AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Continuous flow synthesis of PbS/CdS quantum dots using substituted thioureas

Pierre Machut1,2Anna Karina Antonini2Céline Rivaux2Marina Gromova3Harinderbir Kaur4Wai Li Ling4Gabriel Mugny1Peter Reiss2( )
STMicroelectronics Grenoble, 12 Rue Jules Horowitz, Grenoble 38019, France
Univ. Grenoble Alpes, CEA Grenoble, CNRS, Grenoble INP, IRIG/SyMMES/STEP, Grenoble 38000, France
Univ. Grenoble Alpes, CEA Grenoble/IRIG/MEM, Grenoble 38000, France
Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble 38000, France
Show Author Information

Graphical Abstract

Abstract

To enhance the reproducibility and scale up the synthesis of colloidal quantum dots (QDs), continuous flow synthesis is an appealing alternative to the widely used batch synthesis. Amongst other advantages, the strongly enhanced heat and mass transfer in small tubular reactors combined with controlled pressure can be cited. Nonetheless, the widespread use of this technique is hampered by special requirements such as the absence of solid or gaseous products and the room-temperature solubility of precursors. Therefore, the transfer of established reaction conditions from batch to flow is not straightforward and in most reported works the optical properties of the obtained QDs lag behind those prepared in batch reactions. This is also the case for PbS-based QDs, which are established near infrared (NIR) absorbers/emitters. Here we identified experimental conditions giving access to high-quality PbS core and PbS/CdS core/shell QDs obtained in an automated, easily scalable continuous flow synthesis. In particular, substituted thioureas have been selected as the sulfur source and ex-situ synthesized lead and cadmium oleate as the metal precursors, and appropriate solvent mixtures have been identified for each precursor. Highly luminescent PbS/CdS QDs emitting at the target wavelengths 940 and 1130 nm of special interest for NIR light-emitting diodes have been prepared, exhibiting a photoluminescence quantum yield up to 91%.

Electronic Supplementary Material

Download File(s)
7003_ESM.pdf (1.7 MB)

References

[1]

Jin, S. Y.; Son, H. J.; Farha, O. K.; Wiederrecht, G. P.; Hupp, J. T. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 2013, 135, 955–958.

[2]

Probst, C. E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. H. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 2013, 65, 703–718.

[3]

Malinowski, P. E.; Georgitzikis, E.; Maes, J.; Vamvaka, I.; Frazzica, F.; Van Olmen, J.; De Moor, P.; Heremans, P.; Hens, Z.; Cheyns, D. Thin-film quantum dot photodiode for monolithic infrared image sensors. Sensors 2017, 17, 2867.

[4]
Steckel, J. S.; Josse, E.; Pattantyus-Abraham, A. G.; Bidaud, M.; Mortini, B.; Bilgen, H.; Arnaud, O.; Allegret-Maret, S.; Saguin, F.; Mazet, L. et al. 1.62 µm global shutter quantum dot image sensor optimized for near and shortwave infrared. In Proceedings of 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2021 , pp 23.4.1–23.4.4.
[5]
Mandelli, E.; Beiley, Z. M.; Kolli, N.; Pattantyus-Abraham, A. G. Quantum dot-based image sensors for cutting-edge commercial multispectral cameras. In Proceedings of the SPIE 9933, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, San Diego, USA, 2016 , pp 993304.
[6]

Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

[7]

Gao, L.; Quan, L. N.; de Arquer, F. P. G.; Zhao, Y. B.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C. Q.; Yang, Z. Y.; Saidaminov, M. I. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photonics 2020, 14, 227–233.

[8]

Pradhan, S.; Di Stasio, F.; Bi, Y.; Gupta, S.; Christodoulou, S.; Stavrinadis, A. Konstantatos, G. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72–79.

[9]

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. W. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

[10]

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

[11]

Neo, D. C. J.; Cheng, C.; Stranks, S. D.; Fairclough, S. M.; Kim, J. S.; Kirkland, A. I.; Smith, J. M.; Snaith, H. J.; Assender, H. E.; Watt, A. A. R. Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 2014, 26, 4004–4013.

[12]

Justo, Y.; Geiregat, P.; van Hoecke, K.; Vanhaecke, F.; De Mello Donega, C.; Hens Z. Optical properties of PbS/CdS core/shell quantum dots. J. Phys. Chem. C 2013, 117, 20171–20177.

[13]

Justo, Y.; Sagar, L. K.; Flamee, S.; Zhao, Q.; Vantomme, A.; Hens, Z. Less is more. Cation exchange and the chemistry of the nanocrystal surface. ACS Nano 2014, 8, 7948–7957.

[14]

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

[15]

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

[16]

Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; von Freymann, G.; Ozin, G. A. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 2006, 110, 671–673.

[17]

Owen, J. S.; Campos, M. P.; Cleveland, G. T.; Plante, I. J. L.; Hendricks, M. P. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 2015, 348, 1226–1230.

[18]

Malet-Sanz, L.; Susanne, F. Continuous flow synthesis. A pharma perspective. J. Med. Chem. 2012, 55, 4062–4098.

[19]

Brasholz, M.; Macdonald, J. M.; Saubern, S.; Ryan, J. H.; Holmes, A. B. A gram-scale batch and flow total synthesis of perhydrohistrionicotoxin. Chem.—Eur. J. 2010, 16, 11471–11480.

[20]

Bogdan, A. R.; Charaschanya, M.; Dombrowski, A. W.; Wang, Y.; Djuric, S. W. High-temperature Boc deprotection in flow and its application in multistep reaction sequences. Org. Lett. 2016, 18, 1732–1735.

[21]

Rivaux, C.; Akdas, T.; Yadav, R.; El-Dahshan, O.; Moodelly, D.; Ling, W. L.; Aldakov, D.; Reiss, P. Continuous flow aqueous synthesis of highly luminescent AgInS2 and AgInS2/ZnS quantum dots. J. Phys. Chem. C 2022, 126, 20524–20534.

[22]

Moghaddam, M. M.; Baghbanzadeh, M.; Sadeghpour, A.; Glatter, O.; Kappe, C. O. Continuous-flow synthesis of CdSe quantum dots: A size-tunable and scalable approach. Chem.—Eur. J. 2013, 19, 11629–11636.

[23]

Pan, J.; El-Ballouli, A. O.; Rollny, L.; Voznyy, O.; Burlakov, V. M.; Goriely, A.; Sargent, E. H.; Bakr, O. M. Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages. ACS Nano 2013, 7, 10158–10166.

[24]

Ippen, C.; Schneider, B.; Pries, C.; Kröpke, S.; Greco, T.; A. Holländer, A. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions. Nanotechnology 2015, 26, 085604.

[25]

Akdas, T.; Haderlein, M.; Walter, J.; Apeleo Zubiri, B.; Spiecker, E.; Peukert, W. Continuous synthesis of CuInS2 quantum dots. RSC Adv. 2017, 7, 10057–10063.

[26]

Chakrabarty, A.; Marre, S.; Landis, R. F.; Rotello, V. M.; Maitra, U.; Del Guerzo, A.; Aymonier, C. Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J. Mater. Chem. C 2015, 3, 7561–7566.

[27]
Xiao, Z. F. Synthesis of nanocrystal quantum dots with enhanced photoluminescence for luminescent optoelectronics. Ph. D. Dissertation, University of Cambridge, Cambridge, UK, 2019.
[28]

Nette, J.; Howes, P. D.; deMello, A. J. Microfluidic synthesis of luminescent and plasmonic nanoparticles: Fast, efficient, and data-rich. Adv. Mater. Technol. 2020, 5, 2000060.

[29]

Abdel-Latif, K.; Bateni, F.; Crouse, S.; Abolhasani, M. Flow synthesis of metal halide perovskite quantum dots: From rapid parameter space mapping to AI-guided modular manufacturing. Matter 2020, 3, 1053–1086.

[30]

Bateni, F.; Epps, R. W.; Abdel-Latif, K.; Dargis, R.; Han, S. Y.; Volk, A. A.; Ramezani, M.; Cai, T.; Chen, O.; Abolhasani, M. Ultrafast cation doping of perovskite quantum dots in flow. Matter 2021, 4, 2429–2447.

[31]

Epps, R. W.; Delgado-Licona, F.; Yang, H.; Kim, T.; Volk, A. A.; Han, S. Y.; Abolhasani, M. Accelerated multi-stage synthesis of indium phosphide quantum dots in modular flow reactors. Adv. Mater. Technol. 2023, 8, 2201845.

[32]

Wang, Z.; Segets, D. Aminophosphine-based continuous liquid-phase synthesis of InP and InP/ZnS quantum dots in a customized tubular flow reactor. React. Chem. Eng. 2023, 8, 316–322.

[33]

Dhaene, E.; Billet, J.; Bennett, E.; Van Driessche, I.; De Roo, J. The trouble with ODE: Polymerization during nanocrystal synthesis. Nano Lett. 2019, 19, 7411–7417.

[34]

Neo, M. S.; Venkatram, N.; Li, G. S.; Chin, W. S.; Ji, W. Synthesis of PbS/CdS core–shell QDs and their nonlinear optical properties. J. Phys. Chem. C 2010, 114, 18037–18044.

[35]

Abécassis, B.; Greenberg, M. W.; Bal, V.; McMurtry, B. M.; Campos, M. P.; Guillemeney, L.; Mahler, B.; Prevost, S.; Sharpnack, L.; Hendricks, M. P. et al. Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals. Chem. Sci. 2022, 13, 4977–4983.

[36]

Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G., et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030.

[37]

Lechner, R. T.; Fritz-Popovski, G.; Yarema, M.; Heiss, W.; Hoell, A.; Schülli, T. U.; Primetzhofer, D.; Eibelhuber, M.; Paris. O. Crystal phase transitions in the shell of PbS/CdS core/shell nanocrystals influences photoluminescence intensity. Chem. Mater. 2014, 26, 5914–5922.

[38]

Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 13, 5278–5281.

[39]

Warner, J. H.; Cao, H. Q. Shape control of PbS nanocrystals using multiple surfactants. Nanotechnology 2008, 19, 305605.

[40]

Krishnamurthy, S.; Singh, A.; Hu, Z. J.; Blake, A. V.; Kim, Y.; Singh, A.; Dolgopolova, E. A.; Williams, D. J.; Piryatinski, A.; Malko, A. V., et al. PbS/CdS quantum dot room-temperature single-emitter spectroscopy reaches the telecom O and S bands via an engineered stability. ACS Nano 2021, 15, 575–587.

[41]

Kennehan, E. R.; Munson, K. T.; Doucette, G. S.; Marshall, A. R.; Beard, M. C.; Asbury, J. B. Dynamic ligand surface chemistry of excited PbS quantum dots. J. Phys. Chem. Lett. 2020, 11, 2291–2297.

Nano Research
Cite this article:
Machut P, Antonini AK, Rivaux C, et al. Continuous flow synthesis of PbS/CdS quantum dots using substituted thioureas. Nano Research, 2024, https://doi.org/10.1007/s12274-024-7003-9
Topics:

204

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 August 2024
Revised: 26 October 2024
Accepted: 30 October 2024
Published: 18 November 2024
© Tsinghua University Press 2024
Return