AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams

Huaqiang Fu1,2,§Renqiang Fang3,§Chao Tian1Wei Qian2Shiya Cao1Ziran Zhang3Xiaoxi Xu1Chuang Yao4Zhe Wang5( )Daping He1,2( )
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
Shanghai Institute of Satellite Engineering, Shanghai 201109, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

§ Huaqiang Fu and Renqiang Fang contributed equally to this work.

Show Author Information

Graphical Abstract

Two-dimensional graphene materials are fabricated into lightweight and soft graphene foams as vertical fillers within epoxy resin to optimize the out-plane thermal conductivity and contact thermal resistance.

Abstract

High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (Rcontact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k and Rcontact for vertical GF (VGF) TIMs. The VGF-TIM has a high k of 47.9 W·m−1·K−1 at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W−1, demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.

Electronic Supplementary Material

Download File(s)
6985_ESM.pdf (898.1 KB)

References

[1]

Ahmad, T.; Zhu, H. Y.; Zhang, D. D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A. S.; Alshamrani, S. S. Energetics systems and artificial intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361.

[2]

Ahmad, T.; Zhang, D. D.; Huang, C.; Zhang, H. C.; Dai, N. Y.; Song, Y. H.; Chen, H. X. Artificial intelligence in sustainable energy industry: Status quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834.

[3]

Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

[4]
Dai, W.; Wang, Y. D.; Li, M. H.; Chen, L.; Yan, Q. W.; Yu, J. H.; Jiang, N.; Lin, C. T. 2D materials-based thermal interface materials: Structure, properties, and applications. Adv. Mater., in press, DOI: 10.1002/adma.202311335.
[5]

Hansson, J.; Nilsson, T. M. J.; Ye, L. L.; Liu, J. Novel nanostructured thermal interface materials: A review. Int. Mater. Rev. 2018, 63, 22–45.

[6]

Muscatello, J.; Chacón, E.; Tarazona, P.; Bresme, F. Deconstructing temperature gradients across fluid interfaces: The structural origin of the thermal resistance of liquid-vapor interfaces. Phys. Rev. Lett. 2017, 119, 045901.

[7]

Cao, M.; Li, Z.; Lu, J. H.; Wang, B.; Lai, H. W.; Li, Z. S.; Gao, Y.; Ming, X.; Luo, S. Y.; Peng, L. et al. Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 2023, 35, 2300077.

[8]

Lu, J. H.; Ming, X.; Cao, M.; Liu, Y. J.; Wang, B.; Shi, H.; Hao, Y. Y.; Zhang, P. J.; Li, K. W.; Wang, L. D. et al. Scalable compliant graphene fiber-based thermal interface material with metal-level thermal conductivity via dual-field synergistic alignment engineering. ACS Nano 2024, 18, 18560–18571.

[9]

Song, H. F.; Liu, J. M.; Liu, B. L.; Wu, J. Q.; Cheng, H. M.; Kang, F. Y. Two-dimensional materials for thermal management applications. Joule 2018, 2, 442–463.

[10]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[11]

Chen, K.; Song, B.; Ravichandran, N. K.; Zheng, Q. Y.; Chen, X.; Lee, H.; Sun, H. R.; Li, S.; Udalamatta Gamage, G. A. G.; Tian, F. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 2020, 367, 555–559.

[12]

Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708.

[13]

Han, S. S.; Meng, Q. S.; Qiu, Z.; Osman, A.; Cai, R.; Yu, Y.; Liu, T. Q.; Araby, S. Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer 2019, 184, 121884.

[14]

Tang, W. J.; Tang, S.; Guan, X. Z.; Zhang, X. Y.; Xiang, Q.; Luo, J. Y. High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 2019, 29, 1900648.

[15]

Guo, X. X.; Cheng, S. J.; Yan, B.; Li, Y. L.; Zhou, Y. H.; Cai, W. W.; Zhang, Y. F.; Zhang, X. A. Extraordinary thermal conductivity of polyvinyl alcohol composite by aligning densified carbon fiber via magnetic field. Nano Res. 2023, 16, 2572–2578.

[16]

Yang, K.; Yang, X. R.; Liu, Z. X.; Zhang, R.; Yue, Y.; Wang, F. F.; Li, K. Y.; Shi, X. J.; Yuan, J.; Liu, N. Y. et al. Scalable microfluidic fabrication of vertically aligned two-dimensional nanosheets for superior thermal management. Mater. Horiz. 2023, 10, 3536–3547.

[17]

Niu, H. Y.; Guo, H. C.; Kang, L.; Ren, L. C.; Lv, R. C.; Bai, S. L. Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 2022, 14, 153.

[18]

Luo, Z.; Yang, D. Z.; Liu, J.; Zhao, H. Y.; Zhao, T. Y.; Li, B. X.; Yang, W. G.; Yu, Z. Z. Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 2023, 33, 2212032.

[19]

Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22.

[20]

Yan, Q. W.; Alam, F. E.; Gao, J. Y.; Dai, W.; Tan, X.; Lv, L.; Wang, J. J.; Zhang, H.; Chen, D.; Nishimura, K. et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 2021, 31, 2104062.

[21]

Xu, S. C.; Wang, S. S.; Chen, Z.; Sun, Y. Y.; Gao, Z. F.; Zhang, H.; Zhang, J. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv. Funct. Mater. 2020, 30, 2003302.

[22]

Zhang, Y. F.; Han, D.; Zhao, Y. H.; Bai, S. L. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 2016, 109, 552–557.

[23]

Zhang, Y. F.; Ren, Y. J.; Bai, S. L. Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int. J. Heat Mass Transf. 2018, 118, 510–517.

[24]

Zhan, K.; Chen, Y. C.; Xiong, Z. Y.; Zhang, Y. L.; Ding, S. Y.; Zhen, F. Z.; Liu, Z. S.; Wei, Q.; Liu, M. S.; Sun, B. et al. Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge. Nat. Commun. 2024, 15, 2905.

[25]

Tian, C.; Fu, H. Q.; Wang, Z.; Zhang, Z. X.; Qian, W.; Zhang, H. Z.; Xu, S. Q.; Cao, S. Y.; He, D. P. Deformable surface design of vertical graphene thermal interface materials for efficient heat dissipation. Cell Reports Phys. Sci. 2024, 5, 101978.

[26]

Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

[27]

Dai, W.; Lv, L.; Ma, T. F.; Wang, X. Z.; Ying, J. F.; Yan, Q. W.; Tan, X.; Gao, J. Y.; Xue, C.; Yu, J. H. et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 2021, 8, 2003734.

[28]

Qian, W.; Fu, H. Q.; Sun, Y.; Wang, Z.; Wu, H.; Kou, Z. K.; Li, B. W.; He, D. P.; Nan, C. W. Scalable assembly of high-quality graphene films via electrostatic-repulsion aligning. Adv. Mater. 2022, 34, 2206101.

[29]

Xu, S. C.; Zhang, J. Vertically aligned graphene for thermal interface materials. Small Struct. 2020, 1, 2000034.

[30]

Huang, X. Y.; Iizuka, T.; Jiang, P. K.; Ohki, Y.; Tanaka, T. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C 2012, 116, 13629–13639.

[31]
He, X.; Liu, X. R.; Huang, J. J.; Lin, W. B.; Wen, J. W.; Huang, P.; Zeng, X. L.; Zhang, Y.; Wang, Q. L.; Lin, Y. Simultaneous reduction of bulk and contact thermal resistance in high-loading thermal interface materials using self-assembled monolayers. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402276.
[32]

He, Q. X.; Qin, M. M.; Zhang, H.; Yue, J. W.; Peng, L. Q.; Liu, G. J.; Feng, Y. Y.; Feng, W. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz. 2024, 11, 531–544.

[33]

Gong, J. R.; Liu, Z. D.; Yu, J. H.; Dai, D.; Dai, W.; Du, S. Y.; Li, C. Y.; Jiang, N.; Zhan, Z. L.; Lin, C. T. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A: Appl. Sci. Manuf. 2016, 87, 290–296.

[34]

Li, J. W.; Zhang, Y. X.; Liang, T.; Bai, X.; Pang, Y. S.; Zeng, X. L.; Hu, Q. H.; Tu, W. D.; Ye, Z. Q.; Du, G. P. et al. Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance. Chem. Mater. 2021, 33, 8926–8937.

[35]

Yang, J.; Li, X. F.; Han, S.; Zhang, Y. T.; Min, P.; Koratkar, N.; Yu, Z. Z. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 2016, 4, 18067–18074.

[36]

An, F.; Li, X. F.; Min, P.; Liu, P. F.; Jiang, Z. G.; Yu, Z. Z. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 2018, 10, 17383–17392.

[37]

Min, P.; Liu, J.; Li, X. F.; An, F.; Liu, P. F.; Shen, Y. X.; Koratkar, N.; Yu, Z. Z. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 2018, 28, 1805365.

[38]

Xin, G. Q.; Sun, H. T.; Scott, S. M.; Yao, T. K.; Lu, F. Y.; Shao, D. L.; Hu, T.; Wang, G. K.; Ran, G.; Lian, J. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl. Mater. Interfaces 2014, 6, 15262–15271.

[39]

Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects. Chem. Mater. 2015, 27, 2100–2106.

[40]

Uetani, K.; Ata, S.; Tomonoh, S.; Yamada, T.; Yumura, M.; Hata, K. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 2014, 26, 5857–5862.

[41]

Wu, Z. H.; Xu, C.; Ma, C. Q.; Liu, Z. B.; Cheng, H. M.; Ren, W. C. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 2019, 31, 1900199.

[42]

Li, X. H.; Liu, P. F.; Li, X. F.; An, F.; Min, P.; Liao, K. N.; Yu, Z. Z. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 2018, 140, 624–633.

[43]

Zhang, Y. Z.; Lei, C. X.; Wu, K.; Fu, Q. Fully organic bulk polymer with metallic thermal conductivity and tunable thermal pathways. Adv. Sci. 2021, 8, 2004821.

[44]

Ji, T. X.; Feng, Y. Y.; Qin, M. M.; Li, S. W.; Zhang, F.; Lv, F.; Feng, W. Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 2018, 131, 149–159.

[45]

Yang, J.; Li, X. F.; Han, S.; Yang, R. Z.; Min, P.; Yu, Z. Z. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 2018, 6, 5880–5886.

[46]

Yang, J.; Qi, G. Q.; Liu, Y.; Bao, R. Y.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 2016, 100, 693–702.

[47]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. 2023, 135, e202216093.

[48]

Ding, M. C.; Zhao, D. M.; Wei, R.; Duan, Z. Y.; Zhao, Y. X.; Li, Z. Y.; Lin, T. H.; Li, C. W. Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration 2024, 4, 20230057.

[49]

Li, M. Y.; Yin, B.; Gao, C. Y.; Guo, J.; Zhao, C.; Jia, C. C.; Guo, X. F. Graphene: Preparation, tailoring, and modification. Exploration 2023, 3, 20210233.

Nano Research
Pages 9293-9299
Cite this article:
Fu H, Fang R, Tian C, et al. High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams. Nano Research, 2024, 17(11): 9293-9299. https://doi.org/10.1007/s12274-024-6985-7
Topics:

206

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 July 2024
Revised: 20 August 2024
Accepted: 24 August 2024
Published: 27 September 2024
© Tsinghua University Press 2024
Return