Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The field of colloidal nanocrystals has witnessed enormous progress in the last three decades. For many families of nanocrystals, wet-chemical syntheses have been developed that allow control over the crystal shape and dimensions, from the three-dimensional down to the zero-dimensional case. Additionally, careful control of surface chemistry has enabled the prevention of non-radiative recombination, thus allowing the detailed study of confined charge carriers and excitons. This has led to a vast amount of applications of nanocrystals in displays, labels, and lighting. Here, we discuss how this expertise could benefit the rapidly advancing field of quantum materials, where the coherence of electronic wave functions is key. We demonstrate that colloidal two-dimensional nanocrystals can serve as excellent model systems for studying topological phase transitions, particularly in the case of quantum spin Hall and topological crystalline insulators. We aim to inspire researchers with strong chemical expertise to explore the exciting field of quantum materials.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933–937.
Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420, 800–803.
Schlamp, M. C.; Peng, X. G.; Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 1997, 82, 5837–5842.
Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 2013, 7, 407–412.
Chen, O.; Wei, H.; Maurice, A.; Bawendi, M.; Reiss, P. Pure colors from core-shell quantum dots. MRS Bull. 2013, 38, 696–702.
Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.
Prins, P. T.; Alimoradi Jazi, M.; Killilea, N. A.; Evers, W. H.; Geiregat, P.; Heiss, W.; Houtepen, A. J.; Delerue, C.; Hens, Z.; Vanmaekelbergh, D. The fine-structure constant as a ruler for the band-edge light absorption strength of bulk and quantum-confined semiconductors. Nano Lett. 2021, 21, 9426–9432.
Wagner, A. M.; Knipe, J. M.; Orive, G.; Peppas, N. A. Quantum dots in biomedical applications. Acta Biomater. 2019, 94, 44–63.
Norris, D. J.; Nirmal, M.; Murray, C. B.; Sacra, A.; Bawendi, M. G. Size dependent optical spectroscopy of II-VI semiconductor nanocrystallites (quantum dots). Z. Phys. D Atoms, Molec. Clusters 1993, 26, 355–357.
Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 1939, 56, 317–323.
Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752–761.
Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. J. Chem. Phys. 1997, 106, 9869–9882.
Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.
Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420.
Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2– as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620.
Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.
Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.
Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.
Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.
Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.
Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.
Talapin, D. V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831.
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.
Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 2010, 466, 474–477.
Evers, W. H.; De Nijs, B.; Filion, L.; Castillo, S.; Dijkstra, M.; Vanmaekelbergh, D. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 2010, 10, 4235–4241.
Boneschanscher, M. P.; Evers, W. H.; Geuchies, J. J.; Altantzis, T.; Goris, B.; Rabouw, F. T.; Van Rossum, S. A. P.; Van Der Zant, H. S. J.; Siebbeles, L. D. A.; Van Tendeloo, G. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 2014, 344, 1377–1380.
Geuchies, J. J.; Van Overbeek, C.; Evers, W. H.; Goris, B.; De Backer, A.; Gantapara, A. P.; Rabouw, F. T.; Hilhorst, J.; Peters, J. L.; Konovalov, O. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 2016, 15, 1248–1254.
Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.
Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.
Fedin, I.; Talapin, D. V. Colloidal CdSe quantum rings. J. Am. Chem. Soc. 2016, 138, 9771–9774.
Salzmann, B. B. V.; Vliem, J. F.; Maaskant, D. N.; Post, L. C.; Li, C.; Bals, S.; Vanmaekelbergh, D. From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration. Chem. Mater. 2021, 33, 6853–6859.
Dubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A versatile strategy for quantum dot ligand exchange. J. Am. Chem. Soc. 2007, 129, 482–483.
Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006.
Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.
Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 2015, 27, 4893–4898.
Van Der Stam, W.; Berends, A. C.; Rabouw, F. T.; Willhammar, T.; Ke, X. X.; Meeldijk, J. D.; Bals, S.; De Mello Donega, C. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2– x S nanocrystals. Chem. Mater. 2015, 27, 621–628.
Chang, C. C.; Chen, J. K.; Chen, C. P.; Yang, C. H.; Chang, J. Y. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/ in situ growth approach. ACS Appl. Mater. Interfaces 2013, 5, 11296–11306.
Giansante, C.; Infante, I. Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective. J. Phys. Chem. Lett. 2017, 8, 5209–5215.
Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. “Darker-than-Black” PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 2015, 137, 1875–1886.
Kirkwood, N.; Monchen, J. O. V.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A. C.; Du Fossé, I.; Van Der Stam, W.; Infante, I.; Houtepen, A. J. Finding and fixing traps in II-VI and III-V colloidal quantum dots: The importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712–15723.
Xiao, P. W.; Zhang, Z. F.; Ge, J. J.; Deng, Y. L.; Chen, X. F.; Zhang, J.-R.; Deng, Z. T.; Kambe, Y.; Talapin, D. V.; Wang, Y. Y. Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nat. Commun. 2023, 14, 49.
Bodnarchuk, M. I.; Boehme, S. C.; Ten Brinck, S.; Bernasconi, C.; Shynkarenko, Y.; Krieg, F.; Widmer, R.; Aeschlimann, B.; Günther, D.; Kovalenko, M. V. et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett. 2019, 4, 63–74.
Qi, X. L.; Zhang, S. C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38.
Murakami, S. Quantum spin Hall systems and topological insulators. New J. Phys. 2011, 13, 105007.
Lee, S. S.; Ryu, S. Many-body generalization of the Z2 topological invariant for the quantum spin Hall effect. Phys. Rev. Lett. 2008, 100, 186807.
Raghu, S.; Qi, X. L.; Honerkamp, C.; Zhang, S. C. Topological Mott insulators. Phys. Rev. Lett. 2008, 100, 156401.
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.
Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.
Felser, C.; Qi, X. L. Topological insulators. MRS Bull. 2014, 39, 843–846.
Dolcetto, G.; Sassetti, M.; Schmidt, T. L. Edge physics in two-dimensional topological insulators. La Rivista del Nuovo Cimento 2016, 39, 113–154.
Rachel, S. Interacting topological insulators: A review. Rep. Prog. Phys. 2018, 81, 116501.
Bradlyn, B.; Elcoro, L.; Cano, J.; Vergniory, M. G.; Wang, Z. J.; Felser, C.; Aroyo, M. I.; Bernevig, B. A. Topological quantum chemistry. Nature 2017, 547, 298–305.
Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.
Fu, L.; Kane, C. L.; Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803.
Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.
Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970–974.
Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J. G.; Yazdani, A.; Hasan, M. Z.; Ong, N. P.; Cava, R. J. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 195208.
Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 195322.
Moore, J. E.; Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 121306.
Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.
Kane, C. L.; Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802.
Zhang, F.; Kane, C. L.; Mele, E. J. Surface states of topological insulators. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 081303.
Moes, J. R.; Vliem, J. F.; De Melo, P. M. M. C.; Wigmans, T. C.; Botello-Méndez, A. R.; Mendes, R. G.; Van Brenk, E. F.; Swart, I.; Maisel Licerán, L.; Stoof, H. T. C. et al. Characterization of the edge states in colloidal Bi2Se3 platelets. Nano Lett. 2024, 24, 5110–5116.
Avron, J. E.; Osadchy, D.; Seiler, R. A topological look at the quantum Hall effect. Phys. Today 2003, 56, 38–42.
Klitzing, K. v.; Chakraborty, T.; Kim, P.; Madhavan, V.; Dai, X.; McIver, J.; Tokura, Y.; Savary, L.; Smirnova, D.; Rey, A. M. et al. 40 years of the quantum Hall effect. Nat. Rev. Phys. 2020, 2, 397–401.
Keimer, B.; Moore, J. E. The physics of quantum materials. Nat. Phys. 2017, 13, 1045–1055.
Konig, M.; Wiedmann, S.; Brune, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.
Brüne, C.; Liu, C. X.; Novik, E. G.; Hankiewicz, E. M.; Buhmann, H.; Chen, Y. L.; Qi, X. L.; Shen, Z. X.; Zhang, S. C.; Molenkamp, L. W. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 2011, 106, 126803.
Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802.
Ando, Y.; Fu, L. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys. 2015, 6, 361–381.
Ozawa, H.; Yamakage, A.; Sato, M.; Tanaka, Y. Topological phase transition in a topological crystalline insulator induced by finite-size effects. Phys. Rev. B 2014, 90, 045309.
Isobe, H.; Fu, L. Theory of interacting topological crystalline insulators. Phys. Rev. B 2015, 92, 081304.
Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.
Freeney, S. E.; Van Den Broeke, J. J.; Harsveld Van Der Veen, A. J. J.; Swart, I.; Morais Smith, C. Edge-dependent topology in Kekulé lattices. Phys. Rev. Lett. 2020, 124, 236404.
Safaei, S.; Galicka, M.; Kacman, P.; Buczko, R. Quantum spin Hall effect in IV-VI topological crystalline insulators. New J. Phys. 2015, 17, 063041.
Zeljkovic, I.; Okada, Y.; Serbyn, M.; Sankar, R.; Walkup, D.; Zhou, W. W.; Liu, J. W.; Chang, G. Q.; Wang, Y. J.; Hasan, M. Z. et al. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 2015, 14, 318–324.
Eremeev, S. V.; Koroteev, Y. M.; Nechaev, I. A.; Chulkov, E. V. Role of surface passivation in the formation of Dirac states at polar surfaces of topological crystalline insulators: The case of SnTe(111). Phys. Rev. B 2014, 89, 165424.
Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800–803.
Tanaka, Y.; Shoman, T.; Nakayama, K.; Souma, S.; Sato, T.; Takahashi, T.; Novak, M.; Segawa, K.; Ando, Y. Two types of Dirac-cone surface states on the (111) surface of the topological crystalline insulator SnTe. Phys. Rev. B 2013, 88, 235126.
Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H. et al. Topological crystalline insulator states in Pb1– x Sn x Se. Nat. Mater. 2012, 11, 1023–1027.
Xu, S. Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1– x Sn x Te. Nat. Commun. 2012, 3, 1192.
Liu, J. W.; Hsieh, T. H.; Wei, P.; Duan, W. H.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 2014, 13, 178–183.
Tanaka, Y.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Ren, Z.; Novak, M.; Segawa, K.; Ando, Y. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1– x Sn x Te. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 155105.
Polley, C. M.; Dziawa, P.; Reszka, A.; Szczerbakow, A.; Minikayev, R.; Domagala, J. Z.; Safaei, S.; Kacman, P.; Buczko, R.; Adell, J. et al. Observation of topological crystalline insulator surface states on (111)-oriented Pb1– x Sn x Se films. Phys. Rev. B 2014, 89, 075317.
Tikuišis, K. K.; Wyzula, J.; Ohnoutek, L.; Cejpek, P.; Uhlířová, K.; Hakl, M.; Faugeras, C.; Výborný, K.; Ishida, A.; Veis, M. et al. Landau level spectroscopy of the PbSnSe topological crystalline insulator. Phys. Rev. B 2021, 103, 155304.
Wojek, B. M.; Dziawa, P.; Kowalski, B. J.; Szczerbakow, A.; Black-Schaffer, A. M.; Berntsen, M. H.; Balasubramanian, T.; Story, T.; Tjernberg, O. Band inversion and the topological phase transition in (Pb, Sn) Se. Phys. Rev. B 2014, 90, 161202.
Sessi, P.; Di Sante, D.; Szczerbakow, A.; Glott, F.; Wilfert, S.; Schmidt, H.; Bathon, T.; Dziawa, P.; Greiter, M.; Neupert, T. et al. Robust spin-polarized midgap states at step edges of topological crystalline insulators. Science 2016, 354, 1269–1273.
Rogacheva, E. I.; Nikolaenko, G. O.; Nashchekina, O. N. Transport and thermoelectric properties of the Pb1– x Sn x Te topological crystalline insulator in the vicinity of the band inversion. J. Phys. Chem. Solids 2023, 183, 111635.
Gilbert, M. J. Topological electronics. Commun. Phys. 2021, 4, 70.
Butch, N. P.; Kirshenbaum, K.; Syers, P.; Sushkov, A. B.; Jenkins, G. S.; Drew, H. D.; Paglione, J. Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 241301.
Bauer, C.; Lesyuk, R.; Khoshkhoo, M. S.; Klinke, C.; Lesnyak, V.; Eychmüller, A. Surface defines the properties: Colloidal Bi2Se3 nanosheets with high electrical conductivity. J. Phys. Chem. C 2021, 125, 6442–6448.
Veyrat, L.; Iacovella, F.; Dufouleur, J.; Nowka, C.; Funke, H.; Yang, M.; Escoffier, W.; Goiran, M.; Eichler, B.; Schmidt, O. G. et al. Band bending inversion in Bi2Se3 nanostructures. Nano Lett. 2015, 15, 7503–7507.
Navrátil, J.; Horák, J.; Plecháček, T.; Kamba, S.; Lošt’ák, P.; Dyck, J. S.; Chen, W.; Uher, C. Conduction band splitting and transport properties of Bi2Se3. J. Solid State Chem. 2004, 177, 1704–1712.
Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.
Walsh, L. A.; Green, A. J.; Addou, R.; Nolting, W.; Cormier, C. R.; Barton, A. T.; Mowll, T. R.; Yue, R. Y.; Lu, N.; Kim, J. et al. Fermi level manipulation through native doping in the topological insulator Bi2Se3. ACS Nano 2018, 12, 6310–6318.
Musah, J. D.; Linlin, L.; Guo, C.; Novitskii, A.; Ilyas, A. O.; Serhiienko, I.; Khovaylo, V.; Roy, V. A. L.; Lawrence Wu, C. M. Enhanced thermoelectric performance of bulk bismuth selenide: Synergistic effect of indium and antimony co-doping. ACS Sustain. Chem. Eng. 2022, 10, 3862–3871.
Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 2010, 10, 5032–5036.
Xiu, F.; He, L.; Wang, Y.; Cheng, L. N.; Chang, L. T.; Lang, M. R.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W. et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotech. 2011, 6, 216–221.
Kim, D.; Cho, S.; Butch, N. P.; Syers, P.; Kirshenbaum, K.; Adam, S.; Paglione, J.; Fuhrer, M. S. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 2012, 8, 459–463.
Hong, S. S.; Cha, J. J.; Kong, D. S.; Cui, Y. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons. Nat. Commun. 2012, 3, 757.
Maassen, J.; Lundstrom, M. A computational study of the thermoelectric performance of ultrathin Bi2Te3 films. Appl. Phys. Lett. 2013, 102, 093103.
Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3. Nano Lett. 2014, 14, 1701–1706.
Liang, J. H.; Cheng, L.; Zhang, J.; Liu, H. J.; Zhang, Z. Y. Maximizing the thermoelectric performance of topological insulator Bi2Te3 films in the few-quintuple layer regime. Nanoscale 2016, 8, 8855–8862.
He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.
Zhang, J. S.; Feng, X.; Xu, Y.; Guo, M. H.; Zhang, Z. C.; Ou, Y. B.; Feng, Y.; Li, K.; Zhang, H. J.; Wang, L. L. et al. Disentangling the magnetoelectric and thermoelectric transport in topological insulator thin films. Phys. Rev. B 2015, 91, 075431.
Xu, Y.; Gan, Z. X.; Zhang, S. C. Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators. Phys. Rev. Lett. 2014, 112, 226801.
Bauer, C.; Veremchuk, I.; Kunze, C.; Benad, A.; Dzhagan, V. M.; Haubold, D.; Pohl, D.; Schierning, G.; Nielsch, K.; Lesnyak, V. et al. Heterostructured bismuth telluride selenide nanosheets for enhanced thermoelectric performance. Small Sci. 2021, 1, 2000021.
Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.
Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.
Ghaemi, P.; Mong, R. S. K.; Moore, J. E. In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3. Phys. Rev. Lett. 2010, 105, 166603.
Toriyama, M. Y.; Snyder, G. J. Are topological insulators promising thermoelectrics. Mater. Horiz. 2024, 11, 1188–1198.
Linder, J.; Yokoyama, T.; Sudbø, A. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 205401.
Roth, A.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.; Maciejko, J.; Qi, X. L.; Zhang, S. C. Nonlocal transport in the quantum spin Hall state. Science 2009, 325, 294–297.
Fu, L.; Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 2008, 100, 096407.
Schmitt, T. W.; Connolly, M. R.; Schleenvoigt, M.; Liu, C. L.; Kennedy, O.; Chávez-Garcia, J. M.; Jalil, A. R.; Bennemann, B.; Trellenkamp, S.; Lentz, F. et al. Integration of topological insulator Josephson junctions in superconducting qubit circuits. Nano Lett. 2022, 22, 2595–2602.
Sun, H. H.; Jia, J. F. Detection of Majorana zero mode in the vortex. npj Quantum Mater. 2017, 2, 34.
Wiedenmann, J.; Bocquillon, E.; Deacon, R. S.; Hartinger, S.; Herrmann, O.; Klapwijk, T. M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C. et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 2016, 7, 10303.
Schüffelgen, P.; Rosenbach, D.; Li, C.; Schmitt, T. W.; Schleenvoigt, M.; Jalil, A. R.; Schmitt, S.; Kölzer, J.; Wang, M.; Bennemann, B. et al. Selective area growth and stencil lithography for in situ fabricated quantum devices. Nat. Nanotechnol. 2019, 14, 825–831.
Sarma, S. D.; Freedman, M.; Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 2015, 1, 15001.
Xu, J. P.; Wang, M. X.; Liu, Z. L.; Ge, J. F.; Yang, X. J.; Liu, C. H.; Xu, Z. A.; Guan, D. D.; Gao, C. L.; Qian, D. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 2015, 114, 017001.
Flötotto, D.; Ota, Y.; Bai, Y.; Zhang, C.; Okazaki, K.; Tsuzuki, A.; Hashimoto, T.; Eckstein, J. N.; Shin, S.; Chiang, T. C. Superconducting pairing of topological surface states in bismuth selenide films on niobium. Sci. Adv. 2018, 4, eaar7214.
Wang, M. X.; Liu, C. H.; Xu, J. P.; Yang, F.; Miao, L.; Yao, M. Y.; Gao, C. L.; Shen, C. Y.; Ma, X. C.; Chen, X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 2012, 336, 52–55.
Hsieh, D.; Wray, L.; Qian, D.; Xia, Y.; Dil, J. H.; Meier, F.; Patthey, L.; Osterwalder, J.; Bihlmayer, G.; Hor, Y. S. et al. Direct observation of spin-polarized surface states in the parent compound of a topological insulator using spin- and angle-resolved photoemission spectroscopy in a Mott-polarimetry mode. New J. Phys. 2010, 12, 125001.
Hasan, M. Z.; Moore, J. E. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys. 2011, 2, 55–78.
Neupane, M.; Richardella, A.; Sánchez-Barriga, J.; Xu, S. Y.; Alidoust, N.; Belopolski, I.; Liu, C.; Bian, G.; Zhang, D. M.; Marchenko, D. et al. Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films. Nat. Commun. 2014, 5, 3841.
Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290.
Lüpke, F.; Just, S.; Eschbach, M.; Heider, T.; Młyńczak, E.; Lanius, M.; Schüffelgen, P.; Rosenbach, D.; Von Den Driesch, N.; Cherepanov, V. et al. In situ disentangling surface state transport channels of a topological insulator thin film by gating. npj Quantum Mater. 2018, 3, 46.
Leis, A.; Schleenvoigt, M.; Cherepanov, V.; Lüpke, F.; Schüffelgen, P.; Mussler, G.; Grützmacher, D.; Voigtländer, B.; Tautz, F. S. Lifting the spin-momentum locking in ultra-thin topological insulator films. Adv. Quantum Technol. 2021, 4, 2100083.
Leis, A.; Schleenvoigt, M.; Moors, K.; Soltner, H.; Cherepanov, V.; Schüffelgen, P.; Mussler, G.; Grützmacher, D.; Voigtländer, B.; Lüpke, F. et al. Probing edge state conductance in ultra-thin topological insulator films. Adv. Quantum Technol. 2022, 5, 2200043.
Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.
Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414.
Harpeness, R.; Gedanken, A. Microwave-assisted synthesis of nanosized Bi2Se3. New J. Chem. 2003, 27, 1191–1193.
Hu, P. F.; Cao, Y. L.; Jia, D. Z.; Wang, L. X. Selective synthesis of Bi2Se3 nanostructures by solvothermal reaction. Mater. Lett. 2010, 64, 493–496.
Kadel, K.; Kumari, L.; Li, W. Z.; Huang, J. Y.; Provencio, P. P. Synthesis and thermoelectric properties of Bi2Se3 nanostructures. Nanoscale Res. Lett. 2011, 6, 57.
Wei, T. X.; Zhang, Y.; Dong, W. J.; Huang, C. Y.; Sun, Y.; Chen, X.; Dai, N. A solution synthetic route toward Bi2Se3 layered nanostructures with tunable thickness via weakening precursor reactivity. Phys. Status Solidi A 2013, 210, 1909–1913.
Park, Y. S.; Lee, J. S. Synthesis of single-crystalline topological insulator Bi2Se3 nanomaterials with various morphologies. J. Nanoparticle Res. 2014, 16, 2226.
Xu, H. M.; Chen, G.; Jin, R. C.; Chen, D. H.; Wang, Y.; Pei, J.; Zhang, Y. Q.; Yan, C. S.; Qiu, Z. Z. Microwave-assisted synthesis of Bi2Se3 ultrathin nanosheets and its electrical conductivities. CrystEngComm, 2014, 16, 3965–3970.
Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J. W.; Kim, S. I.; Lee, K. H.; Jeong, U. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 2015, 9, 6843–6853.
Buchenau, S.; Akinsinde, L. O.; Zocher, M.; Rukser, D.; Schürmann, U.; Kienle, L.; Grimm-Lebsanft, B.; Rübhausen, M. Scalable polyol synthesis for few quintuple layer thin and ultra high aspect ratio Bi2Se3 structures. Solid State Commun. 2018, 281, 49–52.
Pradhan, B.; Dalui, A.; Paul, S.; Roy, D.; Acharya, S. Solution phase synthesis of large-area ultra-thin two dimensional layered Bi2Se3: Role of Cu-intercalation and substitution. Mater. Res. Express 2020, 6, 124005.
Masood, K. B.; Kumar, P.; Giri, R.; Singh, J. Controlled synthesis of two-dimensional (2D) ultra-thin bismuth selenide (Bi2Se3) nanosheets by bottom-up solution-phase chemistry and its electrical transport properties for thermoelectric application. FlatChem 2020, 21, 100165.
Samanta, M.; Biswas, K. 2D nanosheets of topological quantum materials from homologous (Bi2) m (Bi2Se3) n heterostructures: Synthesis and ultralow thermal conductivity. Chem. Mater. 2020, 32, 8819–8826.
Maiti, P. S.; Ghosh, S.; Leitus, G.; Houben, L.; Bar Sadan, M. Oriented attachment of 2D nanosheets: The case of few-layer Bi2Se3. Chem. Mater. 2021, 33, 7558–7565.
Mazumder, K.; Shirage, P. M. A brief review of Bi2Se3 based topological insulator: From fundamentals to applications. J. Alloys Compd. 2021, 888, 161492.
Jurczyszyn, M.; Sikora, M.; Chrobak, M.; Jurczyszyn, L. Studies of surface states in Bi2Se3 induced by the BiSe substitution in the crystal subsurface structure. Appl. Surf. Sci. 2020, 58, 146978.
Wang, Y. L.; Jiang, Y. P.; Chen, M.; Li, Z.; Song, C. L.; Wang, L. L.; He, K.; Chen, X.; Ma, X. C.; Xue, Q. K. Scanning tunneling microscopy of interface properties of Bi2Se3 on FeSe. J. Phys.: Condens. Matter 2012, 24, 475604.
Zhang, T.; Levy, N.; Ha, J.; Kuk, Y.; Stroscio, J. A. Scanning tunneling microscopy of gate tunable topological insulator Bi2Se3 thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 115410.
Stroscio, J. A.; Feenstra, R. M.; Fein, A. P. Electronic structure of the Si(111)2×1 surface by scanning-tunneling microscopy. Phys. Rev. Lett. 1986, 57, 2579–2582.
Li, T. X.; Wang, P. J.; Fu, H. L.; Du, L. J.; Schreiber, K. A.; Mu, X. Y.; Liu, X. X.; Sullivan, G.; Csáthy, G. A.; Lin, X. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 2015, 115, 136804.
Zhang, S. B.; Zhang, Y. Y.; Shen, S. Q. Robustness of quantum spin Hall effect in an external magnetic field. Phys. Rev. B 2014, 90, 115305.
Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.
Knez, I.; Rettner, C. T.; Yang, S. H.; Parkin, S. S. P.; Du, L. J.; Du, R. R.; Sullivan, G. Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells. Phys. Rev. Lett. 2014, 112, 026602.
Du, L. J.; Knez, I.; Sullivan, G.; Du, R. R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 2015, 114, 096802.
Jäck, B.; Xie, Y. L.; Andrei Bernevig, B.; Yazdani, A. Observation of backscattering induced by magnetism in a topological edge state. Proc. Natl. Acad. Sci. USA. 2020, 117, 16214–16218.
Song, C. L.; Wang, L. L.; He, K.; Ji, S. H.; Chen, X.; Ma, X. C.; Xue, Q. K. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope. Phys. Rev. Lett. 2015, 114, 176602.
Wang, J.; DaSilva, A. M.; Chang, C. Z.; He, K.; Jain, J. K.; Samarth, N.; Ma, X. C.; Xue, Q. K.; Chan, M. H. W. Evidence for electron–electron interaction in topological insulator thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 245438.
Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.
Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1424–1424.
Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.
Zhang, G. Q.; Wang, W.; Lu, X. L.; Li, X. G. Solvothermal synthesis of V-VI binary and ternary hexagonal platelets: The oriented attachment mechanism. Cryst. Growth Des. 2009, 9, 145–150.
Zeljkovic, I.; Okada, Y.; Huang, C. Y.; Sankar, R.; Walkup, D.; Zhou, W. W.; Serbyn, M.; Chou, F. C.; Tsai, W. F.; Lin, H. et al. Mapping the unconventional orbital texture in topological crystalline insulators. Nat. Phys. 2014, 10, 572–577.
Guo, H.; Yan, C. H.; Liu, J. W.; Wang, Z. Y.; Wu, R.; Zhang, Z. D.; Wang, L. L.; He, K.; Ma, X. C.; Ji, S. H. et al. Topological crystalline insulator Pb x Sn1– x Te thin films on SrTiO3(001) with tunable Fermi levels. APL Mater. 2014, 2, 056106.
Pletikosić, I.; Gu, G. D.; Valla, T. Inducing a Lifshitz transition by extrinsic doping of surface bands in the topological crystalline insulator Pb1– x Sn x Se. Phys. Rev. Lett. 2014, 112, 146403.
Zhang, D. M.; Baek, H.; Ha, J.; Zhang, T.; Wyrick, J.; Davydov, A. V.; Kuk, Y.; Stroscio, J. A. Quasiparticle scattering from topological crystalline insulator SnTe(001) surface states. Phys. Rev. B 2014, 89, 245445.
Safdar, M.; Wang, Q. S.; Wang, Z. X.; Zhan, X. Y.; Xu, K.; Wang, F. M.; Mirza, M.; He, J. Weak antilocalization effect of topological crystalline insulator Pb1– x Sn x Te nanowires with tunable composition and distinct {100} facets. Nano Lett. 2015, 15, 2485–2490.
Yan, C. H.; Liu, J. W.; Zang, Y. Y.; Wang, J. F.; Wang, Z. Y.; Wang, P.; Zhang, Z. D.; Wang, L. L.; Ma, X. C.; Ji, S. H. et al. Experimental observation of Dirac-like surface states and topological phase transition in Pb1– x Sn x Te(111) films. Phys. Rev. Lett. 2014, 112, 186801.
Neupane, M.; Xu, S. Y.; Sankar, R.; Gibson, Q.; Wang, Y. J.; Belopolski, I.; Alidoust, N.; Bian, G.; Shibayev, P. P.; Sanchez, D. S. et al. Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator. Phys. Rev. B 2015, 92, 075131.
Assaf, B. A.; Phuphachong, T.; Volobuev, V. V.; Inhofer, A.; Bauer, G.; Springholz, G.; De Vaulchier, L. A.; Guldner, Y. Massive and massless Dirac fermions in Pb1– x Sn x Te topological crystalline insulator probed by magneto-optical absorption. Sci. Rep. 2016, 6, 20323.
Wang, Y.; Luo, G. Y.; Liu, J. W.; Sankar, R.; Wang, N. L.; Chou, F. C.; Fu, L.; Li, Z. Q. Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy. Nat. Commun. 2017, 8, 366.
Krizman, G.; Assaf, B. A.; Phuphachong, T.; Bauer, G.; Springholz, G.; Bastard, G.; Ferreira, R.; De Vaulchier, L. A.; Guldner, Y. Tunable Dirac interface states in topological superlattices. Phys. Rev. B 2018, 98, 075303.
Turowski, B.; Kazakov, A.; Rudniewski, R.; Sobol, T.; Partyka-Jankowska, E.; Wojciechowski, T.; Aleszkiewicz, M.; Zaleszczyk, W.; Szczepanik, M.; Wojtowicz, T. et al. Spin-polarization of topological crystalline and normal insulator Pb1– x Sn x Se(111) epilayers probed by photoelectron spectroscopy. Appl. Surf. Sci. 2023, 610, 155434.
Wang, J. S.; Liu, X. Y.; Wang, T. Y.; Ozerov, M.; Assaf, B. A. g factor of topological interface states in Pb1– x Sn x Se quantum wells. Phys. Rev. B 2023, 107, 155307.
Brzezicki, W.; Wysokiński, M. M.; Hyart, T. Topological properties of multilayers and surface steps in the SnTe material class. Phys. Rev. B 2019, 100, 121107.
Du, H.; Chen, C. A. L.; Krishnan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2002, 2, 1321–1324.
Wehrenberg, B. L.; Wang, C. J.; Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 2002, 106, 10634–10640.
Schaller, R. D.; Petruska, M. A.; Klimov, V. I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. B 2003, 107, 13765–13768.
Allan, G.; Delerue, C. Confinement effects in PbSe quantum wells and nanocrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 245321.
Hens, Z.; Vanmaekelbergh, D.; Kooij, E. S.; Wormeester, H.; Allan, G.; Delerue, C. Effect of quantum confinement on the dielectric function of PbSe. Phys. Rev. Lett. 2004, 92, 026808.
Liljeroth, P.; Van Emmichoven, P. A. Z.; Hickey, S. G.; Weller, H.; Grandidier, B.; Allan, G.; Vanmaekelbergh, D. Density of states measured by scanning-tunneling spectroscopy sheds new light on the optical transitions in PbSe nanocrystals. Phys. Rev. Lett. 2005, 95, 086801.
Koole, R.; Allan, G.; Delerue, C.; Meijerink, A.; Vanmaekelbergh, D.; Houtepen, A. J. Optical investigation of quantum confinement in PbSe nanocrystals at different points in the Brillouin zone. Small 2008, 4, 127–133.
Petkov, V.; Moreels, I.; Hens, Z.; Ren, Y. PbSe quantum dots: Finite, off-stoichiometric, and structurally distorted. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 241304.
Peters, J. L.; Van Den Bos, K. H. W.; Van Aert, S.; Goris, B.; Bals, S.; Vanmaekelbergh, D. Ligand-induced shape transformation of PbSe nanocrystals. Chem. Mater. 2017, 29, 4122–4128.
Evers, W. H.; Goris, B.; Bals, S.; Casavola, M.; De Graaf, J.; Van Roij, R.; Dijkstra, M.; Vanmaekelbergh, D. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 2013, 13, 2317–2323.
Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C. R. O. L. N.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 2019, 5, 5623.
Whitham, K.; Smilgies, D. M.; Hanrath, T. Entropic, enthalpic, and kinetic aspects of interfacial nanocrystal superlattice assembly and attachment. Chem. Mater. 2018, 30, 54–63.
McCray, A. R. C.; Savitzky, B. H.; Whitham, K.; Hanrath, T.; Kourkoutis, L. F. Orientational disorder in epitaxially connected quantum dot solids. ACS Nano 2019, 13, 11460–11468.
Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15, 557–563.
Salzmann, B. B. V.; Van Der Sluijs, M. M.; Soligno, G.; Vanmaekelbergh, D. Oriented attachment: From natural crystal growth to a materials engineering tool. Acc. Chem. Res. 2021, 54, 787–797.
Yalcin, A. O.; Fan, Z. C.; Goris, B.; Li, W. F.; Koster, R. S.; Fang, C. M.; Van Blaaderen, A.; Casavola, M.; Tichelaar, F. D.; Bals, S. et al. Atomic resolution monitoring of cation exchange in CdSe–PbSe heteronanocrystals during epitaxial solid-solid-vapor growth. Nano Lett. 2014, 14, 3661–3667.
Son, D. H.; Hughes, S. M.; Yin, Y. D.; Paul Alivisatos, A. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.
Lambert, K.; Geyter, B. D.; Moreels, I.; Hens, Z. PbTe–CdTe core–shell particles by cation exchange, a HR-TEM study. Chem. Mater. 2009, 21, 778–780.
Li, H. B.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini, C.; Manna, L. Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Lett. 2011, 11, 4964–4970.
Bouet, C.; Laufer, D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Patriarche, G.; Dubertret, B. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chem. Mater. 2014, 26, 3002–3008.
Justo, Y.; Sagar, L. K.; Flamee, S.; Zhao, Q.; Vantomme, A.; Hens, Z. Less is more. Cation exchange and the chemistry of the nanocrystal surface. ACS Nano 2014, 8, 7948–7957.
Meir, N.; Martín-García, B.; Moreels, I.; Oron, D. Revisiting the anion framework conservation in cation exchange processes. Chem. Mater. 2016, 28, 7872–7877.
Makké, L.; Fu, N. Y.; Lehouelleur, H.; Po, H.; Dabard, C.; Curti, L.; Bossavit, E.; Xu, X. Z.; Patriarche, G.; Pierucci, D. et al. Impact of the surface chemistry of 2D nanoplatelets on cation exchange. Chem. Mater. 2023, 35, 9581–9590.
Lannoo, M.; Prins, P. T.; Hens, Z.; Vanmaekelbergh, D.; Delerue, C. Universality of optical absorptance quantization in two-dimensional group-IV, III-V, II-VI, and IV-VI semiconductors. Phys. Rev. B 2022, 105, 035421.
Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030.
Kang, I.; Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B, 1997, 14, 1632–1646.
Wise, F. W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780.
Beard, M. C.; Luther, J. M.; Semonin, O. E.; Nozik, A. J. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc. Chem. Res. 2013, 46, 1252–1260.
Gao, J. B.; Jeong, S.; Lin, F.; Erslev, P. T.; Semonin, O. E.; Luther, J. M.; Beard, M. C. Improvement in carrier transport properties by mild thermal annealing of PbS quantum dot solar cells. Appl. Phys. Lett. 2013, 102, 043506.
Beard, M. C.; Luther, J. M.; Nozik, A. J. The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 2014, 9, 951–954.
Drüppel, M.; Krüger, P.; Rohlfing, M. Strain tuning of Dirac states at the SnTe (001) surface. Phys. Rev. B 2014, 90, 155312.
Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des. 2014, 14, 2502–2509.
Shen, J.; Jung, Y.; Disa, A. S.; Walker, F. J.; Ahn, C. H.; Cha, J. J. Synthesis of SnTe nanoplates with {100} and {111} surfaces. Nano Lett. 2014, 14, 4183–4188.
Schapotschnikow, P.; Van Huis, M. A.; Zandbergen, H. W.; Vanmaekelbergh, D.; Vlugt, T. J. H. Morphological transformations and fusion of PbSe nanocrystals studied using atomistic simulations. Nano Lett. 2010, 10, 3966–3971.
Kazakov, A.; Brzezicki, W.; Hyart, T.; Turowski, B.; Polaczyński, J.; Adamus, Z.; Aleszkiewicz, M.; Wojciechowski, T.; Domagala, J. Z.; Caha, O. et al. Signatures of dephasing by mirror-symmetry breaking in weak-antilocalization magnetoresistance across the topological transition in Pb1– x Sn x Se. Phys. Rev. B 2021, 103, 245307.
He, F. G.; Klein, E.; Bartling, S.; Saeidpour, S.; Corzilius, B.; Lesyuk, R.; Klinke, C. Template-mediated formation of colloidal two-dimensional tin telluride nanosheets and the role of the ligands. J. Phys. Chem. C 2022, 126, 20498–20504.
Li, F.; Fu, J. C.; Torche, A.; Kull, S.; Kornowski, A.; Lesyuk, R.; Bester, G.; Klinke, C. Single-crystalline colloidal quasi-2D tin telluride. Adv. Mater. Interfaces 2020, 7, 2000410.
Wang, Q. S.; Wang, F.; Li, J.; Wang, Z. X.; Zhan, X. Y.; He, J. Low-dimensional topological crystalline insulators. Small 2015, 11, 4613–4624.
Liu, P. Z.; Williams, J. R.; Cha, J. J. Topological nanomaterials. Nat. Rev. Mater. 2019, 4, 479–496.
Liu, C. W.; Wang, Z. H.; Qiu, R. L. J.; Gao, X. P. A. Development of topological insulator and topological crystalline insulator nanostructures. Nanotechnology 2020, 31, 192001.
Arachchige, I. U.; Kanatzidis, M. G. Anomalous band gap evolution from band inversion in Pb1– x Sn xTe nanocrystals. Nano Lett. 2009, 9, 1583–1587.
Wei, H.; Chen, S. Z.; Ren, X. L.; Qian, B. J.; Su, Y. J.; Yang, Z.; Zhang, Y. F. Band gap tunable Sn-doped PbSe nanocrystals: Solvothermal synthesis and first-principles calculations. CrystEngComm 2012, 14, 7408–7414.
Vinoth, S.; Karthikeyan, V.; Roy, V. A. L.; Srinivasan, B.; Thilakan, P. Bismuth telluride (Bi2Te3) nanocrystallites: Studies on growth morphology and its influence on the thermoelectric properties. J. Cryst. Growth 2023, 606, 127087.
435
Views
59
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
Copyright: © 2024 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.