AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-particle photoluminescence connects thermal processing with heterogeneity in the trap distribution of cesium lead bromide nanocrystals

Dong Wang1Jie Chen1Dongyan Zhang1Dariusz M. Niedzwiedzki2,3Richard A. Loomis1,4Bryce Sadtler1,4( )
Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
Center for Solar Energy and Energy Storage, Washington University, St. Louis, Missouri 63130, USA
Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130, USA
Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, USA
Show Author Information

Graphical Abstract

Single-particle photoluminescence microscopy reveals how thermal annealing changes the distribution of trap states in core/shell cesium lead bromide/silica nanocrystals.

Abstract

Understanding the mechanisms of degradation in lead halide perovskite nanocrystals is critical for their future application in optoelectronic devices. We report single-particle measurements of the photoluminescence from cesium lead bromide nanocrystals coated with a silica shell (CsPbBr3@SiO2). Through correlative imaging, we quantified changes in the fluorescence intensity trajectories of the same nanocrystals before and after annealing them at different temperatures. We observe that nearly equal numbers of CsPbBr3@SiO2 nanocrystals exhibit an increase versus decrease in the amount of time they spend in an emissive state after annealing at temperatures of 70 and 100 °C. On the other hand, annealing at 120 °C produces a decrease in the on-fraction for most nanocrystals and, correspondingly, a substantial decrease in the photoluminescence intensity for a thin film annealed at this temperature. We attribute the differences in behavior among individual nanocrystals to heterogeneity in the distribution of trap states that are initially present. X-ray photoelectron, time-resolved photoluminescence, and transient absorption spectroscopies performed on thin films of CsPbBr3@SiO2 nanocrystals indicate that thermal annealing heals electron traps by passivating surface Pb ions and simultaneously creates hole traps through the formation of Pb and Cs vacancies. The relative rates of these parallel processes depend on the annealing temperature, which are important to account for when developing passivation strategies for lead halide perovskite nanocrystals in optoelectronic devices that will operate at elevated temperatures.

Electronic Supplementary Material

Download File(s)
6989_ESM.pdf (4.2 MB)

References

[1]

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

[2]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[3]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[4]

Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

[5]

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

[6]

Akkerman, Q. A.; Abdelhady, A. L.; Manna, L. Zero-dimensional cesium lead halides: History, properties, and challenges. J. Phys. Chem. Lett. 2018, 9, 2326–2337.

[7]

Utzat, H.; Sun, W. W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072.

[8]

Deschler, F.; Neher, D.; Schmidt-Mende, L. Perovskite semiconductors for next generation optoelectronic applications. APL Mater. 2019, 7, 080401.

[9]

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

[10]

Chouhan, L.; Ghimire, S.; Subrahmanyam, C.; Miyasaka, T.; Biju, V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 2020, 49, 2869–2885.

[11]

Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500963.

[12]

Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Stability of perovskite solar cells. Solar Energy Mater. Solar Cells 2016, 147, 255–275.

[13]

Meng, L.; You, J. B.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 2018, 9, 5265.

[14]

Ling, J.; Kizhakkedath, P. K. K.; Watson, T. M.; Mora-Seró, I.; Schmidt-Mende, L.; Brown, T. M.; Jose, R. A perspective on the commercial viability of perovskite solar cells. Sol. RRL 2021, 5, 2100401.

[15]

Chowdhury, T. A.; Bin Zafar, M. A.; Sajjad-Ul Islam, M.; Shahinuzzaman, M.; Islam, M. A.; Khandaker, M. U. Stability of perovskite solar cells: Issues and prospects. RSC Adv. 2023, 13, 1787–1810.

[16]

Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963.

[17]

Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655–1660.

[18]

Pearson, A. J.; Eperon, G. E.; Hopkinson, P. E.; Habisreutinger, S. N.; Wang, J. T. W.; Snaith, H. J.; Greenham, N. C. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3− x Cl x perovskite solar cells: Kinetics and mechanisms. Adv. Energy Mater. 2016, 6, 1600014.

[19]

Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406–3410.

[20]

Meng, Q.; Chen, Y. C.; Xiao, Y. Y.; Sun, J. J.; Zhang, X. B.; Han, C. B.; Gao, H. L.; Zhang, Y. Z.; Yan, H. Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 2021, 32, 12784–12792.

[21]

Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B. B.; Bridges, F.; Zhang, J. Z.; Carter, S. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 2016, 109, 233905.

[22]

Draguta, S.; Sharia, O.; Yoon, S. J.; Brennan, M. C.; Morozov, Y. V.; Manser, J. S.; Kamat, P. V.; Schneider, W. F.; Kuno, M. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun. 2017, 8, 200.

[23]

Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films. Adv. Electron. Mater. 2017, 3, 1700158.

[24]

Song, Z. N.; Wang, C. L.; Phillips, A. B.; Grice, C. R.; Zhao, D. W.; Yu, Y.; Chen, C.; Li, C. W.; Yin, X. X.; Ellingson, R. J. et al. Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels 2018, 2, 2460–2467.

[25]

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

[26]

Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.

[27]

Shangguan, Z. B.; Zheng, X.; Zhang, J.; Lin, W. S.; Guo, W. J.; Li, C.; Wu, T. Z.; Lin, Y.; Chen, Z. The stability of metal halide perovskite nanocrystals-a key issue for the application on quantum-dot-based micro light-emitting diodes display. Nanomaterials 2020, 10, 1375.

[28]

Zhong, Q. X.; Cao, M. H.; Hu, H. C.; Yang, D.; Chen, M.; Li, P. L.; Wu, L. Z.; Zhang, Q. One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano 2018, 12, 8579–8587.

[29]

Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. J. Am. Chem. Soc. 2018, 140, 406–412.

[30]

Wang, Y. N.; Dong, Y. J.; Liu, Q.; Guo, X.; Zhang, M. J.; Li, Y. F. In- situ stabilization strategy for CsPbX3-silicone resin composite with enhanced luminescence and stability. Nano Energy 2020, 78, 105150.

[31]

Gao, F.; Yang, W. Q.; Liu, X. L.; Li, Y. Z.; Liu, W. Z.; Xu, H. Y.; Liu, Y. C. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chem. Eng. J. 2021, 407, 128001.

[32]

Diroll, B. T.; Nedelcu, G.; Kovalenko, M. V.; Schaller, R. D. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 2017, 27, 1606750.

[33]

Yuan, X.; Hou, X. M.; Li, J.; Qu, C. Q.; Zhang, W. J.; Zhao, J. L.; Li, H. B. Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 8934–8940.

[34]

Wang, Q.; Wu, W. Z.; Wu, R. R.; Yang, S.; Wang, Y. X.; Wang, J. X.; Chai, Z. J.; Han, Q. J. Improved thermal stability of photoluminescence in Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals. J. Colloid Interface Sci. 2019, 554, 133–141.

[35]

Huang, S. Q.; Li, Z. C.; Wang, B.; Zhu, N. W.; Zhang, C. Y.; Kong, L.; Zhang, Q.; Shan, A. D.; Li, L. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces 2017, 9, 7249–7258.

[36]

An, R.; Zhang, F. Y.; Zou, X. S.; Tang, Y. Y.; Liang, M. L.; Oshchapovskyy, I.; Liu, Y. C.; Honarfar, A.; Zhong, Y. Q.; Li, C. S. et al. Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots. ACS Appl. Mater. Interfaces 2018, 10, 39222–39227.

[37]

Scheidt, R. A.; Kerns, E.; Kamat, P. V. Interfacial charge transfer between excited CsPbBr3 nanocrystals and TiO2: Charge injection versus photodegradation. J. Phys. Chem. Lett. 2018, 9, 5962–5969.

[38]

Boote, B. W.; Andaraarachchi, H. P.; Rosales, B. A.; Blome-Fernández, R.; Zhu, F.; Reichert, M. D.; Santra, K.; Li, J. Z.; Petrich, J. W.; Vela, J. et al. Unveiling the photo- and thermal-stability of cesium lead halide perovskite nanocrystals. ChemPhysChem 2019, 20, 2647–2656.

[39]

Yuan, G. C.; Ritchie, C.; Ritter, M.; Murphy, S.; Gómez, D. E.; Mulvaney, P. The degradation and blinking of single CsPbI3 perovskite quantum dots. J. Phys. Chem. C 2018, 122, 13407–13415.

[40]

Liu, L. G.; Deng, L. G.; Huang, S.; Zhang, P.; Linnros, J.; Zhong, H. Z.; Sychugov, I. Photodegradation of organometal hybrid perovskite nanocrystals: Clarifying the role of oxygen by single-dot photoluminescence. J. Phys. Chem. Lett. 2019, 10, 864–869.

[41]

Zhang, C.; Fernando, J. F. S.; Firestein, K. L.; von Treifeldt, J. E.; Siriwardena, D.; Fang, X. S.; Golberg, D. Thermal stability of CsPbBr3 perovskite as revealed by in situ transmission electron microscopy. APL Mater. 2019, 7, 071110.

[42]

Matteocci, F.; Cinà, L.; Lamanna, E.; Cacovich, S.; Divitini, G.; Midgley, P. A.; Ducati, C.; Di Carlo, A. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 2016, 30, 162–172.

[43]

Dipta, S. S.; Rahim, A.; Uddin, A. Encapsulating perovskite solar cells for long-term stability and prevention of lead toxicity. Appl. Phys. Rev. 2024, 11, 021301.

[44]

Liao, J. F.; Xu, Y. F.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. CsPbBr3 nanocrystal/MO2 (M = Si, Ti, Sn) composites: Insight into charge-carrier dynamics and photoelectrochemical applications. ACS Appl. Mater. Interfaces 2018, 10, 42301–42309.

[45]

Dubey, S.; Sarvaiya, J. N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review. Energy Procedia 2013, 33, 311–321.

[46]

Kim, D. Y.; Park, J.; Cho, J.; Kim, J. K. Counter-intuitive junction temperature behavior in AlGaN-based deep-ultraviolet light-emitting diodes. AIP Adv. 2020, 10, 045135.

[47]

Liu, M. M.; Wan, Q.; Wang, H. M.; Carulli, F.; Sun, X. C.; Zheng, W. L.; Kong, L.; Zhang, Q.; Zhang, C. Y.; Zhang, Q. G. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 2021, 15, 379–385.

[48]

Routzahn, A. L.; Jain, P. K. Single-nanocrystal reaction trajectories reveal sharp cooperative transitions. Nano Lett. 2014, 14, 987–992.

[49]

Yoshimura, H.; Yamauchi, M.; Masuo, S. In situ observation of emission behavior during anion-exchange reaction of a cesium lead halide perovskite nanocrystal at the single-nanocrystal level. J. Phys. Chem. Lett. 2020, 11, 530–535.

[50]

Wang, D.; Cavin, J.; Yin, B.; Thind, A. S.; Borisevich, A. Y.; Mishra, R.; Sadtler, B. Role of solid-state miscibility during anion exchange in cesium lead halide nanocrystals probed by single-particle fluorescence. J. Phys. Chem. Lett. 2020, 11, 952–959.

[51]

Wang, D.; Zhang, D. Y.; Sadtler, B. Irreversibility in anion exchange between cesium lead bromide and iodide nanocrystals imaged by single-particle fluorescence. J. Phys. Chem. C 2020, 124, 27158–27168.

[52]

Karimata, I.; Tachikawa, T. In situ exploration of the structural transition during morphology- and efficiency-conserving halide exchange on a single perovskite nanocrystal. Angew. Chem., Int. Ed. 2021, 60, 2548–2553.

[53]

Zhang, D. Y.; Wu, X. S.; Wang, D.; Sadtler, B. Size-dependent miscibility controls the kinetics of anion exchange in cesium lead halide nanocrystals. J. Chem. Phys. 2023, 159, 014701.

[54]

Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.

[55]

Shimizu, K. T.; Neuhauser, R. G.; Leatherdale, C. A.; Empedocles, S. A.; Woo, W. K.; Bawendi, M. G. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 2001, 63, 205316.

[56]

Kuno, M.; Fromm, D. P.; Hamann, H. F.; Gallagher, A.; Nesbitt, D. J. “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 2001, 115, 1028–1040.

[57]

Kuno, M.; Fromm, D. P.; Johnson, S. T.; Gallagher, A.; Nesbitt, D. J. Modeling distributed kinetics in isolated semiconductor quantum dots. Phys. Rev. B 2003, 67, 125304.

[58]

Zhao, J.; Nair, G.; Fisher, B. R.; Bawendi, M. G. Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett. 2010, 104, 157403.

[59]

Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 2011, 479, 203–207.

[60]

Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386–10393.

[61]

Tachikawa, T.; Karimata, I.; Kobori, Y. Surface charge trapping in organolead halide perovskites explored by single-particle photoluminescence imaging. J. Phys. Chem. Lett. 2015, 6, 3195–3201.

[62]

Rainò, G.; Nedelcu, G.; Protesescu, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Mahrt, R. F.; Stöferle, T. Single cesium lead halide perovskite nanocrystals at low temperature: Fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 2016, 10, 2485–2490.

[63]

Gibson, N. A.; Koscher, B. A.; Alivisatos, A. P.; Leone, S. R. Excitation intensity dependence of photoluminescence blinking in CsPbBr3 perovskite nanocrystals. J. Phys. Chem. C 2018, 122, 12106–12113.

[64]

Trinh, C. T.; Minh, D. N.; Ahn, K. J.; Kang, Y.; Lee, K. G. Organic-inorganic FAPbBr3 perovskite quantum dots as a quantum light source: Single-photon emission and blinking behaviors. ACS Photonics 2018, 5, 4937–4943.

[65]

Freppon, D. J.; Men, L.; Burkhow, S. J.; Petrich, J. W.; Vela, J.; Smith, E. A. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. J. Mater. Chem. C 2017, 5, 118–126.

[66]

Seth, S.; Ahmed, T.; Samanta, A. Photoluminescence flickering and blinking of single CsPbBr3 perovskite nanocrystals: Revealing explicit carrier recombination dynamics. J. Phys. Chem. Lett. 2018, 9, 7007–7014.

[67]

Ahmed, T.; Seth, S.; Samanta, A. Mechanistic investigation of the defect activity contributing to the photoluminescence blinking of CsPbBr3 perovskite nanocrystals. ACS Nano 2019, 13, 13537–13544.

[68]

Yang, C. G.; Li, Y.; Hou, X. Q.; Zhang, M.; Zhang, G. F.; Li, B.; Guo, W. L.; Han, X.; Bai, X. Q.; Li, J. L. et al. Conversion of photoluminescence blinking types in single colloidal quantum dots. Small 2024, 20, 2309134.

[69]

Sanderson, W. M.; Schrier, J.; Loomis, R. A. Photo-induced state shifting in 1D semiconductor quantum wires. J. Phys. Chem. C 2020, 124, 16702–16713.

[70]

Mannino, G.; Deretzis, I.; Smecca, E.; La Magna, A.; Alberti, A.; Ceratti, D.; Cahen, D. Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 2020, 11, 2490–2496.

[71]

Shen, M. K.; Ding, T. B.; Luo, J.; Tan, C.; Mahmood, K.; Wang, Z. Y.; Zhang, D. Y.; Mishra, R.; Lew, M. D.; Sadtler, B. Competing activation and deactivation mechanisms in photodoped bismuth oxybromide nanoplates probed by single-molecule fluorescence imaging. J. Phys. Chem. Lett. 2020, 11, 5219–5227.

[72]

Zhao, Z. Y.; Xu, W.; Pan, G. C.; Liu, Y. A.; Yang, M.; Hua, S. W.; Chen, X.; Peng, H. S.; Song, H. W. Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ ions. Mater. Res. Bull. 2019, 112, 142–146.

[73]

van Sark, W. G. J. H. M.; Frederix, P. L. T. M.; Van den Heuvel, D. J.; Gerritsen, H. C.; Bol, A. A.; van Lingen, J. N. J.; de Mello Donegá, C.; Meijerink, A. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J. Phys. Chem. B 2001, 105, 8281–8284.

[74]

Manna, L.; Scher, E. C.; Li, L. S.; Alivisatos, A. P. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 2002, 124, 7136–7145.

[75]

Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B. M.; Valcárcel, M. Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem. Commun. 2009, 5214–5226.

[76]

Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132.

[77]

Liu, W. N.; Zheng, J. J.; Shang, M. H.; Fang, Z.; Chou, K. C.; Yang, W. Y.; Hou, X. M.; Wu, T. Electron-beam irradiation-hard metal-halide perovskite nanocrystals. J. Mater. Chem. A 2019, 7, 10912–10917.

[78]

Ran, J. H.; Dyck, O.; Wang, X. Z.; Yang, B.; Geohegan, D. B.; Xiao, K. Electron-beam-related studies of halide perovskites: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 1903191.

[79]

Orfield, N. J.; McBride, J. R.; Keene, J. D.; Davis, L. M.; Rosenthal, S. J. Correlation of atomic structure and photoluminescence of the same quantum dot: Pinpointing surface and internal defects that inhibit photoluminescence. ACS Nano 2015, 9, 831–839.

[80]

Wei, S.; Yang, Y. C.; Kang, X. J.; Wang, L.; Huang, L. J.; Pan, D. C. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields. Chem. Commun. 2016, 52, 7265–7268.

[81]

Liang, P. T.; Zhang, P.; Pan, A. Z.; Yan, K.; Zhu, Y. S.; Yang, M. Y.; He, L. Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride). ACS Appl. Mater. Interfaces 2019, 11, 22786–22793.

[82]

Utzat, H.; Shulenberger, K. E.; Achorn, O. B.; Nasilowski, M.; Sinclair, T. S.; Bawendi, M. G. Probing linewidths and biexciton quantum yields of single cesium lead halide nanocrystals in solution. Nano Lett. 2017, 17, 6838–6846.

[83]

Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349–2362.

[84]

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.

[85]

Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

[86]

Whitham, P. J.; Knowles, K. E.; Reid, P. J.; Gamelin, D. R. Photoluminescence blinking and reversible electron trapping in copper-doped CdSe nanocrystals. Nano Lett. 2015, 15, 4045–4051.

[87]

Seiler, H.; Palato, S.; Sonnichsen, C.; Baker, H.; Socie, E.; Strandell, D. P.; Kambhampati, P. Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals. Nat. Commun. 2019, 10, 4962.

[88]

Brosseau, P.; Ghosh, A.; Seiler, H.; Strandell, D.; Kambhampati, P. Exciton-polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J. Chem. Phys. 2023, 159, 184711.

[89]

Thouin, F.; Valverde-Chávez, D. A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Srimath Kandada, A. R. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349–356.

[90]

Thouin, F.; Srimath Kandada, A. R.; Valverde-Chávez, D. A.; Cortecchia, D.; Bargigia, I.; Petrozza, A.; Yang, X. M.; Bittner, E. R.; Silva, C. Electron-phonon couplings inherent in polarons drive exciton dynamics in two-dimensional metal-halide perovskites. Chem. Mater. 2019, 31, 7085–7091.

[91]

Shrivastava, M.; Hazarika, A.; Aneesh, J.; Mandal, D.; Beard, M. C.; Adarsh, K. V. Giant spin-selective bandgap renormalization in CsPbBr3 colloidal nanocrystals. Phys. Rev. B 2022, 106, L041404.

[92]

Yan, J. F.; Jiang, T. R.; Liu, Q. B.; Xiao, Z. J.; Zhang, W.; Zhou, H.; Wu, G. H.; Chen, Z. F. Giant band-gap renormalization and morphology-tunable defect-assisted carrier recombination in CsPbBr3 microstructures. ACS Photonics 2023, 10, 3976–3984.

[93]

Saran, R.; Heuer-Jungemann, A.; Kanaras, A. G.; Curry, R. J. Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals. Adv. Opt. Mater. 2017, 5, 1700231.

[94]

Ren, Y. J.; Huang, Z. G.; Wang, Y. Dynamic and giant bandgap renormalization dictates the transient optical response in perovskite quantum dots. Appl. Phys. Lett. 2022, 121, 251103.

[95]

Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. Design principles for trap-free CsPbX3 nanocrystals: Enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 2018, 140, 17760–17772.

[96]

Socie, E.; Vale, B. R. C.; Burgos-Caminal, A.; Moser, J. E. Direct observation of shallow trap states in thermal equilibrium with band-edge excitons in strongly confined CsPbBr3 perovskite nanoplatelets. Adv. Opt. Mater. 2021, 9, 2001308.

[97]

Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.

[98]

Mondal, N.; Samanta, A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale 2017, 9, 1878–1885.

[99]

Kang, J.; Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493.

Nano Research
Pages 10363-10375
Cite this article:
Wang D, Chen J, Zhang D, et al. Single-particle photoluminescence connects thermal processing with heterogeneity in the trap distribution of cesium lead bromide nanocrystals. Nano Research, 2024, 17(12): 10363-10375. https://doi.org/10.1007/s12274-024-6989-3
Topics:

261

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 August 2024
Revised: 04 October 2024
Accepted: 20 October 2024
Published: 11 November 2024
© Tsinghua University Press 2024
Return