony, V. S.; Mora-Seró, I.; Martínez-Pastor, J. P. Mechanisms of spontaneous and amplified spontaneous emission in CH3NH3PbI3 perovskite thin films integrated in an optical waveguide. Phys. Rev. Appl. 2020, 13, 064071.

[173]

Dong, Q.; Lei, L.; Mendes, J.; So, F. Operational stability of perovskite light emitting diodes. J. Phys. Mater. 2020, 3, 012002.

[174]

Zhao, L. F.; Kerner, R. A.; Xiao, Z. G.; Lin, Y. H. L.; Lee, K. M.; Schwartz, J.; Rand, B. P. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 2016, 1, 595–602.

[175]

Yuan, S.; Zheng, X. P.; Shen, W. S.; Liu, J. K.; Cui, L. S.; Zhang, C. C.; Tian, Q. S.; Wu, J. J.; Zhou, Y. H.; Wang, X. D. et al. Overcoming degradation pathways to achieve stable blue perovskite light-emitting diodes. ACS Energy Lett. 2022, 7, 1348–1354.

[176]

Zhang, H.; Sui, N.; Chi, X. C.; Wang, Y. H.; Liu, Q. H.; Zhang, H. Z.; Ji, W. Y. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes. ACS Appl. Mater. Interfaces 2016, 8, 31385–31391.

[177]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[178]

Jha, P. P.; Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 2009, 3, 1011–1015.

[179]

Li, G. P.; Huang, J. S.; Zhu, H. W.; Li, Y. Q.; Tang, J. X.; Jiang, Y. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDS and high-performance qleds. Chem. Mater. 2018, 30, 6099–6107.

[180]

Lim, J.; Park, Y. S.; Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49.

[181]

Roh, J.; Park, Y. S.; Lim, J.; Klimov, V. I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 2020, 11, 271.

[182]

Nielsen, M. A.; Chuang, I.; Grover, L. K. Quantum computation and quantum information. Am. J. Phys. 2002, 70, 558–559.

[183]

Alfieri, A.; Anantharaman, S. B.; Zhang, H. Q.; Jariwala, D. Nanomaterials for quantum information science and engineering. Adv. Mater. 2023, 35, 2109621.

[184]

Yoneda, J.; Takeda, K.; Otsuka, T.; Nakajima, T.; Delbecq, M. R.; Allison, G.; Honda, T.; Kodera, T.; Oda, S.; Hoshi, Y. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 2018, 13, 102–106.

[185]

Proppe, A. H.; Berkinsky, D. B.; Zhu, H.; Šverko, T.; Kaplan, A. E. K.; Horowitz, J. R.; Kim, T.; Chung, H.; Jun, S.; Bawendi, M. G. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 2023, 18, 993–999.

[186]

Petta, J. R.; Johnson, A. C.; Taylor, J. M.; Laird, E. A.; Yacoby, A.; Lukin, M. D.; Marcus, C. M.; Hanson, M. P.; Gossard, A. C. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 2005, 309, 2180–2184.

[187]

Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.; Leenstra, A. W.; de Ronde, B.; Dehollain, J. P.; Muhonen, J. T.; Hudson, F. E.; Itoh, K. M.; Morello, A. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981–985.

[188]

Lin, X. Y.; Han, Y. Y.; Zhu, J. Y.; Wu, K. F. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 2023, 18, 124–130.

[189]
Lu, X. Y. Chip-integrated visible-telecom entangled photon pair source for quantum communication. In Proceedings of the SPIE 11917, Photonics for Quantum 2019, New York, USA, 2021, pp 119170Z.
[190]

Knill, E.; Laflamme, R.; Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52.

[191]

Somaschi, N.; Giesz, V.; De Santis, L.; Loredo, J. C.; Almeida, M. P.; Hornecker, G.; Portalupi, S. L.; Grange, T.; Antón, C.; Demory, J. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 2016, 10, 340–345.

[192]

Hoang, T. B.; Akselrod, G. M.; Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 2016, 16, 270–275.

[193]

Cherniukh, I.; Rainò, G.; Stöferle, T.; Burian, M.; Travesset, A.; Naumenko, D.; Amenitsch, H.; Erni, R.; Mahrt, R. F.; Bodnarchuk, M. I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 2021, 593, 535–542.

[194]

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

[195]

Afek, I.; Ambar, O.; Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 2010, 328, 879–881.

[196]

Muñoz, C. S.; Del Valle, E.; Tudela, A. G.; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J. J.; Laussy, F. P. Emitters of N-photon bundles. Nat. Photonics 2014, 8, 550–555.

[197]

De Greve, K.; Yu, L.; McMahon, P. L.; Pelc, J. S.; Natarajan, C. M.; Kim, N. Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 2012, 491, 421–425.

[198]

Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 2013, 4, 2744.

[199]

Mi, X.; Benito, M.; Putz, S.; Zajac, D. M.; Taylor, J. M.; Burkard, G.; Petta, J. R. A coherent spin–photon interface in silicon. Nature 2018, 555, 599–603.

[200]

Wells, L. M.; Kalliakos, S.; Villa, B.; Ellis, D. J. P.; Stevenson, R. M.; Bennett, A. J.; Farrer, I.; Ritchie, D. A.; Shields, A. J. Photon phase shift at the few-photon level and optical switching by a quantum dot in a microcavity. Phys. Rev. Appl. 2019, 11, 061001.

[201]

Gibbs, H. M.; Khitrova, G.; Koch, S. W. Exciton-polariton light-semiconductor coupling effects. Nat. Photonics 2011, 5, 273.

[202]

Törmä, P.; Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2015, 78, 013901.

[203]

Deng, H.; Weihs, G.; Snoke, D.; Bloch, J.; Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl. Acad. Sci. USA 2003, 100, 15318–15323.

[204]

Byrnes, T.; Kim, N. Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813.

[205]

Freire-Fernandez, F.; Sinai, N. G.; Tan, M. J. H.; Park, S. M.; Koessler, E. R.; Krauss, T.; Huo, P. F.; Odom, T. W. Room-temperature polariton lasing from CdSe core-only nanoplatelets. ACS Nano 2024, 18, 15177–15184.

[206]

Watkins, N. E.; Guan, J.; Diroll, B. T.; Williams, K. R.; Schaller, R. D.; Odom, T. W. Surface normal lasing from CdSe nanoplatelets coupled to aluminum plasmonic nanoparticle lattices. J. Phys. Chem. C 2021, 125, 19874–19879.

[207]

Zhou, C.; Zhong, Y. C.; Dong, H. X.; Zheng, W. H.; Tan, J. Q.; Jie, Q.; Pan, A. L.; Zhang, L.; Xie, W. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat. Commun. 2020, 11, 329.

Nano Research
Cite this article:
Qammar M, Tan MJH, Ding P, et al. Advancement in QDs for optoelectronic applications and beyond. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6982-x
Topics:

271

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 July 2024
Revised: 04 September 2024
Accepted: 04 September 2024
Published: 02 October 2024
© Tsinghua University Press 2024
Return