AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

CdS quantum dot aerogels for photocatalytic hydrogen evolution

Vinicius Alevato1Daniel Streater2Cole Premtaj1Jier Huang2,Stephanie L. Brock1( )
Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
Department of Chemistry, Marquette University, Milwaukee, WI 53201, USA
Present address: Department of Chemistry & Shiller Institute for Integrated Science and Society, Boston College, Boston, MA 02467, USA
Show Author Information

Graphical Abstract

The oxidative assembly of CdS quantum dots (QD) adopting wurtzite (w) or zinc blende (zb) structures into gels (AG), and subsequent annealing up to 300 °C under inert atmosphere resulted in increased exciton delocalization. Exciton delocalization correlates to enhanced visible-light photocatalytic hydrogen evolution for samples annealed up to 250 °C, after which activity drops due to sintering and loss of surface area.

Abstract

CdS quantum dots (QDs) have been extensively studied as photocatalysts and sensitizers for visible-light-driven water reduction. However, their efficiencies are limited by the need to accumulate sufficient redox equivalents to produce H2 and consequent photocorrosion associated with slow hole-transfer rates. To address these limitations, we report the formation of CdS QD assemblies (aerogels, AGs) capable of facilitating energy/charge transport between individual QDs, and evaluate their performance as photocatalysts for hydrogen evolution as a function of structure, wurtzite (w-) vs. zincblende (zb-), and different annealing temperatures. The formation of AGs from QDs resulted in increased rates of H2 production under visible light illumination: from 1458 (QD) to 6650 (AG) µmolH2∙h−1∙g−1 on zbCdS and from 1221 (QD) to 3325 (AG) µmolH2∙h−1∙g−1 on wCdS. This is attributed to exciton delocalization between adjacent QDs facilitating charge/energy transport. Thermal processing of CdS AGs up to 250 °C improved their activity, increasing the degree of exciton delocalization, while annealing them to 300 °C caused sintering of the primary QD particles within the AGs and a decrease in activity associated with loss in surface area. The best photocatalyst, zbCdS AG annealed at 250°C, had an average H2 production rate of 13,604 ± 2017 µmolH2∙h−1∙g−1, an apparent quantum yield of 2.8% at 425 ± 12.5 nm, and was stable for 2 h before beginning to deactivate due to photocorrosion. This study confirms the potential of CdS AGs as matrixes for the design of more active and stable composite photocatalysts for water splitting.

Electronic Supplementary Material

Download File(s)
7107_ESM.pdf (2 MB)

References

[1]
NIST Chemistry WebBook. In NIST Standard Reference Database Number 69; NIST, 2022. https://webbook.nist.gov/chemistry/ (accessed Jan 23, 2023).
[2]

Nasir, J. A.; Rehman, Z. U.; Shah, S. N. A.; Khan, A.; Butler, I. S.; Catlow, C. R. A. Recent developments and perspectives in CdS-based photocatalysts for water splitting. J. Mater. Chem. A 2020, 8, 20752–20780.

[3]

Deng, C. H.; Ye, F.; Wang, T.; Ling, X. H.; Peng, L. L.; Yu, H.; Ding, K. Z.; Hu, H. M.; Dong, Q.; Le, H. R. et al. Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation. Nano Res. 2022, 15, 2003–2012.

[4]

Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

[5]

Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

[6]

Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.

[7]
Cleveland, C. J.; Morris, C. Handbook of Energy: Volume I: Diagrams, Charts, and Tables; Elsevier: Amsterdam, 2013.
[8]

Ning, X. F.; Lu, G. X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 2020, 12, 1213–1223.

[9]

Henglein, A. Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous solution. Ber. Bunsenges. Phys. Chem. 1982, 86, 301–305.

[10]

Meissner, D.; Memming, R.; Kastening, B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem. 1988, 92, 3476–3483.

[11]

Fermín, D. J.; Ponomarev, E. A.; Peter, L. M. A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. J. Electroanal. Chem. 1999, 473, 192–203.

[12]
Tachibana, Y. Interfacial electron transfer reactions in CdS quantum dot sensitized TiO2 nanocrystalline electrodes. In On Solar Hydrogen & Nanotechnology; Vayssieres, L., Ed.; John Wiley & Sons (Asia) Pte Ltd: Hoboken, 2009.
[13]

Shulenberger, K. E.; Coppieters ‘t Wallant, S. C.; Klein, M. D.; McIsaac, A. R.; Goldzak, T.; Berkinsky, D. B.; Utzat, H.; Barotov, U.; Van Voorhis, T.; Bawendi, M. G. Resolving the triexciton recombination pathway in CdSe/CdS nanocrystals through state-specific correlation measurements. Nano Lett. 2021, 21, 7457–7464.

[14]

Li, X. B.; Tung, C. H.; Wu, L. Z. Quantum dot assembly for light-driven multielectron redox reactions, such as hydrogen evolution and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 10804–10811.

[15]

Xu, S. S.; Jiang, G. C.; Zhang, H. K.; Gao, C. Y.; Chen, Z. H.; Liu, Z. H.; Wang, J.; Du, J.; Cai, B.; Li, Z. Q. Boosting photocatalytic CO2 methanation through interface fusion over CdS quantum dot aerogels. Small 2024, 20, 2400769.

[16]

Jiang, G. C.; Wang, J.; Li, N. Y.; Hübner, R.; Georgi, M.; Cai, B.; Li, Z. Q.; Lesnyak, V.; Gaponik, N.; Eychmüller, A. Self-supported three-dimensional quantum dot aerogels as a promising photocatalyst for CO2 reduction. Chem. Mater. 2022, 34, 2687–2695.

[17]

Kodaimati, M. S.; Lian, S. C.; Schatz, G. C.; Weiss, E. A. Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting-catalyst assemblies. Proc. Natl. Acad. Sci. USA 2018, 115, 8290–8295.

[18]

Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.

[19]

Lv, H. J.; Wang, C. C.; Li, G. C.; Burke, R.; Krauss, T. D.; Gao, Y. L.; Eisenberg, R. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. USA 2017, 114, 11297–11302.

[20]

Wang, Y.; Li, X. B.; Wu, H. L.; Yang, Y. C.; Liu, Z.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Visible-light-induced nanoparticle assembly for effective hydrogen photogeneration. ACS Sustain. Chem. Eng. 2019, 7, 7286–7293.

[21]

Arachchige, I. U.; Mohanan, J. L.; Brock, S. L. Sol-gel processing of semiconducting metal chalcogenide xerogels: Influence of dimensionality on quantum confinement effects in a nanoparticle network. Chem. Mater. 2005, 17, 6644–6650.

[22]

Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005, 307, 397–400.

[23]

Hewa-Rahinduwage, C. C.; Geng, X.; Silva, K. L.; Niu, X. F.; Zhang, L.; Brock, S. L.; Luo, L. Reversible electrochemical gelation of metal chalcogenide quantum dots. J. Am. Chem. Soc. 2020, 142, 12207–12215.

[24]

Davis, J. L.; Chalifoux, A. M.; Brock, S. L. Role of crystal structure and chalcogenide redox properties on the oxidative assembly of cadmium chalcogenide nanocrystals. Langmuir 2017, 33, 9434–9443.

[25]

Lian, S. C.; Weinberg, D. J.; Harris, R. D.; Kodaimati, M. S.; Weiss, E. A. Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand. ACS Nano 2016, 10, 6372–6382.

[26]

Alevato, V.; Streater, D.; Huang, J. E.; Brock, S. Effect of crystal structure on the aggregation of CdS quantum dots: Consequences for photophysical properties and photocatalytic hydrogen evolution activity. J. Phys. Chem. C 2024, 128, 11239–11246.

[27]

Lim, S. J.; Ma, L.; Schleife, A.; Smith, A. M. Quantum dot surface engineering: Toward inert fluorophores with compact size and bright, stable emission. Coord. Chem. Rev. 2016, 320–321, 216–237.

[28]

Yu, H. T.; Liu, Y.; Brock, S. L. Tuning the optical band gap of quantum dot assemblies by varying network density. ACS Nano 2009, 3, 2000–2006.

[29]

Kilina, S. V.; Tamukong, P. K.; Kilin, D. S. Surface chemistry of semiconducting quantum dots: Theoretical perspectives. Acc. Chem. Res. 2016, 49, 2127–2135.

[30]

Li, Q. Y.; Wu, K. F.; Zhu, H. M.; Yang, Y.; He, S.; Lian, T. Q. Charge transfer from quantum-confined 0D, 1D, and 2D nanocrystals. Chem. Rev. 2024, 124, 5695–5763.

[31]

Liu, D. H.; Nyakuchena, J.; Maity, R.; Geng, X.; Mahajan, J. P.; Hewa-Rahinduwage, C. C.; Peng, Y.; Huang, J. E.; Luo, L. Quantum dot gels as efficient and unique photocatalysts for organic synthesis. Chem. Commun. 2022, 58, 11260–11263.

[32]

Liu, H. Q.; Tan, P. F.; Liu, Y.; Zhai, H. H.; Du, W. N.; Liu, X. F.; Pan, J. Ultrafast interfacial charge evolution of the Type-II cadmium sulfide/molybdenum disulfide heterostructure for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 619, 246–256.

[33]

Cheng, C.; Zhang, J. J.; Zhu, B. C.; Liang, G. J.; Zhang, L. Y.; Yu, J. G. Verifying the charge-transfer mechanism in S-scheme heterojunctions using femtosecond transient absorption spectroscopy. Angew. Chem., Int. Ed. 2023, 62, e202218688.

[34]

Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 2012, 134, 16472–16475.

[35]

Shen, X.; Wang, S.; Geng, C.; Li, L. T.; Zhao, E. C.; Sun, J. H.; Wu, W. Z.; An, L. M.; Pan, K. Red shift of bleaching signals in femtosecond transient absorption spectra of CsPbX3 (X = Cl/Br, Br, Br/I) nanocrystals induced by the biexciton effect. J. Phys. Chem. C 2021, 125, 5278–5287.

[36]

Zhang, J. F.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B: Environ. 2016, 192, 101–107.

[37]

Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

[38]

Ansar, S. M.; Kitchens, C. L. Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol. ACS Catal. 2016, 6, 5553–5560.

[39]

Lu, L. F.; Zou, S. H.; Fang, B. Z. The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catal. 2021, 11, 6020–6058.

[40]

Korala, L.; Wang, Z. J.; Liu, Y.; Maldonado, S.; Brock, S. L. Uniform thin films of CdSe and CdSe(ZnS) core(shell) quantum dots by sol-gel assembly: Enabling photoelectrochemical characterization and electronic applications. ACS Nano 2013, 7, 1215–1223.

[41]

Bailliez, S.; Nzihou, A. The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent. Chem. Eng. J. 2004, 98, 141–152.

[42]

Khalil, T.; Abou El-Nour, F.; El-Gammal, B.; Boccaccini, A. R. Determination of surface area and porosity of sol-gel derived ceramic powders in the system TiO2–SiO2–Al2O3. Powder Technol. 2001, 114, 106–111.

[43]

Moscheni, D.; Bertolotti, F.; Piveteau, L.; Protesescu, L.; Dirin, D. N.; Kovalenko, M. V.; Cervellino, A.; Pedersen, J. S.; Masciocchi, N.; Guagliardi, A. Size-dependent fault-driven relaxation and faceting in zincblende CdSe colloidal quantum dots. ACS Nano 2018, 12, 12558–12570.

[44]

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[45]

Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

[46]

Nedelijkovic, J. M.; Patel, R. C.; Kaufman, P.; Joyce-Pruden, C.; O'Leary, N. Synthesis and optical properties of quantum-sized metal sulfide particles in aqueous solution. J. Chem. Educ. 1993, 70, 342.

[47]
Lahariya, V.; Michalska-Domańska, M.; Dhoble, S. J. 9 - Synthesis, structural properties, and applications of cadmium sulfide quantum dots. In Quantum Dots: Emerging Materials for Versatile Applications; Thejo Kalyani, N.; Dhoble, S. J.; Michalska-Domańska, M.; Vengadaesvaran, B.; Nagabhushana, H.; Arof, A. K., Eds.; Elsevier: Amsterdam, 2023; pp 235–266.
[48]

Aryal, S.; Frimpong, J.; Liu, Z. F. Comparative study of covalent and van der Waals CdS quantum dot assemblies from many-body perturbation theory. J. Phys. Chem. Lett. 2022, 13, 10153–10161.

[49]

Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K.; Gupta, A.; Yanagisawa, K.; Grimes, C. A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. J. Phys. Chem. C 2007, 111, 17527–17534.

[50]

Sathish, M.; Viswanath, R. P. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support. Catal. Today 2007, 129, 421–427.

[51]

Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168.

[52]

Dong, J.; Duan, L. X.; Wu, Q.; Yao, W. F. Facile preparation of Pt/CdS photocatalyst by a modified photoreduction method with efficient hydrogen production. Int. J. Hydrogen Energy 2018, 43, 2139–2147.

[53]

Zhen, W. L.; Ning, X. F.; Yang, B. J.; Wu, Y. Q.; Li, Z.; Lu, G. X. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B: Environ. 2018, 221, 243–257.

[54]

Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27.

[55]

Zhao, J.; Holmes, M. A.; Osterloh, F. E. Quantum confinement controls photocatalysis: A free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 2013, 7, 4316–4325.

[56]

Holmes, M. A.; Townsend, T. K.; Osterloh, F. E. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48, 371–373.

Nano Research
Cite this article:
Alevato V, Streater D, Premtaj C, et al. CdS quantum dot aerogels for photocatalytic hydrogen evolution. Nano Research, 2024, https://doi.org/10.1007/s12274-024-7107-2
Topics:

103

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 August 2024
Revised: 27 October 2024
Accepted: 14 November 2024
Published: 23 November 2024
© Tsinghua University Press 2024
Return