Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lead sulfide quantum dots (PbS QDs) are promising candidates for high-performance solar cells due to their tunable bandgaps and low-cost solution processing. However, low carrier mobility and numerous surface defects restrict the performance of the fabricated solar cells. Herein, we report the synthesis of novel PbS-perovskite core-shell QDs to solve the low carrier mobility problem of PbS QDs via a facile hot injection method. CsPbI2Br shell enabled strain-free epitaxial growth on the surface of PbS QDs because of 98% lattice match. Our results demonstrate a significant improvement in the photoluminescence and stability of the synthesized PbS-CsPbI2Br QDs upon shell formation, attributed to the effective suppression of surface defects by the epitaxial shell of CsPbI2Br. As a result, the obtained solar cell based on PbS-CsPbI2Br core-shell QD exhibits a power conversion efficiency (PCE) of 8.43%, two times higher than that of pristine PbS QDs. Overall, the construction of PbS-CsPbI2Br core-shell structures represent a promising strategy for advancing the performance of PbS QDs-based optoelectronic devices.
Zhou, R.; Xu, J.; Luo, P. F.; Hu, L. H.; Pan, X.; Xu, J. Z.; Jiang, Y.; Wang, L. Z. Near-infrared photoactive semiconductor quantum dots for solar cells. Adv. EnergyMater. 2021, 11, 2101923.
Choi, M. J.; García de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.;Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.
Yang, Y. G.; Wang, D. D.; Li, Y. S.; Xia, J.; Wei, H. Y.; Ding, C.; Hu, Y. Y.; Wei, Y. Y.; Li, H.; Liu, D. et al. In situ room-temperature synthesis of all-colloidal quantum dot CsPbBr3-PbS heterostructures. ACS Photonics 2023, 10, 4305–4314.
Zhang, J. B.; Gao, J. B.; Miller, E. M.; Luther, J. M.; Beard, M. C. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614–622.
Yang, X. Y.; Ren, F. Q.; Wang, Y.; Ding, T.; Sun, H. D.; Ma, D. L.; Sun, X. W. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Sci. Rep. 2017, 7, 14741.
Shen, W. S.; Liu, Y.; Grater, L.; Park, S. M.; Wan, H. Y.; Yu, Y. J.; Pan, J. L.; Kong, F. C.; Tian, Q. S.; Zhou, D. Y. et al. Thickness-variation-insensitive near-infrared quantum dot LEDs. Sci. Bull. 2023, 68, 2954–2961.
Khalaf, G. M. G.; Li, M. Y.; Yan, J.; Zhao, X. Z.; Ma, T. J.; Hsu, H. Y.; Song, H. S. PbS colloidal quantum dots infrared solar cells: Defect information and passivation strategies. SmallSci. 2023, 3, 2300062.
Yu, Y. T.; Ma, T. Y.; Huang, H. W. Semiconducting quantum dots for energy conversion and storage. Adv. Funct. Mater. 2023, 33, 2213770.
Zhang, C. X.; Han, D.; Zhang, X. Y. PbS colloidal quantum dots: Ligand exchange in solution. Coatings 2024, 14, 761.
Konstantatos, G.; Huang, C.; Levina, L.; Lu, Z.; Sargent, E. H. Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Funct. Mater. 2005, 15, 1865–1869.
Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 2002, 295, 1506–1508.
Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.
Li, D.; Zhang, X. L.; Ramzan, M.; Gu, K.; Chen, Y.; Zhang, J. T.; Zou, B. S.; Zhong, H. Z. Colloidal synthesis of giant shell PbSe-based core/shell quantum dots in polar solvent: Cation exchange versus epitaxial growth. Chem. Mater. 2020, 32, 6650–6656.
Wang, H.; Loi, M. A. Quantum dots solar cells. PhotovoltaicSol.Energy 2024, 2, 217.
Liu, M.X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.
Ning, Z. J.; Gong, X. W.; Comin, R.; Walters, G.; Fan, F. J.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E. H. Quantum-dot-in-perovskite solids. Nature 2015, 523, 324–328.
Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y. B.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C. Q.; Yang, Z. Y.; Saidaminov, M. I. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photonics 2020, 14, 227–233.
Liu, Y.; Dong, Y. T.; Zhu, T.; Ma, D. X.; Proppe, A.; Chen, B.; Zheng, C.; Hou, Y.; Lee, S.; Sun, B. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 2021, 143, 15606–15615.
Yang, J. N.; Chen, T.; Ge, J.; Wang, J. J.; Yin, Y. C.; Lan, Y. F.; Ru, X. C.; Ma, Z. Y.; Zhang, Q.; Yao, H. B. High color purity and efficient green light-emitting diode using perovskite nanocrystals with the size overly exceeding bohr exciton diameter. J. Am. Chem. Soc. 2021, 143, 19928–19937.
Li, H. Z.; Lu, W. W.; Zhao, G. L.; Song, B.; Dong, W. X.; Han, G. R. Evolution and mechanism of cesium lead bromide nanostructures in oleylamine-rich system by hot-injection method. Adv. Mater. Interfaces 2023, 10, 2201916.
Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J. et al. Potassium bromide surface passivation on CsPbI3- x Br x nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 2956–2967.
Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079.
Meng, X. C.; Hu, X. T.; Zhang, Y. Y.; Huang, Z. Q.; Xing, Z.; Gong, C. X.; Rao, L.; Wang, H. Y.; Wang, F. Y.; Hu, T. et al. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 2021, 31, 2106460.
Guo, R. J.; Han, D.; Chen, W.; Dai, L. J.; Ji, K. Y.; Xiong, Q.; Li, S. S.; Reb, L. K.; Scheel, M. A.; Pratap, S. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 2021, 6, 977–986.
Zhang, X. J.; Wu, X. X.; Liu, X. Y.; Chen, G. Y.; Wang, Y. K.; Bao, J. C.; Xu, X. X.; Liu, X. F.; Zhang, Q.; Yu, K. H.et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471.
Wang, S. X.; Bi, C. H.; Portniagin, A.; Yuan, J. F.; Ning, J. J.; Xiao, X. F.; Zhang, X. Y.; Li, Y. Y.; Kershaw, S. V.; Tian, J. J. et al. CsPbI3/PbSe heterostructured nanocrystals for high-efficiency solar cells. ACSEnergyLett. 2020, 5, 2401–2410.
Bederak, D.; Balazs, D. M.; Sukharevska, N. V.; Shulga, A. G.; Abdu-Aguye, M.; Dirin, D. N.; Kovalenko, M. V.; Loi, M. A. Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACSAppl. NanoMater. 2018, 1, 6882–6889.
Liu, J.;Zhang, J. T. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 2020, 120, 2123–2170.
Tavakoli, M. M.; Aashuri, H.; Simchi, A.; Kalytchuk, S.; Fan, Z. Y. Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 2015, 119, 18886–18895.
Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y.M.;Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2017, 118, 6134–6150.
DiStefano, J. G.; Murthy, A. A.; Hao, S. Q.; Dos Reis, R.; Wolverton, C.; Dravid, V. P. Topology of transition metal dichalcogenides: The case of the core-shell architecture. Nanoscale 2020, 12, 23897–23919.
Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorović, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.
Yuan, B.;Cademartiri, L. Growth of colloidal nanocrystals by liquid-like coalescence. Angew. Chem., Int. Ed. 2021, 60, 6667–6672.
Xu, K. M.; Zhou, W. J.;Ning, Z. J. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 2020, 16, 2003397.
Chen, J. X.; Ye, L. H.; Wu, T.; Hua, Y.; Zhang, X. L. Band engineering of perovskite quantum dot solids for high-performance solar cells. Adv. Mater. 2024, 36, 2404495.