AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

CsPbI2Br epitaxial shell for efficient PbS quantum dot solar cells

Sami Ur Rahman1Yong-Hui Song2Zhen-Yu Ma2Xiao-Lin Tai2Bai-Sheng Zhu 2Yi-Chen Yin2Li-Zhe Feng 2Jing-Ming Hao2Guan-Jie Ding 2Kuang-Hui Song2Ya-Lan Hu2Tieqiang Li3Jixian Xu3Hong-Bin Yao1,2( )
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Lead sulfide quantum dots (PbS QDs) are promising candidates for high-performance solar cells due to their tunable bandgaps and low-cost solution processing. However, low carrier mobility and numerous surface defects restrict the performance of the fabricated solar cells. Herein, we report the synthesis of novel PbS-perovskite core-shell QDs to solve the low carrier mobility problem of PbS QDs via a facile hot injection method. CsPbI2Br shell enabled strain-free epitaxial growth on the surface of PbS QDs because of 98% lattice match. Our results demonstrate a significant improvement in the photoluminescence and stability of the synthesized PbS-CsPbI2Br QDs upon shell formation, attributed to the effective suppression of surface defects by the epitaxial shell of CsPbI2Br. As a result, the obtained solar cell based on PbS-CsPbI2Br core-shell QD exhibits a power conversion efficiency (PCE) of 8.43%, two times higher than that of pristine PbS QDs. Overall, the construction of PbS-CsPbI2Br core-shell structures represent a promising strategy for advancing the performance of PbS QDs-based optoelectronic devices.

Electronic Supplementary Material

Download File(s)
6988_ESM.pdf (8.8 MB)

References

[1]

Zhou, R.; Xu, J.; Luo, P. F.; Hu, L. H.; Pan, X.; Xu, J. Z.; Jiang, Y.; Wang, L. Z. Near-infrared photoactive semiconductor quantum dots for solar cells. Adv. EnergyMater. 2021, 11, 2101923.

[2]

Choi, M. J.; García de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.;Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

[3]

Yang, Y. G.; Wang, D. D.; Li, Y. S.; Xia, J.; Wei, H. Y.; Ding, C.; Hu, Y. Y.; Wei, Y. Y.; Li, H.; Liu, D. et al. In situ room-temperature synthesis of all-colloidal quantum dot CsPbBr3-PbS heterostructures. ACS Photonics 2023, 10, 4305–4314.

[4]

Zhang, J. B.; Gao, J. B.; Miller, E. M.; Luther, J. M.; Beard, M. C. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614–622.

[5]

Yang, X. Y.; Ren, F. Q.; Wang, Y.; Ding, T.; Sun, H. D.; Ma, D. L.; Sun, X. W. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Sci. Rep. 2017, 7, 14741.

[6]

Shen, W. S.; Liu, Y.; Grater, L.; Park, S. M.; Wan, H. Y.; Yu, Y. J.; Pan, J. L.; Kong, F. C.; Tian, Q. S.; Zhou, D. Y. et al. Thickness-variation-insensitive near-infrared quantum dot LEDs. Sci. Bull. 2023, 68, 2954–2961.

[7]

Khalaf, G. M. G.; Li, M. Y.; Yan, J.; Zhao, X. Z.; Ma, T. J.; Hsu, H. Y.; Song, H. S. PbS colloidal quantum dots infrared solar cells: Defect information and passivation strategies. SmallSci. 2023, 3, 2300062.

[8]

Yu, Y. T.; Ma, T. Y.; Huang, H. W. Semiconducting quantum dots for energy conversion and storage. Adv. Funct. Mater. 2023, 33, 2213770.

[9]

Zhang, C. X.; Han, D.; Zhang, X. Y. PbS colloidal quantum dots: Ligand exchange in solution. Coatings 2024, 14, 761.

[10]

Konstantatos, G.; Huang, C.; Levina, L.; Lu, Z.; Sargent, E. H. Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Funct. Mater. 2005, 15, 1865–1869.

[11]

Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 2002, 295, 1506–1508.

[12]

Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.

[13]

Li, D.; Zhang, X. L.; Ramzan, M.; Gu, K.; Chen, Y.; Zhang, J. T.; Zou, B. S.; Zhong, H. Z. Colloidal synthesis of giant shell PbSe-based core/shell quantum dots in polar solvent: Cation exchange versus epitaxial growth. Chem. Mater. 2020, 32, 6650–6656.

[14]

Wang, H.; Loi, M. A. Quantum dots solar cells. PhotovoltaicSol.Energy 2024, 2, 217.

[15]

Liu, M.X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

[16]

Ning, Z. J.; Gong, X. W.; Comin, R.; Walters, G.; Fan, F. J.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E. H. Quantum-dot-in-perovskite solids. Nature 2015, 523, 324–328.

[17]

Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y. B.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C. Q.; Yang, Z. Y.; Saidaminov, M. I. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photonics 2020, 14, 227–233.

[18]

Liu, Y.; Dong, Y. T.; Zhu, T.; Ma, D. X.; Proppe, A.; Chen, B.; Zheng, C.; Hou, Y.; Lee, S.; Sun, B. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 2021, 143, 15606–15615.

[19]

Yang, J. N.; Chen, T.; Ge, J.; Wang, J. J.; Yin, Y. C.; Lan, Y. F.; Ru, X. C.; Ma, Z. Y.; Zhang, Q.; Yao, H. B. High color purity and efficient green light-emitting diode using perovskite nanocrystals with the size overly exceeding bohr exciton diameter. J. Am. Chem. Soc. 2021, 143, 19928–19937.

[20]

Li, H. Z.; Lu, W. W.; Zhao, G. L.; Song, B.; Dong, W. X.; Han, G. R. Evolution and mechanism of cesium lead bromide nanostructures in oleylamine-rich system by hot-injection method. Adv. Mater. Interfaces 2023, 10, 2201916.

[21]

Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J. et al. Potassium bromide surface passivation on CsPbI3- x Br x nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 2956–2967.

[22]

Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079.

[23]

Meng, X. C.; Hu, X. T.; Zhang, Y. Y.; Huang, Z. Q.; Xing, Z.; Gong, C. X.; Rao, L.; Wang, H. Y.; Wang, F. Y.; Hu, T. et al. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 2021, 31, 2106460.

[24]

Guo, R. J.; Han, D.; Chen, W.; Dai, L. J.; Ji, K. Y.; Xiong, Q.; Li, S. S.; Reb, L. K.; Scheel, M. A.; Pratap, S. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 2021, 6, 977–986.

[25]

Zhang, X. J.; Wu, X. X.; Liu, X. Y.; Chen, G. Y.; Wang, Y. K.; Bao, J. C.; Xu, X. X.; Liu, X. F.; Zhang, Q.; Yu, K. H.et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.

[26]

Wang, S. X.; Bi, C. H.; Portniagin, A.; Yuan, J. F.; Ning, J. J.; Xiao, X. F.; Zhang, X. Y.; Li, Y. Y.; Kershaw, S. V.; Tian, J. J. et al. CsPbI3/PbSe heterostructured nanocrystals for high-efficiency solar cells. ACSEnergyLett. 2020, 5, 2401–2410.

[27]

Bederak, D.; Balazs, D. M.; Sukharevska, N. V.; Shulga, A. G.; Abdu-Aguye, M.; Dirin, D. N.; Kovalenko, M. V.; Loi, M. A. Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACSAppl. NanoMater. 2018, 1, 6882–6889.

[28]

Liu, J.;Zhang, J. T. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 2020, 120, 2123–2170.

[29]

Tavakoli, M. M.; Aashuri, H.; Simchi, A.; Kalytchuk, S.; Fan, Z. Y. Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 2015, 119, 18886–18895.

[30]

Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y.M.;Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2017, 118, 6134–6150.

[31]

DiStefano, J. G.; Murthy, A. A.; Hao, S. Q.; Dos Reis, R.; Wolverton, C.; Dravid, V. P. Topology of transition metal dichalcogenides: The case of the core-shell architecture. Nanoscale 2020, 12, 23897–23919.

[32]

Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorović, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.

[33]

Yuan, B.;Cademartiri, L. Growth of colloidal nanocrystals by liquid-like coalescence. Angew. Chem., Int. Ed. 2021, 60, 6667–6672.

[34]

Xu, K. M.; Zhou, W. J.;Ning, Z. J. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 2020, 16, 2003397.

[35]

Chen, J. X.; Ye, L. H.; Wu, T.; Hua, Y.; Zhang, X. L. Band engineering of perovskite quantum dot solids for high-performance solar cells. Adv. Mater. 2024, 36, 2404495.

Nano Research
Cite this article:
Rahman SU, Song Y-H, Ma Z-Y, et al. CsPbI2Br epitaxial shell for efficient PbS quantum dot solar cells. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6988-4
Topics:

94

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 June 2024
Revised: 09 October 2024
Accepted: 11 October 2024
Published: 12 November 2024
© Tsinghua University Press 2024
Return