AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Emergent quantum properties from low-dimensional building blocks and their superlattices

Ken Seungmin HongOu Chen( )Yusong Bai( )
Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
Show Author Information

Graphical Abstract

Abstract

Low-dimensional materials, with highly tunable electronic structures depending on their sizes and shapes, can be exploited as fundamental building blocks to construct higher-order structures with tailored emergent properties. This is akin to molecules or crystals that are assembled by atoms with diverse symmetries and interactions. Prominent low-dimensional materials developed in recent decades include zero-dimensional (0D) quantum dots, one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) van der Waals materials. These materials enclose a vast diversity of electronic structures ranging from metals and semimetals to semiconductors and insulators. Moreover, low-dimensional materials can be assembled into higher-order architectures known as superlattices, wherein collective electronic and optical behaviors emerge that are absent in the individual building blocks alone. Superlattices composed of interacting low-dimensional entities thus define an ultra-manipulatable materials platform for realizing artificial structures with customizable functionalities. Here, we review significant milestones and recent progress in the field of low-dimensional materials and their superlattices. We survey recently observed exotic emergent electronic and optical properties in these materials and delve into the underlying mechanisms driving these phenomena. Additionally, we hint the future opportunities and remaining challenges in advancing this exciting area of research.

References

[1]

Ekimov, A. I.; Onushchenko, A. A.; Tsekhomski, V. A. Exciton absorption by copper chloride crystals in glassy matrix. Fiz. Khim. Stekla 1980, 6, 511–512.

[2]

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

[3]

Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.

[4]

Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.

[5]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[6]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[7]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

[8]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[9]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[10]

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[11]

Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

[12]

Sun, X. Q.; Malic, E.; Lu, Y. R. Dipolar many-body complexes and their interactions in stacked 2D heterobilayers. Nat. Rev. Phys. 2024, 6, 439–454.

[13]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[14]

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

[15]

Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

[16]

Michler, P.; Imamoğlu, A.; Mason, M. D.; Carson, P. J.; Strouse, G. F.; Buratto, S. K. Quantum correlation among photons from a single quantum dot at room temperature. Nature 2000, 406, 968–970.

[17]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[18]

Nagaoka, Y.; Zhu, H.; Eggert, D.; Chen, O. Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. Science 2018, 362, 1396–1400.

[19]

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

[20]

Zhu, C. L.; Boehme, S. C.; Feld, L. G.; Moskalenko, A.; Dirin, D. N.; Mahrt, R. F.; Stöferle, T.; Bodnarchuk, M. I.; Efros, A. L.; Sercel, P. C. et al. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 2024, 626, 535–541.

[21]

Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206.

[22]

Bethune, D. S.; Kiang, C. H.; De Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.

[23]

Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.

[24]

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

[25]

O'connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

[26]

Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

[27]

Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838–841.

[28]

Liu, K. H.; Jin, C. H.; Hong, X. P.; Kim, J.; Zettl, A.; Wang, E. G.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 2014, 10, 737–742.

[29]

Koshino, M.; Moon, P.; Son, Y. W. Incommensurate double-walled carbon nanotubes as one-dimensional moiré crystals. Phys. Rev. B 2015, 91, 035405.

[30]

Zhao, S. H.; Moon, P.; Miyauchi, Y.; Nishihara, T.; Matsuda, K.; Koshino, M.; Kitaura, R. Observation of drastic electronic-structure change in a one-dimensional moiré superlattice. Phys. Rev. Lett. 2020, 124, 106101.

[31]

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature 2005, 438, 201–204.

[32]

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

[33]

Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

[34]

Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

[35]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[36]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[37]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[38]

Cai, J. Q.; Anderson, E.; Wang, C.; Zhang, X. W.; Liu, X. Y.; Holtzmann, W.; Zhang, Y. N.; Fan, F. R.; Taniguchi, T.; Watanabe, K. et al. Signatures of fractional quantum anomalous hall states in twisted MoTe2. Nature 2023, 622, 63–68.

[39]

Park, H.; Cai, J. Q.; Anderson, E.; Zhang, Y. N.; Zhu, J. Y.; Liu, X. Y.; Wang, C.; Holtzmann, W.; Hu, C. W.; Liu, Z. Y. et al. Observation of fractionally quantized anomalous hall effect. Nature 2023, 622, 74–79.

[40]

Xia, Y.; Han, Z.; Watanabe, K.; Taniguchi, T.; Shan, J.; Mak, K. F. Unconventional superconductivity in twisted bilayer WSe2. 2024, arXiv:2405.14784. arXiv.org e-Print archive. https://arxiv.org/abs/2405.14784 (accessed Aug 1, 2024).

[41]

Guo, Y. J.; Pack, J.; Swann, J.; Holtzman, L.; Cothrine, M.; Watanabe, K.; Taniguchi, T.; Mandrus, D.; Barmak, K.; Hone, J. et al. Superconductivity in twisted bilayer WSe2. 2024, arXiv:2406.03418. arXiv.org e-Print archive. https://arxiv.org/abs/2406.03418 (accessed Jun 5, 2024).

[42]

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

[43]

Liu, H. T.; Owen, J. S.; Alivisatos, A. P. Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 2007, 129, 305–312.

[44]

Calvin, J. J.; Brewer, A. S.; Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022, 1, 127–137.

[45]

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

[46]

Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338–16346.

[47]

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

[48]

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

[49]
Murray, C. B. Synthesis and characterization of II-IV quantum dots and their assembly into 3D quantum dot superlattices. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.
[50]

Tan, R.; Yuan, Y. C.; Nagaoka, Y.; Eggert, D.; Wang, X. D.; Thota, S.; Guo, P.; Yang, H. R.; Zhao, J.; Chen, O. Monodisperse hexagonal pyramidal and bipyramidal wurtzite CdSe-CdS core–shell nanocrystals. Chem. Mater. 2017, 29, 4097–4108.

[51]

Lim, J.; Bae, W. K.; Park, K. U.; Zur Borg, L.; Zentel, R.; Lee, S.; Char, K. Controlled synthesis of CdSe tetrapods with high morphological uniformity by the persistent kinetic growth and the halide-mediated phase transformation. Chem. Mater. 2013, 25, 1443–1449.

[52]

Zhou, X. L.; Li, J. Z.; Qian, X. D.; Zhu, J.; Kong, X. Q.; Peng, X. G. Selective formation of monodisperse right trigonal-bipyramidal and cube-shaped CdSe nanocrystals: Stacking faults and facet-ligand pairing. J. Am. Chem. Soc. 2023, 145, 23238–23248.

[53]

Carbone, L.; Nobile, C.; De Giorgi, M.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007, 7, 2942–2950.

[54]

Nagaoka, Y.; Hills-Kimball, K.; Tan, R.; Li, R. P.; Wang, Z. W.; Chen, O. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels. Adv. Mater. 2017, 29, 1606666.

[55]

Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

[56]

Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 2016, 10, 7830–7839.

[57]

Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 17504–17512.

[58]

Lu, M.; Zhang, Y.; Wang, S. X.; Guo, J.; Yu, W. W.; Rogach, A. L. Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv. Funct. Mater. 2019, 29, 1902008.

[59]

Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 2013, 25, 4986–5010.

[60]

Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

[61]

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

[62]

Chen, O.; Wei, H.; Maurice, A.; Bawendi, M.; Reiss, P. Pure colors from core-shell quantum dots. MRS Bull. 2013, 38, 696–702.

[63]

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

[64]

Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.

[65]

Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Synthesis and characterization of Co/CdSe core/shell nanocomposites: Bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc. 2005, 127, 544–546.

[66]

Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 2010, 327, 1634–1638.

[67]

Lambright, S.; Butaeva, E.; Razgoniaeva, N.; Hopkins, T.; Smith, B.; Perera, D.; Corbin, J.; Khon, E.; Thomas, R.; Moroz, P. et al. Enhanced lifetime of excitons in nonepitaxial Au/CdS core/shell nanocrystals. ACS Nano 2014, 8, 352–361.

[68]

Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523.

[69]

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

[70]

García De Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[71]

Yuan, Y. C.; Jin, N.; Saghy, P.; Dube, L.; Zhu, H.; Chen, O. Quantum dot photocatalysts for organic transformations. J. Phys. Chem. Lett. 2021, 12, 7180–7193.

[72]

Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

[73]

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

[74]

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

[75]

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

[76]

Jiang, Y. R.; Cho, S. Y.; Shim, M. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. J. Mater. Chem. C 2018, 6, 2618–2634.

[77]

Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218.

[78]

Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400.

[79]

Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

[80]

Wang, J. Y.; Cai, T.; Chen, O. Cesium copper halide perovskite nanocrystal-based photon-managing devices for enhanced ultraviolet photon harvesting. Nano Lett. 2023, 23, 4367–4374.

[81]

Wang, J. Y.; Yuan, Y. C.; Schneider, J.; Zhou, W. J.; Zhu, H.; Cai, T.; Chen, O. Quantum dot-based luminescent solar concentrators fabricated through the ultrasonic spray-coating method. ACS Appl. Mater. Interfaces 2022, 14, 41013–41021.

[82]

Liu, Z. Y.; Sun, Y. Y.; Cai, T.; Yang, H. J.; Zhao, J. X.; Yin, T.; Hao, C. Q.; Chen, M. J.; Shi, W. W.; Li, X. X. et al. Two-dimensional Cs2AgIn x Bi1− x Cl6 alloyed double perovskite nanoplatelets for solution-processed light-emitting diodes. Adv. Mater. 2023, 35, 2211235.

[83]

Jin, N.; Sun, Y. L.; Shi, W. W.; Wang, P.; Nagaoka, Y.; Cai, T.; Wu, R. Z.; Dube, L.; Nyiera, H. N.; Liu, Y. Z. et al. Type-I CdS/ZnS core/shell quantum dot-gold heterostructural nanocrystals for enhanced photocatalytic hydrogen generation. J. Am. Chem. Soc. 2023, 145, 21886–21896.

[84]

Liu, Z. Y.; Hao, C. Q.; Sun, Y. Y.; Wang, J. Y.; Dube, L.; Chen, M. J.; Dang, W.; Hu, J. X.; Li, X.; Chen, O. Rigid CuInS2/ZnS core/shell quantum dots for high performance infrared light-emitting diodes. Nano Lett. 2024, 24, 5342–5350.

[85]

Kagan, C. R.; Bassett, L. C.; Murray, C. B.; Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 2021, 121, 3186–3233.

[86]

Slussarenko, S.; Pryde, G. J. Photonic quantum information processing: A concise review. Appl. Phys. Rev. 2019, 6, 041303.

[87]

Nguyen, H. A.; Dixon, G.; Dou, F. Y.; Gallagher, S.; Gibbs, S.; Ladd, D. M.; Marino, E.; Ondry, J. C.; Shanahan, J. P.; Vasileiadou, E. S. et al. Design rules for obtaining narrow luminescence from semiconductors made in solution. Chem. Rev. 2023, 123, 7890–7952.

[88]

Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641.

[89]

Hong, C. K.; Ou, Z. Y.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044–2046.

[90]

Shields, A. J. Semiconductor quantum light sources. Nat. Photonics 2007, 1, 215–223.

[91]

Kaplan, A. E. K.; Krajewska, C. J.; Proppe, A. H.; Sun, W. W.; Sverko, T.; Berkinsky, D. B.; Utzat, H.; Bawendi, M. G. Hong-Ou-Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photonics 2023, 17, 775–780.

[92]

Proppe, A. H.; Berkinsky, D. B.; Zhu, H.; Šverko, T.; Kaplan, A. E. K.; Horowitz, J. R.; Kim, T.; Chung, H.; Jun, S.; Bawendi, M. G. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 2023, 18, 993–999.

[93]

Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386–10393.

[94]

Zhu, C. L.; Marczak, M.; Feld, L.; Boehme, S. C.; Bernasconi, C.; Moskalenko, A.; Cherniukh, I.; Dirin, D.; Bodnarchuk, M. I.; Kovalenko, M. V. et al. Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 2022, 22, 3751–3760.

[95]

Brokmann, X.; Giacobino, E.; Dahan, M.; Hermier, J. P. Highly efficient triggered emission of single photons by colloidal CdSe∕ZnS nanocrystals. Appl. Phys. Lett. 2004, 85, 712–714.

[96]

Pisanello, F.; Leménager, G.; Martiradonna, L.; Carbone, L.; Vezzoli, S.; Desfonds, P.; Cozzoli, P. D.; Hermier, J. P.; Giacobino, E.; Cingolani, R. et al. Non-blinking single-photon generation with anisotropic colloidal nanocrystals: Towards room-temperature, efficient, colloidal quantum sources. Adv. Mater. 2013, 25, 1974–1980.

[97]

Pisanello, F.; Martiradonna, L.; Leménager, G.; Spinicelli, P.; Fiore, A.; Manna, L.; Hermier, J. P.; Cingolani, R.; Giacobino, E.; De Vittorio, M. et al. Room temperature-dipolelike single photon source with a colloidal dot-in-rod. Appl. Phys. Lett. 2010, 96, 033101.

[98]

Pisanello, F.; Martiradonna, L.; Spinicelli, P.; Fiore, A.; Hermier, J. P.; Manna, L.; Cingolani, R.; Giacobino, E.; De Vittorio, M.; Bramati, A. Dots in rods as polarized single photon sources. Superlattices Microstruct. 2010, 47, 165–169.

[99]

Yuan, C. T.; Yu, P.; Ko, H. C.; Huang, J.; Tang, J. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots. ACS Nano 2009, 3, 3051–3056.

[100]

Naiki, H.; Masuo, S.; Machida, S.; Itaya, A. Single-photon emission behavior of isolated CdSe/ZnS quantum dots interacting with the localized surface plasmon resonance of silver nanoparticles. J. Phys. Chem. C 2011, 115, 23299–23304.

[101]

Zhao, S.; Lavie, J.; Rondin, L.; Orcin-Chaix, L.; Diederichs, C.; Roussignol, P.; Chassagneux, Y.; Voisin, C.; Müllen, K.; Narita, A. et al. Single photon emission from graphene quantum dots at room temperature. Nat. Commun. 2018, 9, 3470.

[102]

Barelli, M.; Vidal, C.; Fiorito, S.; Myslovska, A.; Cielecki, D.; Aglieri, V.; Moreels, I.; Sapienza, R.; Di Stasio, F. Single-photon emitting arrays by capillary assembly of colloidal semiconductor CdSe/CdS/SiO2 nanocrystals. ACS Photonics 2023, 10, 1662–1670.

[103]

Lin, X.; Dai, X. L.; Pu, C. D.; Deng, Y. Z.; Niu, Y.; Tong, L. M.; Fang, W.; Jin, Y. Z.; Peng, X. G. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 2017, 8, 1132.

[104]

Sercel, P. C.; Lyons, J. L.; Wickramaratne, D.; Vaxenburg, R.; Bernstein, N.; Efros, A. L. Exciton fine structure in perovskite nanocrystals. Nano Lett. 2019, 19, 4068–4077.

[105]

Cherniukh, I.; Rainò, G.; Stöferle, T.; Burian, M.; Travesset, A.; Naumenko, D.; Amenitsch, H.; Erni, R.; Mahrt, R. F.; Bodnarchuk, M. I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 2021, 593, 535–542.

[106]

Rainò, G.; Nedelcu, G.; Protesescu, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Mahrt, R. F.; Stöferle, T. Single cesium lead halide perovskite nanocrystals at low temperature: Fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 2016, 10, 2485–2490.

[107]

Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072.

[108]

Boehme, S. C.; Bodnarchuk, M. I.; Burian, M.; Bertolotti, F.; Cherniukh, I.; Bernasconi, C.; Zhu, C. L.; Erni, R.; Amenitsch, H.; Naumenko, D. et al. Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano 2023, 17, 2089–2100.

[109]

Hu, F. R.; Zhang, H. C.; Sun, C.; Yin, C. Y.; Lv, B. H.; Zhang, C. F.; Yu, W. W.; Wang, X. Y.; Zhang, Y.; Xiao, M. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 2015, 9, 12410–12416.

[110]

Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.

[111]

Pierini, S.; D’Amato, M.; Goyal, M.; Glorieux, Q.; Giacobino, E.; Lhuillier, E.; Couteau, C.; Bramati, A. Highly photostable perovskite nanocubes: Toward integrated single photon sources based on tapered nanofibers. ACS Photonics 2020, 7, 2265–2272.

[112]

Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538.

[113]

Talapin, D. V. LEGO materials. ACS Nano 2008, 2, 1097–1100.

[114]

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

[115]

Bassani, C. L.; Van Anders, G.; Banin, U.; Baranov, D.; Chen, Q.; Dijkstra, M.; Dimitriyev, M. S.; Efrati, E.; Faraudo, J.; Gang, O. et al. Nanocrystal assemblies: Current advances and open problems. ACS Nano 2024, 18, 14791–14840.

[116]

Ossia, Y.; Levi, A.; Panfil, Y. E.; Koley, S.; Scharf, E.; Chefetz, N.; Remennik, S.; Vakahi, A.; Banin, U. Electric-field-induced colour switching in colloidal quantum dot molecules at room temperature. Nat. Mater. 2023, 22, 1210–1217.

[117]

Deng, K. R.; Luo, Z. S.; Tan, L.; Quan, Z. W. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem. Soc. Rev. 2020, 49, 6002–6038.

[118]

Damasceno, P. F.; Engel, M.; Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 2012, 337, 453–457.

[119]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[120]

Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562.

[121]

Nagaoka, Y.; Tan, R.; Li, R. P.; Zhu, H.; Eggert, D.; Wu, Y. A.; Liu, Y. Z.; Wang, Z. W.; Chen, O. Superstructures generated from truncated tetrahedral quantum dots. Nature 2018, 561, 378–382.

[122]

Zhang, Z. L.; Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 2004, 4, 1407–1413.

[123]

Boles, M. A.; Talapin, D. V. Self-assembly of tetrahedral CdSe nanocrystals: Effective "patchiness" via anisotropic steric interaction. J. Am. Chem. Soc. 2014, 136, 5868–5871.

[124]

Taniguchi, Y.; Sazali, M. A. B.; Kobayashi, Y.; Arai, N.; Kawai, T.; Nakashima, T. Programmed self-assembly of branched nanocrystals with an amphiphilic surface pattern. ACS Nano 2017, 11, 9312–9320.

[125]

Qi, W. K.; Graaf, J. D.; Qiao, F.; Marras, S.; Manna, L.; Dijkstra, M. Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. Nano Lett. 2012, 12, 5299–5303.

[126]

Ghosh, S.; Gaspari, R.; Bertoni, G.; Spadaro, M. C.; Prato, M.; Turner, S.; Cavalli, A.; Manna, L.; Brescia, R. Pyramid-shaped wurtzite CdSe nanocrystals with inverted polarity. ACS Nano 2015, 9, 8537–8546.

[127]

Zeng, Y. C.; Su, H. X.; Liu, Y.; Chen, W. W.; Liu, F. Z.; Gao, H. F.; Wu, Y. C.; Manna, L.; Li, H. B. Synthesis and assembly of core-shell nanorods with high quantum yield and linear polarization. Adv. Funct. Mater. 2023, 33, 2306091.

[128]

Dang, Z. Y.; Dhanabalan, B.; Castelli, A.; Dhall, R.; Bustillo, K. C.; Marchelli, D.; Spirito, D.; Petralanda, U.; Shamsi, J.; Manna, L. et al. Temperature-driven transformation of CsPbBr3 nanoplatelets into mosaic nanotiles in solution through self-assembly. Nano Lett. 2020, 20, 1808–1818.

[129]

Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: Temperature as the structure-directing factor. J. Am. Chem. Soc. 2010, 132, 11967–11977.

[130]

Yang, Z. W.; Wei, Y. Z.; Wei, J. J.; Yang, Z. J. Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding. Nat. Commun. 2022, 13, 5844.

[131]

Sun, D. Z.; Gang, O. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA. J. Am. Chem. Soc. 2011, 133, 5252–5254.

[132]

Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 1999, 121, 8122–8123.

[133]

Yan, J.; Feng, W. C.; Kim, J. Y.; Lu, J.; Kumar, P.; Mu, Z. Z.; Wu, X. C.; Mao, X. M.; Kotov, N. A. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 2020, 32, 476–488.

[134]

Huo, S. W.; Duan, P. F.; Jiao, T. F.; Peng, Q. M.; Liu, M. H. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem., Int. Ed. 2017, 56, 12174–12178.

[135]

Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.

[136]

Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

[137]

Zhu, H.; Fan, Z. C.; Yuan, Y. C.; Wilson, M. A.; Hills-Kimball, K.; Wei, Z. C.; He, J.; Li, R. P.; Grünwald, M.; Chen, O. Self-assembly of quantum dot-gold heterodimer nanocrystals with orientational order. Nano Lett. 2018, 18, 5049–5056.

[138]

Zhu, H.; Fan, Z. C.; Song, S. Y.; Eggert, D.; Liu, Y. Z.; Shi, W. W.; Yuan, Y. C.; Kim, K. S.; Grünwald, M.; Chen, O. Dual atomic coherence in the self-assembly of patchy heterostructural nanocrystals. ACS Nano 2022, 16, 15053–15062.

[139]

Zhu, H.; Fan, Z. C.; Yu, L.; Wilson, M. A.; Nagaoka, Y.; Eggert, D.; Cao, C.; Liu, Y. Z.; Wei, Z. C.; Wang, X. D. et al. Controlling nanoparticle orientations in the self-assembly of patchy quantum dot-gold heterostructural nanocrystals. J. Am. Chem. Soc. 2019, 141, 6013–6021.

[140]

Williams, K. J.; Tisdale, W. A.; Leschkies, K. S.; Haugstad, G.; Norris, D. J.; Aydil, E. S.; Zhu, X. Y. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. ACS Nano 2009, 3, 1532–1538.

[141]

Coropceanu, I.; Janke, E. M.; Portner, J.; Haubold, D.; Nguyen, T. D.; Das, A.; Tanner, C. P. N.; Utterback, J. K.; Teitelbaum, S. W.; Hudson, M. H. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022, 375, 1422–1426.

[142]
Yu, D.; Wang, C. J.; Guyot-Sionnest, P. n-Type conducting CdSe nanocrystal solids. Science 2003, 300, 1277–1280.
[143]

Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99–110.

[144]

Scully, M. O.; Svidzinsky, A. A. The super of superradiance. Science 2009, 325, 1510–1511.

[145]

Rainò, G.; Utzat, H.; Bawendi, M. G.; Kovalenko, M. V. Superradiant emission from self-assembled light emitters: From molecules to quantum dots. MRS Bull. 2020, 45, 841–848.

[146]

Goupalov, S. V. Superradiance in spherical layered nanostructures. Phys. Rev. B 2016, 93, 235302.

[147]
Tang, Y.; Jing, Y.; Sum, T. C.; Bruno, A.; Mhaisalkar, S. G. Superfluorescence in metal halide perovskites. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202400322.
[148]

Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.

[149]

Blach, D. D.; Lumsargis, V. A.; Clark, D. E.; Chuang, C.; Wang, K.; Dou, L. T.; Schaller, R. D.; Cao, J. S.; Li, C. W.; Huang, L. B. Superradiance and exciton delocalization in perovskite quantum dot superlattices. Nano Lett. 2022, 22, 7811–7818.

[150]

Chuang, C.; Cao, J. S. Universal scalings in two-dimensional anisotropic dipolar excitonic systems. Phys. Rev. Lett. 2021, 127, 047402.

[151]

Findik, G.; Biliroglu, M.; Seyitliyev, D.; Mendes, J.; Barrette, A.; Ardekani, H.; Lei, L.; Dong, Q.; So, F.; Gundogdu, K. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photonics 2021, 15, 676–680.

[152]

Biliroglu, M.; Findik, G.; Mendes, J.; Seyitliyev, D.; Lei, L.; Dong, Q.; Mehta, Y.; Temnov, V. V.; So, F.; Gundogdu, K. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photonics 2022, 16, 324–329.

[153]

Zhou, C.; Zhong, Y. C.; Dong, H. X.; Zheng, W. H.; Tan, J. Q.; Jie, Q.; Pan, A. L.; Zhang, L.; Xie, W. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat. Commun. 2020, 11, 329.

[154]

Zhong, Y. C.; Zhou, C.; Hou, L. Y.; Li, J. Z.; Xie, W.; Dong, H. X.; Zhang, L. Ultrafast optical properties of cavity-enhanced superfluorescence. Adv. Opt. Mater. 2022, 10, 2102290.

[155]

Chen, L. Q.; Mao, D. Q.; Hu, Y. J.; Dong, H. X.; Zhong, Y. C.; Xie, W.; Mou, N. L.; Li, X. J.; Zhang, L. Stable and ultrafast blue cavity-enhanced superfluorescence in mixed halide perovskites. Adv. Sci. 2023, 10, 2301589.

[156]

Rashba, E.; Gurgenishvili, G. Edge absorption theory in semiconductors. Sov. Phys. Solid State 1962, 4, 759–760.

[157]

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

[158]

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on schulz-flory distribution. ACS Nano 2013, 7, 6156–6161.

[159]

Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040.

[160]

White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240–242.

[161]

Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M.; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O'Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554–556.

[162]

Laird, E. A.; Kuemmeth, F.; Steele, G. A.; Grove-Rasmussen, K.; Nygård, J.; Flensberg, K.; Kouwenhoven, L. P. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 2015, 87, 703–764.

[163]

Bai, Y. S.; Bullard, G.; Olivier, J. H.; Therien, M. J. Quantitative evaluation of optical free carrier generation in semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2018, 140, 14619–14626.

[164]

Ghedjatti, A.; Magnin, Y.; Fossard, F.; Wang, G.; Amara, H.; Flahaut, E.; Lauret, J. S.; Loiseau, A. Structural properties of double-walled carbon nanotubes driven by mechanical interlayer coupling. ACS Nano 2017, 11, 4840–4847.

[165]

Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A. et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191.

[166]

Yu, Z. H.; Brus, L. E. ( n,m) structural assignments and chirality dependence in single-wall carbon nanotube Raman scattering. J. Phys. Chem. B 2001, 105, 6831–6837.

[167]

Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061.

[168]

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540–1543.

[169]

Gordeev, G.; Wasserroth, S.; Li, H.; Flavel, B.; Reich, S. Moiré-induced vibrational coupling in double-walled carbon nanotubes. Nano Lett. 2021, 21, 6732–6739.

[170]

Wittemeier, N.; Verstraete, M. J.; Ordejón, P.; Zanolli, Z. Interference effects in one-dimensional moiré crystals. Carbon 2022, 186, 416–422.

[171]

Wang, S.; Zhao, S. H.; Shi, Z. W.; Wu, F. Q.; Zhao, Z. Y.; Jiang, L. L.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Zhou, C. W. et al. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes. Nat. Mater. 2020, 19, 986–991.

[172]

Shapir, I.; Hamo, A.; Pecker, S.; Moca, C. P.; Legeza, Ö.; Zarand, G.; Ilani, S. Imaging the electronic Wigner crystal in one dimension. Science 2019, 364, 870–875.

[173]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[174]

Xue, J. M.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Leroy, B. J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

[175]

Decker, R.; Wang, Y.; Brar, V. W.; Regan, W.; Tsai, H. Z.; Wu, Q.; Gannett, W.; Zettl, A.; Crommie, M. F. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 2011, 11, 2291–2295.

[176]

Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

[177]

Wang, J. Y.; Deng, S. B.; Liu, Z. F.; Liu, Z. R. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2, 22–39.

[178]

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[179]

Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V. Dirac materials. Adv. Phys. 2014, 63, 1–76.

[180]

Liu, G. B.; Shan, W. Y.; Yao, Y. G.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433.

[181]

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

[182]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

[183]

Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

[184]

Kim, J. H.; Sung, H.; Lee, G. H. Phase engineering of two-dimensional transition metal dichalcogenides. Small Sci. 2024, 4, 2300093.

[185]

Feng, W. X.; Yao, Y. G.; Zhu, W. G.; Zhou, J. J.; Yao, W.; Xiao, D. Intrinsic spin hall effect in monolayers of group-VI dichalcogenides: A first-principles study. Phys. Rev. B 2012, 86, 165108.

[186]

Cappelluti, E.; Roldán, R.; Silva-Guillén, J. A.; Ordejón, P.; Guinea, F. Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2. Phys. Rev. B 2013, 88, 075409.

[187]

Gillen, R.; Maultzsch, J. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 2018, 97, 165306.

[188]

Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402.

[189]

Kośmider, K.; González, J. W.; Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 2013, 88, 245436.

[190]

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

[191]

Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

[192]

Andrei, E. Y.; MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 2020, 19, 1265–1275.

[193]

Mak, K. F.; Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 2022, 17, 686–695.

[194]

Mazurenko, A.; Chiu, C. S.; Ji, G.; Parsons, M. F.; Kanász-Nagy, M.; Schmidt, R.; Grusdt, F.; Demler, E.; Greif, D.; Greiner, M. A cold-atom Fermi-Hubbard antiferromagnet. Nature 2017, 545, 462–466.

[195]

Yu, Y.; Zhang, K. D.; Parks, H.; Babar, M.; Carr, S.; Craig, I. M.; Van Winkle, M.; Lyssenko, A.; Taniguchi, T.; Watanabe, K. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 2022, 14, 267–273.

[196]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[197]

Kerelsky, A.; McGilly, L. J.; Kennes, D. M.; Xian, L. D.; Yankowitz, M.; Chen, S. W.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95–100.

[198]

Baek, H.; Brotons-Gisbert, M.; Koong, Z. X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B. D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 2020, 6, eaba8526.

[199]

Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263.

[200]

Hubbard, J. Electron correlations in narrow energy bands. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 1963, 276, 238–257.

[201]

Xie, Y. L.; Lian, B.; Jäck, B.; Liu, X. M.; Chiu, C. L.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 2019, 572, 101–105.

[202]

Jiang, Y. H.; Lai, X. Y.; Watanabe, K.; Taniguchi, T.; Haule, K.; Mao, J. H.; Andrei, E. Y. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 2019, 573, 91–95.

[203]

Utama, M. I. B.; Koch, R. J.; Lee, K.; Leconte, N.; Li, H. Y.; Zhao, S. H.; Jiang, L. L.; Zhu, J. Y.; Watanabe, K.; Taniguchi, T. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 2021, 17, 184–188.

[204]

Lisi, S.; Lu, X. B.; Benschop, T.; De Jong, T. A.; Stepanov, P.; Duran, J. R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A. et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 2021, 17, 189–193.

[205]

Stepanov, P.; Das, I.; Lu, X. B.; Fahimniya, A.; Watanabe, K.; Taniguchi, T.; Koppens, F. H. L.; Lischner, J.; Levitov, L.; Efetov, D. K. Untying the insulating and superconducting orders in magic-angle graphene. Nature 2020, 583, 375–378.

[206]

Oh, M.; Nuckolls, K. P.; Wong, D.; Lee, R. L.; Liu, X. M.; Watanabe, K.; Taniguchi, T.; Yazdani, A. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 2021, 600, 240–245.

[207]

Xie, M.; MacDonald, A. H. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 2020, 124, 097601.

[208]

Cao, Y.; Chowdhury, D.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Watanabe, K.; Taniguchi, T.; Senthil, T.; Jarillo-Herrero, P. Strange metal in magic-angle graphene with near planckian dissipation. Phys. Rev. Lett. 2020, 124, 076801.

[209]

Jaoui, A.; Das, I.; Di Battista, G.; Díez-Mérida, J.; Lu, X. B.; Watanabe, K.; Taniguchi, T.; Ishizuka, H.; Levitov, L.; Efetov, D. K. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 2022, 18, 633–638.

[210]

Zhang, S. H.; Lu, X.; Liu, J. P. Correlated insulators, density wave states, and their nonlinear optical response in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 2022, 128, 247402.

[211]

Liu, X. M.; Hao, Z. Y.; Khalaf, E.; Lee, J. Y.; Ronen, Y.; Yoo, H.; Najafabadi, D. H.; Watanabe, K.; Taniguchi, T.; Vishwanath, A. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225.

[212]

Park, J. M.; Cao, Y.; Xia, L. Q.; Sun, S. W.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 2022, 21, 877–883.

[213]

Park, J. M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 2021, 590, 249–255.

[214]

Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

[215]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

[216]

Park, J. M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Flavour Hund's coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 2021, 592, 43–48.

[217]

Polshyn, H.; Zhang, Y.; Kumar, M. A.; Soejima, T.; Ledwith, P.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; Zaletel, M. P.; Young, A. F. Topological charge density waves at half-integer filling of a moiré superlattice. Nat. Phys. 2022, 18, 42–47.

[218]

Xie, Y. L.; Pierce, A. T.; Park, J. M.; Parker, D. E.; Khalaf, E.; Ledwith, P.; Cao, Y.; Lee, S. H.; Chen, S. W.; Forrester, P. R. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 2021, 600, 439–443.

[219]

Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725–733.

[220]

Nuckolls, K. P.; Yazdani, A. A microscopic perspective on moiré materials. Nat. Rev. Mater. 2024, 9, 460–480.

[221]

Fallahazad, B.; Movva, H. C. P.; Kim, K.; Larentis, S.; Taniguchi, T.; Watanabe, K.; Banerjee, S. K.; Tutuc, E. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 2016, 116, 086601.

[222]

Shabani, S.; Halbertal, D.; Wu, W. J.; Chen, M. X.; Liu, S.; Hone, J.; Yao, W.; Basov, D. N.; Zhu, X. Y.; Pasupathy, A. N. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 2021, 17, 720–725.

[223]

Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

[224]

Guo, H. L.; Zhang, X.; Lu, G. Shedding light on moiré excitons: A first-principles perspective. Sci. Adv. 2020, 6, eabc5638.

[225]

Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015.

[226]

Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003.

[227]

Wang, J.; Ardelean, J.; Bai, Y. S.; Steinhoff, A.; Florian, M.; Jahnke, F.; Xu, X. D.; Kira, M.; Hone, J.; Zhu, X. Y. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 2019, 5, eaax0145.

[228]

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

[229]

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[230]

Li, W. J.; Lu, X.; Dubey, S.; Devenica, L.; Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 2020, 19, 624–629.

[231]

Zhou, Y.; Sung, J.; Brutschea, E.; Esterlis, I.; Wang, Y.; Scuri, G.; Gelly, R. J.; Heo, H.; Taniguchi, T.; Watanabe, K. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 2021, 595, 48–52.

[232]

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Utama, M. I. B.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

[233]

Li, H. Y.; Li, S. W.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Kahn, S.; Yumigeta, K.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Imaging two-dimensional generalized Wigner crystals. Nature 2021, 597, 650–654.

[234]

Xu, Y.; Liu, S.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Elser, V.; Mak, K. F.; Shan, J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 2020, 587, 214–218.

[235]

Pack, J.; Guo, Y. J.; Liu, Z. Y.; Jessen, B. S.; Holtzman, L.; Liu, S.; Cothrine, M.; Watanabe, K.; Taniguchi, T.; Mandrus, D. G. et al. Charge-transfer contact to a high-mobility monolayer semiconductor. 2023, arXiv:2310.19782. arXiv.org e-Print archive. https://arxiv.org/abs/2310.19782 (accessed Oct 30, 2023).

[236]

Regan, E. C.; Wang, D. Q.; Paik, E. Y.; Zeng, Y. X.; Zhang, L.; Zhu, J. H.; MacDonald, A. H.; Deng, H.; Wang, F. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795.

[237]

Du, L. J.; Molas, M. R.; Huang, Z. H.; Zhang, G. Y.; Wang, F.; Sun, Z. P. Moiré photonics and optoelectronics. Science 2023, 379, eadg0014.

[238]

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

[239]

Schneider, J.; Nagaoka, Y.; Fan, H. Y.; Chen, O. Chemical and architectural intricacy from nanoscale tetrahedra and their analogues. MRS Bull. 2024, 49, 319–329.

[240]

Yang, S. S.; LaCour, R. A.; Cai, Y. Y.; Xu, J.; Rosen, D. J.; Zhang, Y. G.; Kagan, C. R.; Glotzer, S. C.; Murray, C. B. Self-assembly of atomically aligned nanoparticle superlattices from Pt–Fe3O4 heterodimer nanoparticles. J. Am. Chem. Soc. 2023, 145, 6280–6288.

[241]

Nagaoka, Y.; Schneider, J.; Jin, N.; Cai, T.; Liu, Y. Z.; Wang, Z. W.; Li, R. P.; Kim, K. S.; Chen, O. Dynamic transformation of high-architectural nanocrystal superlattices upon solvent molecule exposure. J. Am. Chem. Soc. 2024, 146, 13093–13104.

[242]

Diroll, B. T.; Greybush, N. J.; Kagan, C. R.; Murray, C. B. Smectic nanorod superlattices assembled on liquid subphases: Structure, orientation, defects, and optical polarization. Chem. Mater. 2015, 27, 2998–3008.

[243]

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

[244]

Abelson, A.; Qian, C.; Salk, T.; Luan, Z. Y.; Fu, K.; Zheng, J. G.; Wardini, J. L.; Law, M. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 2020, 19, 49–55.

[245]

Kim, F.; Kwan, S.; Akana, J.; Yang, P. D. Langmuir-blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123, 4360–4361.

[246]

Aleksandrovic, V.; Greshnykh, D.; Randjelovic, I.; Frömsdorf, A.; Kornowski, A.; Roth, S. V.; Klinke, C.; Weller, H. Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano 2008, 2, 1123–1130.

[247]

Gao, Y. N.; Weidman, M. C.; Tisdale, W. A. CdSe nanoplatelet films with controlled orientation of their transition dipole moment. Nano Lett. 2017, 17, 3837–3843.

[248]

Liu, K. H.; Xu, Z.; Wang, W. L.; Gao, P.; Fu, W. Y.; Bai, X. D.; Wang, E. G. Direct determination of atomic structure of large-indexed carbon nanotubes by electron diffraction: Application to double-walled nanotubes. J. Phys. D: Appl. Phys. 2009, 42, 125412.

[249]

Fang, N.; Chang, Y. R.; Yamashita, D.; Fujii, S.; Maruyama, M.; Gao, Y.; Fong, C. F.; Otsuka, K.; Nagashio, K.; Okada, S. et al. Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes. Nat. Commun. 2023, 14, 8152.

[250]

Fang, N.; Chang, Y. R.; Fujii, S.; Yamashita, D.; Maruyama, M.; Gao, Y.; Fong, C. F.; Kozawa, D.; Otsuka, K.; Nagashio, K. et al. Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures. Nat. Commun. 2024, 15, 2871.

[251]

Otsuka, K.; Fang, N.; Yamashita, D.; Taniguchi, T.; Watanabe, K.; Kato, Y. K. Deterministic transfer of optical-quality carbon nanotubes for atomically defined technology. Nat. Commun. 2021, 12, 3138.

[252]

Bai, Y. S.; Zhou, L.; Wang, J.; Wu, W. J.; McGilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

[253]

Uri, A.; Grover, S.; Cao, Y.; Crosse, J. A.; Bagani, K.; Rodan-Legrain, D.; Myasoedov, Y.; Watanabe, K.; Taniguchi, T.; Moon, P. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 2020, 581, 47–52.

[254]

Lau, C. N.; Bockrath, M. W.; Mak, K. F.; Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 2022, 602, 41–50.

[255]

Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A. K.; Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016, 7, 12587.

[256]

Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

[257]

Sun, Z. Y.; Han, X.; Cai, Z. H.; Yue, S. S.; Geng, D. Y.; Rong, D. K.; Zhao, L.; Zhang, Y. Q.; Cheng, P.; Chen, L. et al. Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering. Sci. Bull. 2022, 67, 1345–1351.

[258]

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

[259]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[260]

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

[261]

Zhang, Z.; Lin, P.; Liao, Q. L.; Kang, Z.; Si, H. N.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411.

[262]

Padgaonkar, S.; Olding, J. N.; Lauhon, L. J.; Hersam, M. C.; Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772.

[263]

Wang, P. Q.; Jia, C. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures by design: From 1D and 2D to 3D. Matter 2021, 4, 552–581.

[264]

Ni, G. X.; Wang, H.; Wu, J. S.; Fei, Z.; Goldflam, M. D.; Keilmann, F.; Özyilmaz, B.; Neto, A. H. C.; Xie, X. M.; Fogler, M. M. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 2015, 14, 1217–1222.

[265]

Flebus, B.; MacDonald, A. H. Electronic structure of carbon nanotubes on graphene substrates. Phys. Rev. Res. 2020, 2, 022041.

[266]

Zhou, X. L.; Xie, J. X.; Li, G. P.; Zhang, J. N.; Xia, M. G.; Luo, W. D.; Shi, Z. W. Moiré-induced band-gap opening in one-dimensional superlattices of carbon nanotubes on hexagonal boron nitride. Phys. Rev. B 2022, 105, 115433.

[267]

Waters, D.; Thompson, E.; Arreguin-Martinez, E.; Fujimoto, M.; Ren, Y. F.; Watanabe, K.; Taniguchi, T.; Cao, T.; Xiao, D.; Yankowitz, M. Mixed-dimensional moiré systems of twisted graphitic thin films. Nature 2023, 620, 750–755.

[268]

Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Johnston, S.; Cui, Y. T.; Li, W.; Yi, M.; Liu, Z. K.; Hashimoto, M.; Zhang, Y. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 2014, 515, 245–248.

Nano Research
Cite this article:
Hong KS, Chen O, Bai Y. Emergent quantum properties from low-dimensional building blocks and their superlattices. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6984-8
Topics:

338

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 August 2024
Revised: 13 September 2024
Accepted: 17 September 2024
Published: 21 October 2024
© Tsinghua University Press 2024
Return